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Abstract
This paper addresses the question of producing modular sequential imperative code from synchronous

data-flow networks. Precisely, given a system with several input and output flows, how to decompose it
into a minimal number of classes executed atomically and statically scheduled without restricting possi-
ble feedback loops between input and output?

Though this question has been identified by Raymond in the early years of LUSTRE, it has almost
been left aside until the recent work of Lublinerman, Szegedy and Tripakis. The problem is proven to be
intractable, in the sense that it belongs to the family of optimization problems where the corresponding
decision problem — there exists a solution with size c — is NP-complete. Then, the authors derive an
iterative algorithm looking for solutions for c = 1, 2, ... where each step is encoded as a SAT problem.

Despite the apparent intractability of the problem, our experience is that real programs do not exhibit
such a complexity. Based on earlier work by Raymond, this paper presents a new symbolic encoding of
the problem in terms of input/output relations. This encoding simplifies the problem, in the sense that it
rejects solutions, while keeping all the optimal ones. It allows, in polynomial time, (1) to identify nodes
for which several schedules are feasible and thus are possible sources of combinatorial explosion; (2) to
obtain solutions which in some cases are already optimal; (3) otherwise, to get a non trivial lower bound
for c to start an iterative combinatorial search.

The solution applies to a large class of block-diagram formalisms based on atomic computations and
a delay operator, ranging from synchronous languages such as LUSTRE or SCADE to modeling tools such
as SIMULINK.

Terms: Algorithms, Languages, Theory.
Keywords: Real-time systems, Synchronous languages, Block-diagrams, Compilation, NP-completeness,
Partial orders, Preorders.

1 Introduction
The synchronous block-diagram or data-flow formalism is now preeminent in a variety of design tools
for embedded systems. Sequential code generation of synchronous block-diagrams have been considered
in the early years of LUSTRE [7] and SIGNAL [1] and is provided by industrial tools such as SCADE 1

and RTBUILDER 2 for almost fifteen years. Though it has been considered more recently, modeling and
simulation tools such as SIMULINK 3 and MODELICA 4 are now equipped with an automatic code generator.

We focus here on the problem of generating imperative, sequential code, implementing the functional
behavior of a parallel data-flow network. We keep abstracted the (somehow orthogonal) problem of data
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Figure 1: A SCADE (v5) block-diagram

management, that is, how values are actually passed from one node to another and even the interpretation
of each operator. In particular, we address both data-flow networks with discrete-time (e.g., SCADE) or
continuous-time (e.g., SIMULINK) semantics. Figure 1 gives an example of a SCADE block diagram and
Figure 2, an example of a SIMULINK one.

Whatever be the semantics of nodes in a network, there are basically two types of atomic nodes. Com-
binatorial nodes need to evaluate all their arguments in order to produce their output. On the contrary,
delay nodes are able to produce their output before reading their inputs. They correspond to unitary reg-
isters in synchronous designs (the so-called pre operator of LUSTRE), initialized buffers in Kahn process
networks [9, 10] or continuous integrators in SIMULINK. Delays are essential to cut data-dependencies and
to introduce well-founded feedback loops.

Given a system described as a data-flow network of atomic operators, code generation aims at pro-
ducing a static schedule satisfying data-dependencies. This static schedule is feasible when there is no
combinatorial loop, i.e., every loop in the graph crosses a delay. Data-flow formalism, just like any ad-
vanced programming language, allow the user to abstract his own programs into reusable components, that
is, to build functions. This raises the problem of defining what is exactly a reusable parallel program,
and how to compile it once for all into sequential code. Modular, or separate compilation, produces one
piece of sequential code executed atomically for each function definition. Nonetheless, modular code gen-
eration is not always feasible even in the absence of combinatorial loops, as noticed by Gonthier [6]. If
copy(x, y) = (x+1, y +1) then the equation (y, z) = copy(t, y) defines two perfectly valid streams y and
z (since y = t + 1 and z = y + 1 = (t + 1) + 1) but it cannot be statically scheduled if copy is compiled
into one atomic step function. Indeed, it would make both y and z depend on t and y. This observation has
conducted to two main compilation approaches. With the first one, or white-boxing, functions are statically
inlined before code generation. This is the solution taken in the academic LUSTRE compiler. The opposite
solution or black-boxing, keeps maximal code sharing by compiling each node individually into one code
executed atomically. From the user point of view, such a node becomes a combinatorial node whatever are
the internal dependencies between its input and output. As a consequence, every feedback loop must cross
an explicit delay outside of the node. As is, this compilation method rejects causally correct programs
(such as the copy example) which would have worked properly in a parallel execution or compiled with a
white-box technique. This solution is the one taken in the compiler of SCADE and is combined to inlining
on demand to accept all causally correct programs [3].

In this paper, we investigate an intermediate approach between the two that we call grey-boxing. It is
based on the observation that some nodes are compatible in the sense that they can be executed together
without restricting possible feedback loops between input and output. Then, the data-flow graph can be
partitioned into a minimal number of classes, each of them executed atomically. This idea originally
appeared in a work by Raymond published in a French report in 1988 [15]. Left aside, the subject has been
reconsidered recently by Lublinerman and Tripakis. Their first proposal [13] was based on dynamic testing

2



Out1
1

Scope

Integrator

1
s

Gain1

−K−

Gain

0.5

Add

In1
1

Figure 2: A SIMULINK block-diagram

to avoid the re-computation of shared values but, as they noticed in [12], this solution is costly in term of
code size and execution time. In this recent work, Lublinerman, Szegedy and Tripakis come back to the
original optimal static scheduling problem. They prove that the problem is intractable since it belongs to
the family of optimization problems where the corresponding decision problem — is there a solution with
at most c classes? — is NP-complete as it encodes the clique cover in a graph. Then, the authors derive an
iterative algorithm looking for solutions for c = 1, 2, ... where each step is encoded into a SAT problem.

