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Michèle Sebag1, Nicolas Tarrisson1, Olivier Teytaud1, Julien Lefevre2 & Sylvain Baillet2

(1) TAO, CNRS − INRIA − Université Paris-Sud, F-91405 - Orsay
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Abstract

This paper, motivated by functional brain imaging
applications, is interested in the discovery of sta-
ble spatio-temporal patterns. This problem is for-
malized as a multi-objective multi-modal optimiza-
tion problem: on one hand, the target patterns must
show a good stability in a wide spatio-temporal re-
gion (antagonistic objectives); on the other hand,
experts are interested in finding all such patterns
(global and local optima). The proposed algorithm,
termed 4D-Miner, is empirically validated on arti-
ficial and real-world datasets; it shows good per-
formances and scalability, detecting target spatio-
temporal patterns within minutes from 400+ Mo
datasets.

1 Introduction
Spatio-temporal data mining is concerned with finding spe-
cific patterns in databases describing temporally situated spa-
tial objects. Many approaches have been developed in sig-
nal processing and computer science to address such a goal,
ranging from Fourier Transforms to Independent Component
Analysis [Hyvarinen et al., 2001], mixtures of models [Chu-
dova et al., 2003] or string kernel machines [Saunders et al.,
2004], to name a few. These approaches aim at particular pat-
tern properties (e.g. independence, generativity) and/or focus
on particular data characteristics (e.g. periodicity). How-
ever, in some application domains, the above properties are
not relevant to extract the patterns of interest. The approach
presented in this paper is motivated by such an application
domain, functional brain imaging. Non invasive techniques,
specifically magnetoencephalography(MEG) [Hämäläinen et
al., 1993], provide measures of the human brain activity with
an unprecedented temporal resolution (time step 1 millisec-
ond). This resolution enables researchers to investigate the
timing of basic neural processes at the level of cell assem-
blies [Pantazis et al., 2005]. A key task is to find out which
brain areas are active and when, i.e. to detect spatio-temporal
regions with highly correlated activities. It is emphasized
that such regions, referred to as stable spatio-temporal pat-
terns (STPs), are neither periodic nor necessarily indepen-
dent. Currently, STPs are manually detected, which (be-
sides being a tedious task) severely hampers the reproducibil-

ity of the results. This paper addresses the automatic detec-
tion of stable spatio-temporal patterns, i.e. maximal spatio-
temporal regions with maximal correlation. This detection
problem cannot be formalized as a multi-objective optimiza-
tion (MOO) problem [Deb, 2001], because experts are in-
terested in several active brain areas: an STP might be rel-
evant though it corresponds to a smaller spatio-temporal re-
gion, with a lesser correlated activity than another STP. The
proposed approach thus extends MOO along the lines of
multi-modal optimization [Li et al., 2002], defining a multi-
objective multi-modal optimization framework (MoMOO).
MoMOO is tackled by an evolutionary algorithm termed 4D-
Miner, using a diversity criterion to relax the multi-objective
search (as opposed to diversity enforcing heuristics in MOO,
e.g. [Corne et al., 2000; Laumanns et al., 2002]; more on
this in section 2.3). To the best of our best knowledge,
both the extension of evolutionary algorithms to MoMOO,
and the use of multi-objective optimization within spatio-
temporal data mining are new, although MOO attracts in-
creasing attention in the domain of machine learning and
knowledge discovery (see, e.g., [Ghosh and Nath, 2004;
Francisci et al., 2003]). Experimental validation on artifi-
cial and real-world datasets demonstrates the good scalabil-
ity and performances of 4D-Miner; sought STPs are found
within minutes from medium sized datasets (450 Mo), on PC-
Pentium 2.4 GHz. The paper is organized as follows. Section
2 formalizes the detection of stable spatio-temporal patterns
as a multi-modal multi-objective optimization problem, and
motivates the use of evolutionary algorithms [Bäck, 1995;
Goldberg, 2002] for their detection. Section 3 gives an
overview of 4D-Miner. Section 4 describes the experiment
goals and setting. Section 5 reports on the extensive valida-
tion of 4D-Miner on artificial and real-world data. Section 6
discusses the approach with respect to relevant work, and the
paper ends with perspectives for further research.

