
ExtendingPopulation-Based Incremental Learningto Continuous Search SpacesMich�ele Sebag1;2 and Antoine Ducoulombier2;1LMS, CNRS UMR 7649, LRI, CNRS URA 410,Ecole Polytechnique Universit�e d'Orsay91128 Palaiseau Cedex 91405 Orsay CedexMichele.Sebag@polytechnique.fr Antoine.Ducoulombier@lri.frAbstract. An alternative to Darwinian-like arti�cial evolution is o�eredby Population-Based Incremental Learning (PBIL): this algorithm mem-orizes the best past individuals and uses this memory as a distribution,to generate the next population from scratch.This paper extends PBIL from boolean to continuous search spaces. AGaussian model is used for the distribution of the population. The centerof this model is constructed as in boolean PBIL. Several ways of de�ningand adjusting the variance of the model are investigated.The approach is validated on several large-sized problems.1 IntroductionEvolutionary algorithms (EAs) [13, 6, 5] are mostly used to �nd the optima ofsome �tness function F de�ned on a search space 
.F : 
 ! IRFrom a machine learning (ML) perspective [9], evolution is similar to learningby query: Learning by query starts with a void hypothesis and gradually re�nesthe current hypothesis through asking questions to some oracle.In ML, the sought hypothesis is the description of the target concept; thesystem generates examples and asks the oracle (the expert) whether these ex-amples belong to the target concept. In EA, the sought "hypothesis" is thedistribution of the optima of F ; the system generates individuals and asks theoracle (a routine or the user) what their �tness is. In all cases, the system alter-natively generates questions (examples or individuals) depending on its currenthypothesis, and re�nes this hypothesis depending on the oracle's answers.One core di�erence between ML and evolution is that ML, in the arti�cialintelligence vein, manipulates high-level, or intensional description of the hy-pothesis sought. Conversely, evolution deals with a low-level, or extensional de-scription of the sought distribution: the distribution of the optima is representedby a collection of individuals (the current population).The Population Based Incremental Learning (PBIL) approach bridges thegap between ML and EAs: it explicitly constructs an intensional description



of the optima of F , expressed as a distribution on 
 [2, 3]. This distribution isalternatively used to generate the current population, and updated from the bestindividuals of the current population. The advantage of the approach is that, asclaimed throughout arti�cial intelligence [12], the higher level the information,the more explicit and simple the information processing can be. And indeed,PBIL involves much less parameters than even the canonical GAs [6].PBIL was designed for binary search spaces. It actually constructs a dis-tribution on 
 = f0; 1gN represented as an element of [0; 1]N . The basics ofthis scheme are �rst briey recalled in order for this paper to be self contained(section 2). Our goal here is to extend this scheme to a continuous search space
 � IRN . Continuous PBIL, noted PBILC , evolves a Gaussian distribution on
 noted N (X; �). The center X of the distribution is evolved much like in thebinary case; evolving the standard deviation � of this distribution is more criti-cal, and several heuristics to this aim are proposed (section 3). PBILC is �nallyvalidated and compared to evolution strategies on several large-sized problems(section 4). The paper ends with some perspectives for further research.2 Binary PBIL2.1 PrincipleStd. Evolution �t �! �t+1# #ht ht+1 unused or marginal informationPBIL �t �t+1 marginal information" & "ht �! ht+1Figure 1. Comparing the generation steps in standard evolution and PBILLet � denote a population of individuals in 
 = f0; 1gN . An element h ofH = [0; 1]N can be associated to � , by de�ning hi as the fraction of individualsin � having their i-th bit set to 1. Conversely, an element h in H de�nes adistribution over 
: one draws an element X = (X1; : : : ; XN ) in 
 by settingXi to 1 with probability hi.PBIL relies on the following premises [2]: a) if evolution succeeds, the popu-lation � converges toward a single1 optimum of F ; b) the more converged thepopulation � , the better it is represented by h. Assuming these, PBIL discardsall information in the population not contained in h: The population is simplyconsidered as a manifestation of h. The attention is thus shifted from evolving� by means of mutation and recombination, to evolving h (Fig. 1). To this aim,PBIL uses the information contained in the current population �t: h is evolved,1 This claim obviously makes no room for diversity preserving mechanisms [8].