Despite the apparent intractability of the problem, our experience is that real programs do not exhibit
such a complexity. This calls for a careful look at the sources of combinatorial explosion and for an
efficient encoding which limits this possible explosion. Moreover, we would like to build a polynomial
test saying if a given instance of the problem can be polynomially solved or fall into the general case and
call for an enumerative search. Based on earlier work by Raymond on a study of input/output relations,
this paper proposes a symbolic and efficient representation of the problem. We show that this encoding
simplifies the problem in the sense that it rejects solutions but keeps all the optimal ones. This symbolic
representation allows, in polynomial time, (1) to identify nodes for which several schedules are feasible and
thus are possible sources of complexity; (2) to obtain solutions which in some cases are already optimal;
(3) otherwise, to get a non trivial lower bound for c to start an iterative combinatorial search, once the
symbolic representation is translated into a boolean formula. All this is proven using basic properties of
partial orders.

The paper is organized as follows. Section 2 presents the basics of the optimal scheduling problem and
Section 3 develops the formalization. We start by giving another proof that optimal scheduling is intractable
to help clarifying the sources of combinatorial explosion. In section 4, we present the symbolic representa-
tion based on input/output analysis, related properties and algorithms. Section 5 gives experimental results.
We discuss related works in Section 6 and we conclude in section 7.

2 From Synchronous Data-flow to Relations
Consider the following synchronous data-flow program given below in LUSTRE syntax, and its correspond-
ing block-diagram on the left side of Figure 3. The block NODE has two inputs a, b and two outputs x and
y.

node NODE(a, b: t) returns (x, y: t);
let

x = j(a, f(D(a), b));
y = h(b);

tel;

There are essentially two kinds of operators in such a network, combinatorial and delay operators.
Combinatorial ones (e.g., j, f and h) need their current input in order to produce their current output
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a ;
b ;
get ;
f ;
set ;
j ;
x ;
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y ;

}

proc Step () {
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Figure 3: A data-flow network and the corresponding ordered set of actions
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z = D.get()

y = f(x, z)

D.set(y)

Figure 4: The get/set principle breaks feedback loops

whereas a delay (e.g., D) is able to produce an output before it reads an input 5. Delay nodes are used to
program dynamical systems with feedback loops.

Focusing only on the scheduling problem of a data-flow network with delays — and not memory
representation and optimization — the simplest way to represent a delay D is to express it as two atomic
imperative actions D.get and D.set. D.get returns the current value of the delay whereas D.set reads the
current input and stores it for remaining execution. More importantly, if the result of D.get is necessary,
it must be executed before D.set is executed. Said differently, a delay reverses the data-flow dependency
between its input and its output and thus breaks cycles (Figure 4). Using this lower-level representation,
data-flow networks we consider are simply partially ordered sets of atomic actions as defined below.
Definition 1 (Abstract Data-flow Networks) A system (A, I,O,�) is made of:

1. a finite set of actions A,

2. a subset of inputs I ⊆ A,

3. a subset of output O ⊆ A (not necessarily disjoint from I)

4. and a partial order � to represent precedence relation between actions.

5The unitary delay is concretely written pre in LUSTRE and 1/z in (discrete) SIMULINK. From the dependencies point-of-view,
an integrator (1/s) for a continuous signal in SIMULINK acts similarly.
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There is no constraint on I and O with respect to �. In particular, one may have x�i or o�x with
x ∈ A, i ∈ I and o ∈ O.

In the following, the static scheduling problem of a concrete data-flow program is considered only on
this representation. The encoding from one to the other is not detailed.

Figure 3 shows a block-diagram (left) and the corresponding ordered set of actions (center). The delay
node D is replaced by the corresponding actions set and get. Note that only the direct dependencies are
shown, the partial order is, as usual, the transitive closure of the represented acyclic graph. From this
partially ordered set, code generation mainly consists in finding a correct scheduling for the actions, that
is, a total order including the partial dependency order. One of the correct scheduling is shown on the right
side of Figure 3.

In such a network, it makes sense to feedback an output to an input as soon as the output does not
depend combinatorially on this input. We say that such a feedback is causality correct. This is illustrated
by the example of Figure 5. If we allow such an external loop, it is not possible to use a single, monolithic
code, such as the one given in the left of Figure 3: in any correct sequence, the computation of the external
node k must take place between the computations of the internal nodes h and j. However, it is clear that
it is not necessary to externalize the code of each node in the graph, that is, to inline NODE. Some nodes
can be gathered without preventing causally correct feedback loops. The static scheduling problem is to
generate the minimal number of classes of compatible nodes. For example, f can be computed:

• together with h, as soon as b is provided;
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proc P1 () {

}
P1 before P2
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}
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Figure 7: Grey-boxing: orderer blocks plus sequential code

• together with (and before) j in order to provide the output x.

The same reasoning holds for the delay D:

• D.get is clearly associated to the computation of f ;

• D.set requires the input a, and for this reason, is related to the action j.

Finally, this intuitive reasoning shows that the node can be abstracted into two atomic pieces of code:

• the class for h with input b and output y;

• the class for j with input a, output x, and which must always be computed after the class for h.

However, the frontier between these two classes is not strict: some internal computations can be performed
on one side or the other, e.g., g and f . Figure 6 shows two particular optimal solutions in the number of
classes. Once these blocks have been identified, we can compile each of them into sequential code executed
atomically and export them together with the relative dependence constraints. From the caller, NODE is now
seen as a data-flow graph with two actions — the class of h and the class of j. The call to NODE is replaced
with a call to the two associated functions. Figure 7 summarizes this principle, a optimal partition of the
actions is chosen (left), from which one can derive the interface and the dependencies between the two
blocks (center) and the actual sequential code for each block (right).

