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Abstract. In Evolutionary Robotics, auto-teaching networks, neural
networks that modify their own weights during the life-time of the robot,
have been shown to be powerful architectures to develop adaptive con-
trollers. Unfortunately, when run for a longer period of time than that
used during evolution, the long-term behavior of such networks can be-
come unpredictable. This paper gives an example of such dangerous be-
havior, and proposes an alternative solution based on anticipation: as
in auto-teaching networks, a secondary network is evolved, but its out-
puts try to predict the next state of the robot sensors. The weights of
the action network are adjusted using some back-propagation procedure
based on the errors made by the anticipatory network. First results – in
simulated environments – show a tremendous increase in robustness of
the long-term behavior of the controller.

1 Introduction

One key challenge of Evolutionary Robotics (ER) [7] is robustness, defined as the
ability of the controller to efficiently deal with changing environments and previ-
ously unseen situations − in other words, to adapt itself to some real world. One
prominent approach aimed at robust controllers in ER is based on the so-called
auto-teaching networks[9]. In this approach, the controller is made of two parts,
simultaneously optimized by evolutionary algorithms. The first part, referred to
as Agent Model, is fixed offline. The second part, the Agent, actually controls
the robot; in the same time, the Agent is modified on-line to get closer to the
agent model (section 2). This way, evolution constructs a dynamic decision sys-
tem, the trajectory of which is defined from an attraction center (the model)
and a starting point (the agent at time 0).
At this point, two time scales must be distinguished. During the training period,
the agent is adjusted to the model, the fitness associated to the pair (agent,
model) is computed and will serve to find optimal couples of (agent, model).
During the robot life-time, referred to as generalization period, the agent is still
adjusted to the model in each time step.
However, for feasibility reasons, the training period only represents a fraction



of the robot lifetime. Therefore, the long term dynamics of the controller is not
examined during the training period. This would make it possible for (oppor-
tunistic) evolutionary computation to select controllers with any dynamics in
the long run, compatible with a good behavior in the short run...
This paper first focuses on the long-term behavior of auto-teaching networks,
making every effort to reproduce as closely as possible the experimental setting
described in [9]. Though results could not be exactly reproduced, interesting phe-
nomena appear. Intensive experiments show that, not infrequently, auto-teaching
networks with good fitness (good behavior during the training period) are found
to diverge (repeatedly hitting the walls) as time goes by.
This paper proposes another source of adaptation, more stable in the long term
than a fixed model, inspired from the cognitive sensori-motor framework [10].
The adaptation of the controller architecture is centered on an anticipation mod-
ule; the anticipation module predicts the next state of the environment (the sen-
sor values) depending on its current state and the agent action. When the actual
state of the environment becomes available, the anticipation module provides
an error signal that can be used either to modify the controller weights or as
an additional input. The important issue is that the world model can here be
evaluated with respect to the world itself, available for free (at next time step)
during both the training and the generalization period. In opposition, the agent
model in the auto-teaching architecture could not be confronted to the “true
actions” during the generalization period. Implementations of this architecture,
termed AAA, for Action, Anticipation, Adaptation, demonstrate an outstanding
robustness in the long run of the simulated experiments, comparatively to the
reference results.

The paper is organized the following way. Section 2 briefly describes the auto-
teaching architecture, the goal and experimental setting [9], and presents and
discusses the results obtained along the same settings when observing the behav-
ior of auto-teaching networks in the long run. In section 3, the AAA architecture
is presented, focusing on the anticipation module and its interaction with the
decision module. Section 4 reports on the experimental validation comparatively
to the reference results. The paper ends with a discussion of these first results,
and points out the numerous avenues for research opened by this study.