or rather updated, by relaxation from the best individual Xmax in �t:ht+1 = (1� �) : ht + � : Xmax; � in ]0; 1[Distribution ht can be viewed as the memory of the best individuals generatedby evolution. Relaxation factor � corresponds to the fading of the memory: thehigher �, the faster ht moves toward the current local optimum.In contrast to standard evolution, PBIL explicitly explores the space H ofdistributions on 
. And, as noted already, this higher level representation allowsfor a simpler information processing: besides the population size, PBIL involvesa single key parameter, �, to be compared to the various parameters controllingmutation and recombination. Further, the exploration is deterministic, in thesense that ht is deterministically updated from the current population2.2.2 DiscussionLet us reformulate PBIL as a learning-by-query algorithm, by de�ning a partialgenerality order on the set of distributions H. The generality of a distributionh is clearly related to the diversity of the population generated from h, andthe diversity of the population with regard to bit i is inversely proportional tojhi � :5j. Accordingly, a distribution h is more speci�c than h0, if, for each bit i,either 0 � hi � h0i � :5, or :5 � h0i � hi � 1.PBIL initializes h to the most general distribution h0 = (:5 : : : ; :5), andgradually specializes it along generations. LetXh denote the (boolean) individualmost similar to ht; then, ht is specialized on all bits i such that Xhi = Xmaxi .The complete convergence of the scheme is avoided as hti never reaches 0 or 1;in theory, PBIL can generate any individual at any time.In practice, PBIL can su�er from premature convergence. This happens whenht gets too speci�c3, and no new good individual is discovered. PBIL o�ers twoheuristics to resist premature convergence [2]:� Using the average of the two best individuals in �t, rather than the singlebest one. This way, ht is generalized on all bits discriminating these individuals.� Perturbing ht with a Gaussian noise: with a given probability (5%), a Gaussianvariable with a low standard deviation is added to hti. This way, the center ofthe distribution is durably perturbed, which helps escaping from local minima.A more fundamental limitation of PBIL comes from the distribution space,which implicitly assumes the linear separability of the problem (genes are con-sidered independent). This distribution space appears too poor to �t complex�tness landscapes, such as the Long Path problem [7]. Previous experimentsshow that distributions used in PBIL have di�culties to overlap the narrowpath [14]. Recent extensions to PBIL have considered richer distribution spaces[4].2 This raises the question of whether PBIL still pertains to the �eld of "Parallel prob-lem solving from nature": is "nature" allowed to explicitly manipulate distributions?Still, a de�nition of "nature" is clearly beyond the scope of the paper.3 Parameter � partly controls the speci�city of ht, and plays the same role as selectionin GAs: the diversity decreases, everything else being equal, as � goes to 1.



3 Continuous PBILThis section �rst briey discusses a previous attempt to extend PBIL to contin-uous search spaces, then details the proposed method and outlines PBILC .3.1 Continuous PBIL with dichotomic distributionsTo the best of our knowledge, the only extension of PBIL to continuous searchspaces has been proposed in [15]. This algorithm explores the search space muchlike the delta-coding approach [17]. The domain of each gene is divided into twointervals ("low" and "high" values); the current distribution h (h in [0; 1]N) isused to determine which interval an individual belongs to:Xi 2 [a; b] Probability(Xi > a+ b2 ) = hiXi is then drawn with uniform probability in the selected interval.