Note that the formulation with (A, I, O,�) is fully modular and enough to address the static scheduling
problem. At each level of the hierarchy, we can focus on a set of actions, some of them being inputs and/or
outputs and some being local. We now formalize the grey-boxing problem.

3 Formalization

3.1 Optimal Static Scheduling
Let A be a set of actions, partially ordered by �, and two subsets of A, I ⊆ A (input nodes) and O ⊆ A
(output nodes).
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Definition 2 (Compatibility) Two actions x, y ∈ A are said to be (static-scheduling) compatible and this
is written xχ y when the following property holds:

xχ y
def
= ∀i ∈ I,∀o ∈ O, ((i�x ∧ y�o)⇒(i�o)) ∧ ((i�y ∧ x�o)⇒(i�o))

Incompatibility is the property which formalizes the fact that two nodes (either internal, input or output)
can not be statically scheduled within the same piece of atomic code: if two actions are not compatible (for
instance i�x, y�o and i�o), it is possible to feedback o to the input i without introducing a combinatorial
loop. Thus, setting x and y together into the same piece of code would make this feedback impossible.

The goal is to find classes of pairwise compatible actions in A. Note that compatibility is not a solution,
since it is not an equivalence. It is symmetric, reflexive, but not transitive in general: for example, in
Figure 6, fχ j and fχ b hold but not jχ b.

Moreover, not any equivalence ' included in χ is a solution: the atomic blocks must be made of
pairwise compatible actions, but they must also be schedulable with respect to �, without introducing any
extra dependencies between input and output.

In other terms, we are looking for an equivalence relation plus a (partial) order over the classes. This is
strictly equivalent to search a preorder (reflexive, transitive, not symmetric relation) over the set of actions.
Definition 3 (Optimal Static Scheduling (OSS)) A static schedule is a relation - ⊆ A×A such that:

• (SS-0) - is a preorder (reflexive, transitive), and we note ' the underlying equivalence relation
(x ' y ⇔ x-y ∧ y-x),

• (SS-1) x�y ⇒ x-y (it contains all the dependency constraints),

• (SS-2) ∀i ∈ I,∀o ∈ O, i-o ⇔ i�o (the preorder strictly maps the dependency on input/output
pairs).

Moreover, a static schedule is said optimal (OSS) if it satisfies the following property:

• (SS-3) ' is maximal (i.e. it has a minimal number of classes).

Property 1 The main property following the definition SS-0 to SS-2 is that the equivalence ' associated
to a static scheduling - is a subset of the compatibility relation:

• (SS-prop) x ' y ⇒ x χ y

Proof: Let - be a static scheduling, suppose that it exist some actions x, y, input i and output o such that
x ' y, i�x, y�o and i�o, by SS-1, i-x and y-o, then, since (in particular) x-y, i-o and by SS-2 i�o,
which is absurd.

3.2 Theoretical Complexity of OSS
An equivalent definition of the problem, presented in terms of graphs and clusters, has been proposed
in [12]. Authors have shown that it is NP-hard, through a reduction of the partition in k cliques problem,
also known as clique cover [5].

Even if it is not new, we briefly present here an alternative encoding which leads to the same result.
This encoding is interesting since it helps to understand why the problem is theoretically hard, while being
simple on small but typical systems such as the one given in Figure 6.

We show that any minimal clique cover problem can be linearly encoded into a OSS instance. First,
we reformulate the problem in terms of relations: given a finite set L and a symmetric relation ↔ (i.e. a
non oriented graph), find a maximal equivalence relation ' included in ↔ (i.e. with a minimal number of
classes, called cliques in the original formulation).

This problem has indeed many similarities with OSS since OSS mainly consists in finding a maximal
equivalence included in a symmetric relation (the compatibility). However, it is not trivial that compatibility
relations can be as general as symmetric relations.
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The X-encoding In order to prove it, we propose an encoding of MCC into OSS, called X-encoding
(cross-encoding).

Let G = (L,↔) be the data of a MCC problem. We build a OSS instance with an extra set of nodes
X: (A = L ]X, I = O = X,�) (i.e. each extra variable is both an input and an output), in the following
way:

1. For each x ∈ L, we introduce 4 extra variables io1
x, io2

x, oi1x and oi2x that are both input and output.
Each local variable x and its extra input/output variables are related by the dependency relation in a
“X” (cross) shape, as presented on the left side of Figure 8.

2. For each pair x, y such that x↔y, we add 8 dependencies by connecting each input of x to each
output of y and vice versa, as shown on the right side of Figure 8.

The X-encoding ensures that each additional node (io1
x,io2

x, oi1x and oi2x) is incompatible with any other
variables. For instance, an extra variable io1

x is incompatible:

• with any other extra variable of type io or oi, since it can be fed back to any of them,

• with any local node y 6= x, since it can be fed back either to io1
y or io2

y ,

• with the associated local variable x since it can be fed back to the other extra input io2
x.

The same reasoning applies for variables of type oi.
The dependencies added for each pair x↔y enforce that x is compatible with y: all outputs of y depend

on all inputs of x and reciprocally. On the contrary, if x6↔y, no extra dependencies are introduced and x6 χy:
any output of x can be fed back to any input of y and reciprocally.

Finally, we have xχ y ⇔ x↔y. Note that it establishes that a compatibility relation can be an arbitrary
symmetric relation.