2 Long Term Behavior of Auto-teaching networks

2.1 Settings

With our apologies for the brevity of this reminder (due to space limitation),
this section will recall settings and results obtained in [9] (see also [7]). The ar-
chitecture of auto-teaching networks involves two modules with identical inputs
and topologies, feed-forward neural nets without any hidden layer. During the
lifetime of the robot, the first module is fixed, while the second module uses the
first module as a predictor and adapts its weights using back-propagation.
During evolution, the training period is made of 10 epochs. At the beginning of



each epoch, both the target and the Khepera robot are set to random positions;
the robot explores the arena (60 × 20 cm) during at most 500 times steps, until
either it hits the 2cm radius target, increasing its fitness by 500− thit, or it hits
a wall, getting no fitness for that epoch (Note that the target is not “visible”).
The main result obtained in [9] was that auto-teaching networks did exhibit an
adaptive behavior when the color of the walls changed from black to white.

Building on those results, our plan was to examine how the auto-teaching
networks adapt to rapidly changing environments. To this aim, the color of the
walls was changed every generation, alternating dark and white walls.
As in [9], we used an ES-like Evolutionary Algorithm in which 20 parents gener-
ate 100 offspring. The weights were real-coded genotypes, and their values were
limited to [−10, 10]. The mutation rate was 10%. However, in order to approach
the performances, some slight modifications were necessary: we used a (20+100)-
ES rather than a (20,100)-ES; We used Gaussian mutation with fixed standard
deviation .5 instead of uniform mutation with amplitude 1; And we used some
crossover at rate 40%.

2.2 Training period

A first remark is that we failed to fully reproduce the results in [9], due to the
very high variability of the fitness with respect to the starting positions of the
robot and the target. This variability was clearly visible when post-processing
the best individuals from the last generation: out of 10 epochs, it never came
even close to the same fitness than it had been given during its last evaluation.
The only way to get over that variability and to come close to that was to run
10 times 10 epochs and to take the best results out of those 10 evaluations.

Nevertheless, the on-line results (best and average of 11 runs) resemble those
of [9] with higher variance, as can be seen on Figure 4-left, and show a rapid
increase toward a somehow stationary value of 2500. However, when we started
to investigate the behavior of the controllers over a large number of epochs, we
discovered drastic changes after the 10 epochs of “normal” lifetime – most robots
starting to repeatedly hit the walls (Figure 4-right).

2.3 Generalization period

Figure 1-right and Figure 2 show typical results in our setting for that experi-
ment. For each epoch (x coordinate), a bar shows whether the robot found the
target (positive bar, the smaller the better) or hit the wall (negative bar). To
make the figure more readable, no bar is displayed when the robot neither found
the target nor hit the wall. The “most decent” individual (Fig. 1-left) only starts
hitting the walls after 300 epochs − though it does not find the target very often
after the initial 10 epochs. Figure 2 is a disastrous individual, that starts crash-
ing exactly after 10 epochs. More precisely, the best individuals (gathered after
a re-evaluation on 10 times 10 epochs of all individuals in the final population)
hit the walls on average for 400 epochs out of 1000, the one displayed on Figure
1-left being the best one with only 142 crashes.
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Fig. 1. Experiments with auto-teaching architecture: Left - On-line results (peak and
average from 11 independent runs). Right - Life-times for the “Less Disastrous” results
on long-term adaptation: negative values indicates that the epoch ended with a crash.
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Fig. 2. More typical behaviors on long-term runs: Left - for 1000 epochs. Right - Zoom
on the first 50 epochs.

The interpretation offered for these results is that once again, evolution found
a mouse hole to reach the goal: because what happens after the training period
does not influence selection, anything can indeed happen then. The underlying
dynamical system modifies the weights according to some evolved model that
only has to be accurate during 10 epochs.

A totally unrealistic solution would be to increase the training period by an
order of magnitude during evolution. The anticipatory architecture presented in
the next section is an attempt to address the above limitations.

3 Action, Anticipation, Adaptation

The AAA architecture for neural controllers achieves three tasks: action (con-
trolling the robot effectors); anticipation (based on the robot sensors, and the
action output); adaptation (based on the difference between the sensor values
anticipated in the previous time step, and the current sensor values).