� At each generation, h is updated like in the boolean case, by memorizingwhether the best individual takes low or high values for each gene:ht+1i = (1� �) : hti + � : (Xmaxi > a+ b2 )�When hi gets speci�c enough (hi < :1 or hi > :9), the population gets concen-trated in a single interval (resp. [a; a+b2 ] or [a+b2 ; b]). The search is then focused:the domain of the gene is set to the interval considered and hi is reinitialized to :5.In this scheme, evolution gradually focuses on the region most often contain-ing the best individuals. One limitation is that a region which has been discardedat some point is hardly explored ever after, and this violates the ergodicity re-quirement. Furthermore, the search might be insu�ciently focused, given thepoor (uniform) distribution used within the selected interval.3.2 Continuous PBIL with Gaussian distributionsOur approach rather explores Gaussian distributions N (X; �) on the searchspace 
, given as products of Gaussian distributions N (Xi; �i) on each genedomain. With no loss of generality, 
 is set to [0; 1]N in the following.Like PBIL, PBILC starts with a rather general distribution; then it alterna-tively uses this distribution to draw the population, and uses the population toupdate the distribution. The center of the distribution Xt is initialized to thecenter of the search space (:5; : : : ; :5). At each generation, Xt is updated froma linear combination of the two best and the worst individuals in the currentpopulation, inspired from PBIL and Di�erential Evolution [16]:Xt+1 = (1� �) : Xt + � : (Xbest; 1 +Xbest; 2 �Xworst)The diversity of the population, controlling the convergence of evolution, dependson the variance � = (�1; : : : �N ) of the distribution. Several heuristics have been



investigated to adjust parameters �i.A� The simplest possibility is to use a constant value. The trade-o� betweenexploration and exploitation is thus settled once for all: the search cannot becometoo speci�c and it cannot be speeded up either.B� A second possibility is to make evolution itself adjust �. PBILC here proceedsexactly as a self-adaptive (1; �)-evolution strategy (ES)4 where � stands for thesize of the population, except that the parent is replaced by the center Xt of thedistribution.C� A third possibility is to adjust � depending on the diversity of the currentbest o�spring; �t is then set to the variance of the K best current o�spring:�i =sPKj=1(Xji � �Xi)2Kwhere �X denotes the average of the best K o�spring X1; : : : XK .D� Last, � can be learned in the same way as X itself, by memorizing thediversity of the K best o�spring:�t+1i = (1� �)�ti + �sPKj=1(Xji � �Xi)2K3.3 DiscussionAt �rst sight, PBILC is quite similar to a (1; �)-ES, the � o�spring being gener-ated from the single parent (Xt; �t). The di�erence is twofold.� In (1; �)-ES, the parent is simply replaced by the best o�spring, whereas PBILCupdates Xt by relaxation. Let any o�spring Xk be written Xt + Zk, with Zkbeing a random vector drawn according to N (0; �t). Then it comes:Xt+1 = (1��)Xt+�(Xbest;1+Xbest;2�Xworst) = Xt+�(Zbest;1+Zbest;2�Zworst)The evolution of Xt can be viewed as a particular case of weighted recombi-nation as studied by Rudolph [11]; a theoretical analysis shows that weightedrecombination with optimal weights should be preferred to the simple replace-ment of the parents. Interestingly, the heuristic recombination used in PBILC isintermediate between two particular cases with good theoretical properties (forF(X) =PX2i ): the half sum of the two best o�spring, and the di�erence of thebest and the worst o�spring.PBILC uses �xed, hence non-optimal, weights; but note that � intervenes as anadditional scaling factor, controlling the variance of Xt.� Independently, the variance of Xt is also controlled from �t. PBILC uses global4 In self-adaptive ES, besides the Xi an individual X carries the variance �i of themutation to be applied on the Xi [13, 1]: Mutation �rst evolves the �i, then uses thenew �i to perturb the Xi. Evolution thus hopefully adjusts the �i "for free", at theindividual level.