MCC is equivalent to OSS via X-encoding

1. Let ' be a solution of the clique cover problem over (L,↔) and consider the relation R over (L ∪
X,�) which is the transitive closure of the relation ' ∪ �. This relation:

• is a preorder (SS-0),

• by definition, it contains � (SS-1),

• it does not add any extra dependency between inputs and outputs (SS2).
Proof: Firstly, note that “inputs” (nodes of type io), are minimal by construction for both '
and�, and then, the transitive closure cannot introduce any relation between two nodes of type
io. The same reasoning holds for “outputs” (type oi) which are maximal by construction. As a
consequence, the transitive closure necessarily passes through internal nodes.
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Secondly, since by construction x�y for any pair of internal nodes, xR y is necessarily due to
the transitive closure of ', wich is, by definition already transitive, thus: xR y ⇔ x ' y.
Now, suppose that is exists an input/output pair such that i R o and i�o; then it exists two
internal nodes x, y such that i�x, x R y, and y�o, but x R y ⇔ x ' y, and, since ' is a
solution of the clique cover, x ' y ⇒ x↔y. Finally, we have i�x, y�o and x↔y, and then,
because of the X-encoding construction (left side of Figure 8), i�o, which is absurd.

2. Let - be a solution of the X-encoded problem over (L ∪ X,�) and ' the associated equivalence.
Since ' ⊆ χ and χ only concerns internal nodes, then ' is also an equivalence over L and thus, a
solution of the clique-cover problem.

3. Moreover, an optimal solution for one problem necessarily gives an optimal solution for the other:
suppose, for instance, that ' is an optimal solution of the clique cover, and that the transitive closure
R of ' ∪ � is not an optimal scheduling. Then it exists a strictly better scheduling - from which
we can derive, by (2), a solution of the clique cover which is strictly better than the optimal: this is
absurd.

A main interest of this encoding is that it suggests that, even if OSS is proven to be at least as complex
as MCC, the instances of OSS that are supposed to be computationally hard are far from what is a typical
data-flow program: in order to fit the general case, we have to consider programs where the number of
inputs/outputs is larger than the number of internal nodes, an uncommon situation in practice.

Our purpose is to establish that the complexity of OSS is strongly related to the number of inputs/outputs,
and the structure of their dependencies.

4 Input/Output Analysis
This section shows that the OSS problem can be reformulated, and in some sense simplified, by analyzing
the relations between input and output.

4.1 Input/Output Saturation
Let (A, I, O,�) be a data-flow network.

Comparing the sets of inputs (resp. outputs) of two nodes may give information on how they can
be statically scheduled without forbidding valid feedbacks. Let I(x) be the input variables on which x
depends on. Let O(x) be the output variables depending on x. As shown in Figure 9:
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• (a) if the inputs I(x) of x are included in the inputs I(y) of y, then any feedback from an output of y
to some input of x creates a combinatorial loop. As a consequence, it is never the case that y should
be computed before x. In other words, x can always be computed before y. We write x�Iy.

• (b) the same reasoning holds with the (reverse) inclusion of outputs: if O(x) ⊇ O(y) then x can
always be computed before y. We write x�Oy.

These relations �Iand �O, that are trivially preorders, are called respectively the input (resp. output)
saturations of the relation �. They are solutions of SS:

• (SS-1) they both include �, since x�y implies I(x) ⊆ I(y) and O(x) ⊇ O(y),

• (SS-2) they do not introduce any extra input/output dependency, since O(i) ⊇ O(o), and, in partic-
ular, o ∈ O(o), we have i � o (similarly for the inclusion of input).

It follows that, from the basic dependency relation (which is a non optimal solution of SS), one can
derive another solution which is still non optimal, but better than the original.

In what have been defined above, we have build �I and �O starting from the data-dependence relation
� which is already a valid solution to the static scheduling problem. In fact, the same reasoning holds
when starting from any preorder which is a solution of SS.
Definition 4 (Input and output saturation) Given a solution - of the SS problem, we define its input
(resp. output) function, saturation preorder and equivalence:

I-(x) = {i ∈ I , i-x}
x-Iy ⇔ I-(x) ⊆ I-(y)
x'Iy ⇔ I-(x) = I-(y)
O-(x) = {o ∈ O , x-o}
x-Oy ⇔ O-(x) ⊇ O-(y)
x'Oy ⇔ O-(x) = O-(y)

We list the main properties of the saturation preorders, and detail the proof only for the input-saturation
-I (the case of -O is dual):
Property 2 -I and -O are solutions of SS.
Proof for -I :

• (SS-1) since - is itself a solution of SS, x�y ⇒ x-y, and x-y ⇒ I-(x) ⊆ I-(y)

• (SS-2) if I-(i) ⊆ I-(o) then, since in particular i ∈ I-(i), we have i-o, which implies i�o since
- satisfies SS-3

The same reasoning applies for -O.
Property 3 for any SS solution, input-saturation equivalence equals compatibility on outputs, and output-
saturation equivalence equals compatibility on inputs:

∀o, o′ ∈ O o'Io′ ⇔ oχ o′

∀i, i′ ∈ I i'Oi′ ⇔ iχ i′

Proof for 'I : For all output o, o′,

• o'Io′ ⇒ oχ o′, because of SS-prop,

• in order to prove the converse, since χ is symmetric, we simply prove that oχ o′ ⇒ o-I o′.

If o6-I o′, then it exists i ∈ I such that i-o and i6-o′, from SS-2, we have also i�o and i�o′, and
then o and o′ are not compatible.

The same reasoning applies for 'O.
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Property 4 In any optimal solution of SS, two inputs (resp. outputs) that are compatible are necessarily
in the same class.
Proof for output pairs:

• Suppose that - is an optimal solution of SS, where two compatible outputs are not equivalent (o 6'
o′) then compute its input-saturation 'I .