As mentioned in the introduction, the basic underlying idea of the AAA

architecture is that the adaptation mechanism must apply only when needed,
and must be based on “true errors” rather than errors coming from an arbitrary



model purposely evolved. In other words, rather than build a declarative model
of the world, the idea is to give the robot a procedural model that will allow him
to predict the consequence sof his own actions. And the simplest description of
these consequences is through the values of its sensors. Such views are inspired
from the cognitive sensori-motor framework [10].

In the framework or neural controllers, and in the line of auto-teaching net-
works [9], a second neural network, the Model network, is added to the Agent
controller, and its goal is to predict the values of the robot sensors at next time
step. The inputs of this Model network are both the hidden layer of the actuator
controller and the actual commands given to the actuators. Its outputs are, as
announced, the values of the sensors (see the dark gray part of Figure 3).
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Fig. 3. The complete Anticipatory Neural Architecture. Rounded boxes are neurons,
large arrows are connection weights. The classical Agent network gives actuator com-
mands from the sensations. The Model network predicts values for the sensors from
the intermediate layer of the actuator network and the actual actuator commands.
Back-propagation is applied using the prediction error to all weights backward: 5, then
3 and 4, then 2, then 1. The prediction errors are also added as inputs to the Agent
network.

Those predictions are then compared with the actual values sent by the
sensors at next time step, and the results of these comparisons are used for a
back-propagation algorithm that adjusts the weights of both the Model and the
Agent networks, as described on Figure 3. Another possible use of those errors,
not used in the experiments described in this paper, is to add them as direct
inputs to the actuator network (light gray part of Figure 3). The first author’s
PhD will consider such alternate architecture.

Note that similar architectures had been proposed in [4], in the framework of
robot arm controllers, as an alternative to directly building the inverse problem.



4 Long Term Robustness of AAA Architecture

4.1 The neural network

In the experimental framework considered in this paper, the Khepera has 4
inputs (pairs of infra-red sensors), 2 outputs (two independent motors). Hence
the anticipatory part of the network must also have 4 outputs. Both hidden
layers of the actuator network and of the anticipatory network have 5 neurons.
Considering that all neurons also have a bias as input, the resulting network
hence has 5 × 5 (arrows 1 and 6 + bias on Figure 3) + 6 × 2 (arrow 2 + bias)
weights on the actuator network, plus 8 × 5 (arrows 3 and 4 + bias) + 6 × 4
(arrow 5) weights for the anticipatory network – 101 weights altogether. All
those weights are submitted to back-propagation when some error occurs on the
sensor predictions.

4.2 Long-term robustness

The same simulated experiment than that of [9] was run with the AAA Archi-
tecture. The learning curves along evolution are given on Figure 4-left, averaged
on 11 independent runs: they are not very different from the same plots for the
auto-teaching network (Figure 4-left). But the results about long-term adap-
tation are by no way comparable. Whereas the auto-teaching networks show
unpredictable behaviors after the initial 10 epochs the anticipatory controllers
stay rather stable when put in the same never-ending adaptation environment
(e.g. the color of the walls change every 10 epochs, while adaptation though
back-propagation is still going on). A typical summary of the behavior of the
best individual of an evolution of the anticipative architecture can be seen on
Figure 4-right: apart from a few crashes due to starting positions very close to
the wall, almost no crash occurs in that scenario.

More precisely, out of 11 independent runs, 8 never crash in 1000 epochs
(plots not shown!) while the 3 others had a behavior similar to that displayed
on Figure 4-right: they never crash when the walls are white, and start hitting
the dark walls after 700-800 epochs of continuous learning.

All those results clearly demonstrate that the anticipatory architecture does
not suffer from the auto-teaching networks’ defects, and exhibit very stable be-
haviors even after thousands of epochs (the 8 crash-free best individuals were
run up to 50000 epochs with no crash at all).