mechanisms (options A, B and D) to adjust �t, by opposition to the local ad-justment of � achieved by self-adaptive mutation. Actually, the adjustment of �(option D) much resembles the 1/5th rule used to globally adjust � in early evo-lution strategies [10]. The di�erence is that the 1/5th rule criterion compares theo�spring to the parents, and considers whether a su�cient fraction of o�springis more �t than the parents. In opposition, PBILC only examines the diversityof the best �t o�spring: it does not need to restrict the exploration, even if theo�spring are less �t than the parent, because the center of the explored regionmoves more slowly than in standard ES.To sum up, PBILC controls the exploration-exploitation tradeo� in a wayrather di�erent from that of (1; �)-ES. First of all, the single parent does notjump directly to a desirable location (the best o�spring, or some weighted com-bination of the remarkable o�spring), but rather makes a very small step towardthis desirable location (e.g. � is set to 10�2 in the experiments). Variance � isadjusted in a similarly cautious way.It appears that ES takes instant decisions, on the basis of the instant informa-tion. On the opposite, PBILC maintains a long-term memory, slowly updatedfrom the instant information, and bases its cautious decisions on this long-termmemory.4 ValidationThis section describes the goal of the experiments and the problems considered.We then report and discuss the results obtained.4.1 Experiment Goals and ProblemsOur goal is to study the respective advantages of evolving extensional vs in-tensional information about the �tness landscape. Practically, PBILC , evolvingan intensional information represented as a distribution, is compared to self-adaptive evolution strategy, evolving an extensional information represented asusual as a population.Notation De�nition Domain 
F1 10010�5+Pi jyij with y1 = x1yi = xi + yi�1,i � 2 [�3; 3]100F2 10010�5+Pi jyij with y1 = x1yi = xi + sinyi�1, i � 2 [�3; 3]100F3 10010�5+Pi jyij with yi = :024 � (i+ 1)� xi [�3; 3]100F6 Pi(x2i �Acos(2� xi)) + 100A [�5; 5]100F7 Pi�xisinpxi [�30; 30]100F8 Pi x2i �Qi cos( xipi+1 ) [�100; 100]100Table 1: Fitness functions considered, i = 1 : : : 100



We deliberately consider large-sized search spaces (N = 100) for the followingreason. In low or middle-sized spaces, populations or distributions might conveysimilarly accurate information about the �tness landscape. This is not true inlarge-sized spaces: any reasonable number of point s can only convey a verypoor information about IR100. Experimenting PBILC in IR100 will show howintensional evolution stands the curse of dimensionality.Functions and search spaces considered are displayed in Table 1. FunctionsF1 to F3 have been used to evaluated binary PBIL [2]. Besides the size of thesearch space, F1 and F2 su�er from an additional di�culty, epistasis (the genesare linked via the yi). Functions F6 to F8 have been extensively studied in theliterature, for lower-sized search spaces (N � 30).4.2 Experimental settingWe used two reference algorithms: boolean PBIL working on a discretizationof the continuous problem (each continuous variable is coded through 9 binaryvariables), using either a binary or a Gray coding; and a (10 + 50)-ES with selfadaptive mutation [1]. In the PBIL case, the size � of the population is set to50 and the relaxation factor � is set to :01.PBILC involves the same setting as PBIL (� = 50 and � = :01). Four optionsregarding the variance � of the distributions have been considered (section 3.2):A� Constant variance.B� Self-adapted variance: PBILC here behaves like a self-adaptive (1; �)-ES,except that the parent is replaced by Xt.C� Instant variance: �i is set to the variance of the best K o�spring in thepopulation. Several values of K were considered: �=2; �=3; �=5.D� Relaxed variance: �i is the variance of the best K o�spring relaxed over thepast generations; the relaxation factor is again set to � = :01.4.3 ResultsAlgorithm � F1 F2 F3(10+50)-ES 2.91 �0.45 7.56 �1.52 399.07 �6.97PBIL + binary coding 2.12 4.40 16.43PBIL + Gray coding 2.62 5.61 366.77A: �i = :02 3.56 �0.36 5.87 �0.42 15.02 �.76A: �i = :05 3.95 �0.37 8.08 �0.52 28.32 �1.46B: � self-adapt. 2.41 �0.22 4.49 �0.50 3.04 �.34PBILC C: K = �=2 2.89 �0.36 3.52 �0.41 5.25 �.59D: K = �=2 4.65 �0.49 10.45 �0.96 685 �43D: K = �=3 4.40 �0.41 11.18 �1.36 2623 �204D: K = �=5 4.76 �0.78 10.99 �1 4803 �4986Table 2: Best Fitness (averaged on 20 runs) for 200,000 evaluationsBest results indicated in bold Exact optimum of F1; F2 and F3 = 107