• From the properties of 'I , o'Io′, and then 'I and ' are different. Moreover 'I is greater or equal
('I ⊇ ') than '.

• Finally, 'I has strictly less classes than the supposed optimal solution, which is absurd.

The proof is similar for input pairs.
Indeed, saturation works only once: let - be a SS solution and -I its input-saturation, then the property

i-Ix ⇔ i-x holds: input according to -I are exactly output according to -. The same reasoning applies
for the output-saturation.

However, performing input-saturation then output-saturation (or the reverse) may give some extra in-
formation.
Definition 5 (Input/output preorder) Let - be a solution of SS, we define its input/output saturation
-IO , and equivalence 'IO , as the input-saturation of its output-saturation:

I-
O(x) = {i ∈ I , i-Ox}

x-IOy ⇔ I-
O(x) ⊆ I-

O(y)

x'IOy ⇔ I-
O(x) = I-

O(y)

This preorder inherits from the properties of both saturations:

1. It is a solution of SS,

2. it meets the compatibility relation on inputs (iχ i′ ⇔ i'IO i′),

3. it meets the compatibility relation on outputs (oχ o′ ⇔ o'IOo′).

Moreover, it has a new property on input/output pairs:
Property 5 'IO meets compatibility on I ×O:

∀i ∈ I,∀o ∈ O, iχ o ⇔ i'IOo
Proof:

• i'IOo implies iχ o from SS-prop.

• iχ o ⇒ i� o by definition, i� o ⇔ i-IOo from SS-2.

• iχ o ⇒ o-IO i, because, if o6-IO i it exists i′ such that (a) i′-Oo and (b) i′ 6-Oi; from (a) and SS-2
i′- o and from (b) ∃o′ i- o′ ∧ i′ 6- o′, thus, from SS-2, i and o are not compatible.

The consequence of these properties is that, in any optimal solution of the SS problem, any pair of
compatible nodes in I ∪O are necessarily in the same equivalence class.

Moreover these equivalence classes on I ∪ O can be computed from any known solution of SS, in
particular from the trivial “worst” solution�. We note IO and�IO the input-output function and saturation
of �.

In other words, there is no choice for “clustering” inputs and outputs in an optimal solution. Moreover,
computing IO gives a lower bound to the number of classes. However, there remain several problems to
address: where to put local nodes in an optimal solution? When additional classes are necessary? How
many additional classes are necessary?

Our purpose in the sequel is to precise and solve these problems, while trying to identify simple cases
for which the optimal solution can be given in polynomial time from the “hard” ones, that fall into the
NP-hard theoretical complexity.
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4.2 Static Scheduling as a Mapping in the Input Power-set
In this section, we show that solving (O)SS is equivalent to finding a (minimal) mapping of the actions into
the power-set of inputs 6. Consider a mapping K : A 7→ 2I , which satisfies the following properties:

• (KI-1) ∀x ∈ I ∪O, K(x) = IO(x)

• (KI-2) ∀x, y, x� y ⇒ K(x) ⊆ K(y)

The problem of finding a mapping satisfying these properties is called the Keys as inputs subsets encod-
ing (or KI-enc). Obviously, the dual problem of Keys as outputs is equivalent. We show that this problem
solves the SS one, in the sense that a solution of KI-enc directly leads to a solution of SS.

KI-enc solves SS: Indeed, the mapping IO is a trivial solution of KI-enc, and it gives, through keys inclu-
sion, a solution of SS which is simply �IO . The result is nonetheless much more general: let K be
any solution of KI, then the preorder x-y ⇔ K(x) ⊆ K(y) is a solution of SS:

• SS-1 follows from KI-2,

• SS-2 follows from KI-1 and the properties of IO.

SS solves (and is improved by) KI-enc: suppose that - is a solution of SS, apply output and then input
saturation, the corresponding I-

O is a solution of KI-enc, and, moreover the corresponding preorder
is equal or better (i.e. included) than -.

These properties are interesting for the search of optimal solutions, that is, preorders with a minimum
number of classes. They imply that (1) any solution of KI-enc gives a solution of SS, (2) from any solution
of SS, one can build a better or identical solution of KI-enc. In other terms, the KI-enc formulation has
strictly less solutions than SS, but it does not miss any optimal solution.

4.3 Computing the KI-enc System
We reformulate here the KI-enc problem into a more computational problem. First, it is not necessary to
compute explicitely the dependency order �. We rather suppose that this order is implicitely given by a
direct acyclic graph →, linearly deduced from the wires in the original data-flow program (e.g. given in
SCADE or SIMULINK). Finaly, we consider a graph (A, I,O,→):

• where A is a set of n nodes (actions),

• I is the subset of ni inputs,

• O is the subset of no outputs,

• → ∈ A × A is a dependency graph of p arcs, whose transitive closure is the dependency (partial)
order �. We do not require this graph to be minimal: the only interesting property is that is size p is
linear with respect of the original program.

We build a system of (in)equations with a variable Kx for each x ∈ A:

• Kx = IO(x) for x ∈ I ∪O

•
⋃

y→x
Ky ⊆ Kx ⊆

⋂
x→z

Kz otherwise

Where
⋃

and
⋂

are the natural n-ary extensions of union and intersection, that is, they map 0-argument to
their respective neutral element:

⋃
∅

= ∅, and
⋂
∅

= I .

6All the definition and properties we give can be replayed, by computing instead a mapping into the power-set of outputs.
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Complexity analysis The complexity of building the KI-enc system from a graph (A, I,O,→) is mainly
due to the computation of IO:

• computing the output function O can be done by assigning to each node a set variable Ox, and then
by visiting once, in a bottom-up topological order, the n nodes and p arcs of the dependency graph.
For each arc x→ y, a set union must be made (Ox := Ox ∪ Oy) whose cost is theoretically in
no · log no (negligible, in practice, for small values of no when sets are encoded as bit-vectors). The
global cost is of the order n + p · no · log no.