4.3 Adaptation in AAA networks

An important issue, however, is that of the adaptivity of the anticipatory archi-
tecture. Indeed, more sophisticated architectures than the simple auto-teaching
network described in section 2.1 (like for instance a 3 layers network with one
fully recurrent hidden layer) can be evolved to be robust in both the white and
black environment – the robots will simply stay further away from the walls in
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Fig. 4. Experiments with the anticipating architecture: Left - On-line results (aver-
age best and average from 11 independent runs). Right - Worst result on long-term
adaptation (the wall color changes every 10 epochs).

the white environment. But such architectures do not have any adaptive mecha-
nism, and the experiments presented now will demonstrate that the anticipatory
architecture does behave adaptively.

The initial a posteriori experiments described in previous section (let the
robot live for 1000 epochs, alternating dark and white walls every 10 epochs)
did not give any evidence of adaptivity: all anticipatory controllers behave sim-
ilarly, crashing very rarely against the walls, and behaving almost the same in
both dark and white environments: due to the large number of weights, their
values change rather slowly.
It was hence decided to let the weights adjust during 100 epochs in the same
environment, and some interesting phenomena started to appear. First, after
100 epochs, some individuals began to have trajectories like the ones plotted on
Figure 6: whereas the initial weights allow a cautious behavior in case of dark
walls (the robot stays farther from the walls, see the thick line on the top plot),
this is no longer the case after 100 epochs of weight modification, as witnessed
by the bottom plot of Figure 6, where the red cross indicates that the robot hit
the wall (dark walls) while it still avoids the walls when they are white. Indeed,
after 100 epochs of adaptation to the white walls, the immediate epochs in the
dark environment always resulted in a crash. Note that the reverse is not true,
and individuals that have spent their first 100 epochs in the white environment
never hit any wall, black or white afterward.
But more importantly, after some time in the dark environment, the behavior of
the robot comes back to collision-free trajectories. Figure 5 shows two situations
in which this happens. When, after the initial 100 epochs in the white envi-
ronment, the walls remain black forever (left), the number of crashes gradually
decreases, and no crash takes place during the last 100 epochs. More surprisingly,
when the wall change color every 100 epochs, the rate of crashes also decreases
(Figure 5-right), and in fact, it decreases even more rapidly than in the previous
scenario – something that requires further investigations.
Note that control experiments with the auto-teaching networks still exhibited
an enormous amount of crashes, whatever the scenario.
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Fig. 5. Adaptation by the Anticipating architecture: 100 epochs are run with white
walls; the robot is then put in the dark environment for 900 epochs (left) or is put
alternatively in dark and white environments by periods of 100 epochs (right).

1 - AntiDelta - Begin : White - BPStopped : 0 - Current : White

1 - AntiDelta - Begin : Black - BPStopped : 0 - Current : Black

101 - AntiDelta - Begin : White - BPStopped : 100 - Current : Black

101 - AntiDelta - Begin : Black - BPStopped : 100 - Current : Black

Fig. 6. Trajectories of the best individual of an evolution of an anticipative architecture,
where the thick lines correspond to dark walls and the thin line to white walls. The
stating points are the same for all trajectories. Left: Initial behavior during the first
epoch, before any adaptation could take place. Right: behavior after 100 epochs of
adaptation in the white environment.

5 Discussion and further work

The idea of using anticipation to better adapt to changing environments is not
new, and has been proposed in many different areas. Anticipatory Classifiers
Systems [11] are based on anticipation, but in a discrete framework that hardly
scales up.

Trying to predict some other entity’s action also amounts to anticipation, but
does not really try to anticipate on the consequences of one’s own actions (e.g. a
program playing “psychological” games [1], or multi-agent systems [13]). Trying
to directly predict its own sensor values has also been tried to help building
Cognitive Maps in Robotics [2]: the prediction error is then used as a measure
of interest for an event.