Table 2 displays the results obtained on functions F1; F2 and F3. Resultsobtained by boolean PBIL are taken from [2]; additional results not reportedhere, show that boolean PBIL signi�cantly outperforms several variants of GAsand Hill-Climbers on these functions. Note that all algorithms end rather farfrom the actual optimum (107). Still, PBILC signi�cantly outperforms standardES on these problems | provided that the variance � of the distribution isadequately set. Note also that PBILC outperforms PBIL itself, working on abinary or Gray discretization of these continuous problems. This might be dueeither to the loss of information entailed by discretization, or because PBIL, asalready mentioned, explores a too restricted distribution space.The worst results of PBILC are obtained when � is self-adapted or set tothe diversity of the current best o�spring (options B and C); they are due to afast decreasing of �. And, in retrospect, a vicious circle occurs when � tightlydepends on the diversity of the o�spring: the less diverse the o�spring, the smaller�, hence the less diverse the o�spring...Setting � to a constant value (option A; the particular values were chosenafter 10,000 evaluations preliminary runs) leads to satisfactory results, even out-performing those of standard ES. Further experiments will show whether thisis rather due to the superiority of weighted recombination (replacing a parentby a combination of o�spring) over replacement | or to the "long-term mem-ory" e�ect, as the parent slowly moves toward the weighted combination of theo�spring instead of jumping there.The best option appears to learn the variance � in the same way as thecenter of the distribution Xt (option D). Further, the fraction K of the o�springconsidered to update � apparently is not a critical parameter5.Algorithm � F6 F7 F8(10+50)-ES 174 �29 -192.75 �18.18 489 �115PBILC B: � self-adapt. 44.02 �6.44 -44.73 �32 71.62 �14PBILC D: K = �=2 45.19 �4.03 -158.47 �40.87 11 10�6 �10�6PBILC D: K = �=3 44.67 �5.21 -167 �34 10�6 �10�7PBILC D: K = �=5 44.43 �4.52 -169 �27 10�7 �10�8Table 3: Best Fitness (averaged on 20 runs) for 200,000 evaluationsBest results indicated in bold Exact optimum of F6 and F8 = 0These trends are con�rmed by preliminary experiments on F6; F7 and F8 (Table3): PBILC signi�cantly outperforms self-adaptive ES on two out of the threeproblems, the best option for adjusting � being the relaxation from a smallfraction of the best o�spring.5 This holds for all problems except F3, which is the problem with most diversity inthe �tness of the o�spring. This might be an indication for choosing K adaptively:e.g. retain the o�spring whose �tness is greater than a given function of the average�tness and deviation of the �tness in the current population.



5 ConclusionThe main originality of PBIL is to reformulate evolution into new, higher-level,terms: rather than specifying all operations needed to transform a populationinto another population (selection, recombination, mutation, replacement), oneonly speci�es how to evolve or update a distribution given the additional in-formation supplied by the current population. At this level, many core traitsof evolution (e.g. diversity, speed of changes) are explicit and can be directlycontrolled.Overall, evolution shifts from the stochastic exploration of the search space 
,to learning a distribution on 
 by reinforcement from the current population.This paper extends PBIL from boolean to continuous search spaces, by learn-ing Gaussian distributions N (X; �). The resulting PBILC algorithm can bethought of as a (1; �)-ES, with the following di�erences. ES takes instant de-cisions, on the basis of the instant information. PBILC maintains a long-termmemory, takes its decisions on the basis of this long-term memory, and slowlyupdates the memory from the instant information. Practically, the parent ofa (1; �)-ES jumps toward the best o�spring; in opposition, the center of thedistribution in PBILC cautiously moves toward a weighted combination of theo�spring.Similarly, self-adaptive ES locally adjusts the variance of mutation by meansof instant decisions; in opposition, PBILC cautiously updates the variance fromthe global diversity of the best o�spring.One argument for learning distributions is that it expectedly scales up moreeasily than evolving populations: a reasonable size population gives little infor-mation on large-sized search space. Experimental results on large-sized problemsshow that PBILC actually outperforms standard ES on �ve out of six problems(with one or two orders of magnitude) and also outperforms the original PBILworking on a discretized version of the continuous problems considered.Nevertheless, given the size of the search space, PBILC ends rather far fromthe optimum on four out of six problems. Further experiments will consider otherproblems, and study how PBILC behaves in the last stages of exploitation. An-other perspective of research is to evolve several distributions rather than asingle one. This would relax the main limitation of the PBIL scheme, that is,the fact that it can only discover a single optimum. Indeed, learning simultane-ously several distributions is very comparable to evolving several species. Theadvantage is that comparing an individual to a few distributions might be lessexpensive and again more transparent, than clustering the population, adjustingthe selection or the �tness function to ensure the co-evolution of species.AcknowledgmentsMany thanks to Marc Schoenauer, for many valuable comments, and to thesecond anonymous referee, for very insightful comments and suggestions.
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