• given O, the IO of each node x can be computed by comparing O(x) to O(i) (cost in no · log no),
if it is included, i is added to the known IO of x (cost in log ni). The cost is globally of the order
n · ni · log ni · no · log no,

Finally, the system can be built in (roughly) z ·m2 · (log m)2, where z = n + p characterizes the size
of the graph, and m = max(ni, no) characterizes the size of its interface.

If we isolate the costs of set operations (B(m) for binary ones, and A(m) for insertion), we obtain the
expression z ·m · B(m) · (m) which gives a more interesting information in practice: the cost is mainly
the size of the graph times the size of its interface times the cost of set operation.

Iterating SAT searching The system of set inequations is trivially a SAT problem, since a subset of I
can be represented by a vector of ni booleans:

• each variable Kx can be encoded by a vector of Boolean variables [K1
x, · · · ,Kni

x ]

• each constant IO(x) can be replaced by the corresponding vector of ni bits,

•
⋃

is the bitwise logical or,
⋂

is the bitwise logical and.

As we have shown in section 4.1, the system outlines the fact that some classes are necessary: the
ones corresponding to the IO of inputs and outputs. We call them the c mandatory classes M1, ...Mc. An
optimal solution can be obtained by iterating SAT-solver calls:

• search a solution with c + 0 classes, by adding, for each local variable x, the constraint
∨j=c

j=1(Kx =
Mj), and calling a SAT solver,

• if it fails, search for a solution with c + 1 classes, i.e., introduce a new vector of ni free variables S1

and add this variable vector as a new possible value for each local x:∨j=c
j=1(Kx = Mj) ∨ (Kx = S1)

• if it fails, introduce another extra variable S2, and so on.

However, before applying a costly iterative search, it is interesting to study more precisely the system
itself and its sources of complexity.

4.4 Simplifying the KI-enc System
Lower and higher bounds For each variable, we define the lower and the upper solution:

• k⊥x = k>x = IO(x) for x ∈ I ∪O

• k⊥x =
⋃

y→x
k⊥y and k>x =

⋂
x→z

k>z otherwise.

It is easily shown that k>x is in fact IO(x): setting all variables to their upper bound corresponds to the
already known solution �IO . It corresponds to the heuristic “schedule as late as possible” and we call
this solution K>. Dually, choosing Kx = k⊥x for each node is also a solution which corresponds to the
heuristic “schedule as soon as possible” and we call this solution K⊥. These two solutions are a priori
nor comparable nor optimal in general. However, if it appears that all k>x (respectively k⊥x ) are keys of
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Ka = Kx = {a}
Kb = Ky = {b}
Km = {a, b}

Figure 10: A simple “M” shape, where I = {a, b} and O = {x, y}.
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Kb = Kt = {b}

Kc = Kx = {a, b, c}

Kd = Ky = {a, b, d}

∅ ⊆ Km ⊆ {a, b}

Ka = Kz = {a}

Figure 11: A “M/W” shape, where I = {a, b, c, d} and O = {x, y, z, t}.

mandatory classes (i.e. keys of some input or output), we can already conclude that K> (respectively K⊥)
is an optimal solution.

In some cases, the bounds may give the optimal solution: whenever k⊥x = k>x , the inequation becomes
an equation and the class becomes mandatory even if it not the class of any input or output. This situation
happens when it is easy to decide if some purely internal class is necessary. This is illustrated in figure Fig-
ure 10: the local node m must be computed alone in a class that should be scheduled after the class of a
and the class of b.

Bounds reduction The bounds can be introduced into the inequalities, whose general form is then:

k⊥x ∪
⋃

y→x

Ky ⊆ Kx ⊆ k>x ∩
⋂

x→z

Kz

For any y→x such that k>y ⊆ k⊥x , the constraint Ky ⊆ Kx is redundant and can be removed; similarly
for any x→z such that k>x ⊆ k⊥z . This simplification is called the (redundant) bounds reduction. With this
reduction, it may appear than all variables are removed in an inequation, and thus, some variables become
bounded by constants:

k⊥x ⊆ Kx ⊆ k>x
Whenever k⊥x 6= k>x for some x, there are several choices for the position of x within the static schedule,

that may lead or not to an optimal solution. Figure 11 shows a small example with a “M/W” shape where
the position of the local variable m is bounded by two constants. In this case, no extra class is necessary if
the intersection of all the intervals contains a mandatory class. In this example, the answer is trivial since
we have only one interval. It includes both the mandatory classes {a} and {b} and one can choose either
Km = {a} or Km = {b} to obtain an optimal solution.
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∅ ⊆ Km ⊆ {a, b} ∩Kp

∅ ⊆ Kn ⊆ {b, c} ∩Kp

Km ∪Kn ⊆ Kp ⊆ {a, b, c, d, e}

{a}
{b}

{a, b} {b, c}

{c}

{a, b, d} {b, c, e}

a cb

m n

u

z t

x y v

e

d

p

Figure 12: A generalized “M/W” shape, where I = {a, b, c, d, e} and O = {x, y, z, t, u, v}.

As soon as there are more than 3 such variables, we fall in a case that is equivalent to the one of the X-
encoded problem: n independent internal variables have to be organized in a minimum number of classes,
according to their bounds.