But the architecture the most similar to AAA has been proposed in the
Evolutionary Robotic domain by Nolfi, Elman and Parisi [6] in a simpler frame-
work, for artificial organisms foraging food. First of all, no long term experiment
was described in that work. Moreover, their architecture did not use the predic-
tion errors as supplementary inputs - but it did use the last output commands
. . . Furthermore, the sensors and the actuators were closely related: the sensory
inputs were the direction and distance of the nearest food, while the commands
for the actuators were . . . the angle and distance to advance: in our experiments,



the only relationship between the actuator commands and the predicted outputs
is through the Agent network itself.

Another interesting issue is that of the outputs of the Model network. It has
been argued by Nolfi and Parisi [8] that the best teaching inputs are not the cor-
rect answers for the network (i.e. the exact predictions of the next sensor values).
But this might be because of that link mentioned above between the predicted
outputs and the actuator commands. Indeed, some preliminary investigations
inside the AAA neural networks during the lifetime of the robot seem to show
that its predictions are here rather accurate most of the time: for instance, when
the robot is far from any obstacle, the predicted values are indeed very close to
0 (and hence not modification of the weight does take place). But here again
deeper investigations are required.

Looking at the behavior of adaptive systems from a long-term perspective
asks new questions beyond the traditional debate between Nolfi’s model of inter-
action between learning and evolution [5] and Harvey’s claim that the success of
learning + evolution only comes from the relearning of weights that have been
perturbed by some mutation [3]. Indeed, the successful re-adaptation observed
after a long period in the white environment (Section 4.3) seems to suggest that
the learning is not limited to correcting some weight modifications. However,
more work is needed to understand how such re-adaptation has been made pos-
sible by evolution. In particular, a detailed monitoring of how the weights adapt
on-line should bring arguments to this debate.

Another important issue is that of the scaling up of the AAA architecture
with the number of sensors (e.g. if the robot is equipped with some vision sys-
tem). A possible answer might come from the information bottleneck theory [12]:
this model tries to compress the sensor information as much as possible, while
still maintaining feasible a reconstruction of the world that is sufficient for the
task at hand. In that perspective, the hidden layer of the Agent network (Figure
3) could then be viewed as the set of perceptions of the robot, and the Model
network could then try to predict this minimal compressed information rather
than the numerous sensor values.

Finally, running the AAA architecture in real-world environment will be the
ultimate validation of the approach. However, the experiment used in this paper
is not likely to be easily portable to real-word, because of the huge variance of
the results. Using the amount of area swept by the robot seems a better idea,
and preliminary results (in simulation) suggest that the phenomena also happen
with such more stable fitness.

6 Conclusion

After having pointed out a major weakness of auto-teaching networks, the unpre-
dictability of their long-term behavior, we have proposed the AAA architecture
to remedy this problem: the evolved oracle of auto-teaching networks without
any grasp on reality, is replaced by a Model network that will learn to predict
the values of the sensors of the robot. The modification of the weights of the



Agent network (the motor control) is then based on the errors made for those
predictions. The first results in terms of long-term robustness are outstanding
compared to those of the auto-teaching networks. Moreover, at least some of
those networks do exhibit a very interesting adaptive behavior: after having
evolved during 100 epochs in a white environment, they can gradually re-adapt
to dark walls.

However, a lot of work remains to be done to assess the efficiency and use-
fulness of the AAA architecture, starting with a better understanding of how
and why such anticipatory networks can re-adapt their weights on-line without
any direct incentive or reward for collision avoidance. Forthcoming experiment
will involve other variants of the AAA architecture (e.g. adding the error on the
prediction as inputs to the controller), more meaningful scenarios (e.g. tracking
regularly moving objects) and more importantly precise monitoring of the weight
adaptation in different situations for some evolved controllers. We nevertheless
hope that anticipatory networks can somehow help bridging the gap between
fully reactive controllers and sensori-motor systems.
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