The problem is even more complex when the bounds are not constant: the position of some local
variable may depend on the position of another and so on. Figure 12 illustrates this case by generalizing
the “M/W” shape. Several optimal choices can be made, that do not require extra classes, for instance
Km = Kn = Kp = {b}, but also Km = {a},Kn = {b},Kp = {a, b} and more. But these optimal
solutions cannot be obtained by considering variables one by one. For instance, Km = {a} is locally a
good choice, such as Kn = {c}; but once these two choices have been made, there is no solution for p
other than Kp = {a, c} which obliges to introduce a extra class. When several variables are related, they
must be considered “all together”, making the problem computationally hard.

As a conclusion, the proposed encoding may, in some cases, directly give solutions that are proven
optimal and, otherwise, it exhibits the parts of the systems that are real sources of complexity. This appears
when the system still contains inequations whose lower and upper bounds are different and involve other
variables.

5 Experimentation
We have developed a prototype implementation in OCAML [11] to experiment with the ideas presented
previously. Two kind of examples have been considered: a collection of relatively small programs taken
from the SCADE library and two real-size industrial applications from Airbus. Through not particularly
optimized (e.g., all set operations being implemented with the standard OCAML library), the prototype
requires respectively 2, 0.5 and 10 seconds on a laptop (centrino 1.2 Ghz, running Linux Debian) to treat
the whole 3 benchmarks presented here.

For every SCADE (or LUSTRE) code, the dependency information is extracted and the KI-system is
build. It is checked whether:

• it is only made of equations, in which case the system is solved by simple propagation of facts. We
call it the trivial case.

• it still contains inequalities but either all the upper bounds or all the lower bounds in the inequalities
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SCADE libs trivials solved others
n. of programs (155) 41 114 0

n. of classes 1 1 to 2 -
n. of in/out 2 to 5 2 to 9 -
n. of nodes 2 to 18 8 to 64 -

av. size 10 24 -

Bench 2 trivials solved others
n. of programs (27) 8 19 0

n. of classes 1 1 to 4 -
n. of in/out 2 to 10 2 to 19 -
n. of nodes 2 to 29 9 to 48 -

av. size 14 20 -

Bench 3 trivials solved others
n. of programs (125) 39 85 1

n. of classes 1 to 3 1 to 4 3 or 4
n. of in/out 2 to 14 2 to 26 4+2
n. of nodes 7 to 350 12 to 600 25

av. size 50 80 -

Results show the ranges of the number of classes (i.e. the size of the optimal solution); the programs in
a particular benchmark are of various sizes, we give the ranges of the number of inputs/outputs and of
internal nodes, and also the average size (in internal nodes).

Figure 13: Experimental results: almost 100% of the programs are polynomially solved.

are mandatory, that is, they appear in some equations. In this case, either K> or K⊥ are proven to
be optimal solutions. The system is called solved. It corresponds to the situation where a simple
heuristic — always compute as soon as possible or always compute as late as possible — gives an
optimal solution.

• otherwise, the system is considered to be complex. It contains equations that give a set of mandatory
classes. It also contains inequations but some upper bounds and some lower bounds are not manda-
tory. Thus, neither K> nor K⊥ are proven to be optimal. As we have presented in 4.3, the tools
generates a generic Boolean formula parameterized by the number of extra classes ec. This formula
can be expanded for ec = 0, 1, ... and then given to a Boolean solver.

Benchmark 1 (Scade Lib) The problem of modular compilation is clearly interesting for programs that
are supposed to be reusable. This is why we have chosen, as a first benchmark, the libraries of the SCADE
tool 7. The benchmark is made of 155 block diagrams (we simply call them programs in the sequel), which
are indeed relatively small. Not surprisingly, none of them was identified as complex (see Figure 13).
Moreover, 88% of the programs are combinatorial: every output depends on all inputs (this is the case
for the mathematical libraries, for example). As a consequence they trivially require a single computation
block. The other operators (19 over 155) are basic temporal operators (e.g. integrators) which require two
blocks.

Since it seems very unlikely to find complex reusable programs, we have tried to apply the method on
bigger industrial examples.

Benchmark 2 This benchmark is extracted from a medium industrial application from Airbus. We have
extracted 27 components and sub-components of a medium sized application (about 600 atomic nodes

7For practical reasons, we have used the libraries of the version 4.2
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{} <= K(g1) <= {d, a}
{a} <= K(v10) <= {d, a}
{a} <= K(s1) <= {d, c, b, a}
{} <= K(g0) <= {a}
{} <= K(v2) <= {a}
{} <= K(v9) <= {d, a}
{a} <= K(v11) <= {d, a}
{a} <= K(v3) <= {c, b, a}
{a} <= K(s0) <= {d, c, b, a}
{a} <= K(v4) <= {c, b, a}

K(v3) <= K(s0)
K(v3) <= K(v4)
K(v9) <= K(v11)
K(v10) <= K(s1)
K(v10) <= K(v11)
K(g0) <= K(v2)
K(g1) <= K(s1)
K(g1) <= K(v9)

Figure 14: System of inequations of a (possibly) complex program, as it is echoed by the prototype: the
constants bounds (left) and the variables constraints (right).

when flattened). Indeed, performing modular compilation is not really relevant in this case since the com-
ponents are not intended to be reused. But the goal here is to experiment the method on programs that
are relatively bigger than those that can be found in libraries. Finally, the conclusion is the same as in the
first benchmark: all the programs are solved by a simple input/output analysis. One particular program is
interesting: it has 11 inputs and 4 outputs for a total of 30 nodes, and its optimal static scheduling has 4
classes, which is for the time being a (very relative) top of complexity.

Benchmark 3 The last benchmark is also extracted from an Airbus application, but it is bigger than the
previous one: 125 components are extracted from an application whose flat size is about 8000 nodes. Once
again, the components are rather tasks and sub-tasks than reusable operators, and they are not obviously
candidates for separate compilation.

The conclusion is the same as before except that we have found a program that is not solved (cf. column
others in the last table of Figure 13). This program has 24 nodes, 4 inputs and 2 outputs, the minimal
number of (mandatory) classes is 3, and both K> and K⊥ give 4 classes. The corresponding system of
equations is simplified and the tool isolates 10 internal variables whose position is not clear. Figure 14
shows the bounds and the remaining inter-dependencies of these variables.

It appears that, in fact, this is also a simple problem, but it requires a heuristic that is not yet imple-
mented in the prototype:

• the intersection of all the intervals is not empty ({a});

• moreover, the class {a} is one of the 3 mandatory classes;

• thus, setting all the variables to {a} satisfies all the constraints without introducing any extra classes.

Conclusion Is it possible indeed to build an arbitrarily huge and complex data-flow network, e.g., by
multiplying the “M/W” shape given in Figure 12. However, our experience is that hand-written data-flow
networks are rather “simple”, in particular because the number of inputs/outputs of a program is relatively
small with respect to the number of internal nodes.

If it is admitted that modular compilation is useful — a problem which is briefly discussed in the next
section —, the proposed approach consists in using an inexpensive algorithm that:

• in most cases, gives an optimal solution;

• identifies the problem as being potentially “hard” and calls a third-party non-polynomial tool for
solving it.

6 Discussion and Related Works
Various approaches to the code generation problem of synchronous data-flow diagrams have been experi-
mented in compilers.

17



Modular Code Generation Modular code generation, as followed by the SCADE compiler, essentially
translates every stream function into a single function [3]. This way, modules can be compiled separately,
calling conventions (to build libraries or to link synchronous code with others) are almost trivial and this
simplifies traceability issues between the source and target code. It appears that extra constraints imposed
on feedback loops are well accepted by users 8. Combined with partial inlining, all remaining causally
correct programs are accepted. Note that in tools such as SCADE (but it also applies to SIMULINK), many
functions are local as they are only used to structure the code: they are not exported to build libraries and
are only instantiated once. Any good compiler always inlines these functions thus reducing again the set
of functions that need a decomposition into classes. A classical variation of the unique transition function
is to split it in two, one to produce the output and one to modify the state 9. In the case of a node where
its outputs do not depend on its input (as for the delay node), this solution allows to compile modularly
an extra set of programs but it is incomplete (e.g., it fails to compile the example given in begining of
section 2).

This black-boxing approach to code generation was almost discarded in the LUSTRE compiler as it may
reject causally correct programs. Programs are compiled after a full inlining of functions and this allows to
generate efficient automata [8].

Optimal Static Scheduling The question of decomposing a data-flow graph into classes has been also
studied by Benveniste & al. for the compilation of SIGNAL and was observed to be similar to the problem
of code distribution [2]. It is formulated for a more expressive model of conditional scheduling constraints:
a relation x

ck→ y states that that “when ck is true, y must be executed after x”. A graph can be scheduled
when all cycles x1

ck1→ x2
ck2→ ...x1 are such that ¬(ck1∧ ...∧ckn). We thus have considered the case where

the cki are true. Nonetheless, the question of producing an optimal solution in number of classes does not
seem to have been addressed.

We have already pointed the main differences with the work of Lublinerman, Szedezy and Tripakis [12].
The optimal solution is obtained iteratively for c = 1, 2, ... with a general solution based on a SAT encoding
of a decomposition into c classes. Nonetheless, real programs have simple dependency relations and can
be treated with a dedicated algorithm with mastered worst-case complexity. In most applications we have
found, the optimal is obtained in polynomial time using the direct algorithm based on the input/output
relations. Even in the case where an iterative search would have to be done, it allows to start with a non
trivial lower bound for c.

Input/Output Analysis vs Direct Boolean Encoding Since programs are simple in practice, one may
argue that there is no much difference in actual cost between a direct boolean encoding of the OSS problem
such as [12] and a dedicated algorithm. We could expect that each SAT problem — there exist a solution
with c classes — is easy to solve and the number of iterations for c to stay small.

Nonetheless the behavior, and thus, the cost, of the SAT solving is hard to predict, whereas the presented
algorithm answers in polynomial time whether the KI-enc is solved or not. In the small remaining cases
where an enumerative search is necessary (if an optimal solution is expected), the algorithm starts from a
non trivial minimal number of mandatory classes. In several benchmarks, this minimal number of classes
was greater than 1.

Finally, is not clear that finding an optimal solution is central in practice. In all the examples we have
treated K⊥ and/or K> allows to obtain either the optimal solution or a solution close to the optimal.

7 Conclusion
This paper addressed the static scheduling problem of a synchronous data-flow network to be used in a
compilation chain into sequential code. Precisely, how to decompose a data-flow network into a minimal

8This is also due to the nature of applications written in SCADE where closed loops are programmed to be robust to the insertion
of a delay.

9This approach is convenient when the code is linked to a numerical variable step solver as it simplifies the rollback mechanism.
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number of classes executed atomically without restricting possible feedback loops between input and out-
put? Though this optimization problem is intractable in the general case and must be tackled with general
combinatorial methods, our experience is that real programs do not reveal such a complexity. This calls
for a specific algorithm able to identify programs which can be solved in polynomial time. Based on the
notion of input/output properties, we build a symbolic representation (keys as inputs subsets, or KI-enc) of
the problem. This representation simplifies the problem in the sense that it has strictly less solutions but
it contains all optimal ones. This representation gives a non trivial lower bound on the number of classes,
and two particular solutions K⊥ and K>. It can then be checked whether K⊥ and/or K> are optimal or
not by comparing their number of classes with the lower bound. In most programs we have encountered,
K⊥ is optimal. Otherwise, the non trivial bound on the number of classes is used to start a combinatorial
search with a SAT-solver.
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