2 Position of the problem ; notations, criteria
2.1 Notations and definitions
Let N be the number of measure points. To the i-th measure
point is attached a spatial position1 Mi = (xi, yi, zi) and a

1MEG measure points actually belong to a 2D shape (the sur-
face of the skull). However, the approach equally handles 2D or 3D
spatio-temporal data.



temporal activity Ci(t), t ∈ [1, T ]. Let I = [t1, t2] ⊂ [1, T ]
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Figure 1: Magneto-EncephalographyData (N = 151, T = 875)

be a time interval, and let C̄I
i denote the average activity of

the i-th measure point during I . The I-alignment σI (i, j) of
measure points i and j over I is defined as:

σI (i, j) = < i, j >I ×

(

1 −
|C̄I

i −C̄I
j |

|C̄I
i
|

)

, where

< i, j >I =

∑

t2

t=t1
Ci(t).Cj(t)

√

∑

t2

t=t1
Ci(t)2 ×

∑

t2
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Cj(t)2

As the sought patterns do not need to be spheric, ellipsoidal
distances are considered. Only axis-parallel ellipsoids will be
considered throughout the paper. For each weight vector w =
(a, b, c) (w ∈ IR+3), distance dw is defined on the measure
points as:

dw(i, j) =
√

a(xi − xj)2 + b(yi − yj)2 + c(zi − zj)2

2.2 Multi-objective formalization
A pattern X = {i, I, w, r} is characterized by a center point
i, i ∈ [1, N ], a time interval I , an ellipsoidal distance dw, and
a radius r > 0. The spatial neighborhoodB(i, w, r) is defined
as the set of measure points j such that dw(i, j) is less than r.

The spatial amplitude of X , noted a(X), is the number of
measure points in B(i, w, r). The temporal amplitude of X ,
noted `(X), is the number of time steps in interval I . The
spatio-temporal alignment of X , noted σ(X) is defined as
the average, over all measure points in B(i, w, r), of their I-
alignment with respect to the center i :

σ(X) =
1

a(X)

∑

j∈B(i,w,r)

σI (i, j)

Interesting spatio-temporal patterns, according to the ex-
pert’s first specifications, show maximal spatial and temporal
amplitudes together with a maximal spatio-temporal align-
ment. Specifically, a solution pattern is such that i) increas-
ing its spatial or temporal amplitude would cause the spatio-
temporal alignment to decrease; ii) the only way of increasing
its spatio-temporal alignment is by decreasing its spatial or
temporal amplitude. It thus comes naturally to formalize the
STP detection in terms of multi-objective optimization prob-
lem (see [Deb, 2001] and references therein; [de la Iglesia et
al., 2003; Bhattacharyya, 2000] for related data mining ap-
proaches).

The three a, ` and σ criteria induce a partial order on the
set of patterns, referred to as Pareto domination.
Definition 1. (Pareto domination)
Let c1, ...cK be K real-valued criteria defined on domain Ω,
and let X and Y belong to Ω.
X Pareto-dominates Y , noted X � Y , iff ck(X) is greater or
equal ck(Y ) for all k = 1..K, and the inequality is strict for
at least one k0.

(X � Y ) ⇐⇒

{

∀k = 1..K, (ck(X) ≥ ck(Y )) and
∃k0 s.t. (ck0

(X) > ck0
(Y ))

The set of non-dominated solutions after a set of criteria is
classically referred to as Pareto front [Deb, 2001].

2.3 Multi-modal multi-objective formalization
However, the above criteria only partially account for the
expert’s expectations: a STP might have a lesser spatio-
temporal alignment and amplitude than another one, and still
be worthy, provided that it corresponds to another active brain
area. Therefore, not all sought STPs belong to the Pareto
front.

Multi-modal optimization, interested in finding global and
local optima of the fitness landscape, has been extensively
studied in the EC literature [Li et al., 2002]. Based on the
multi-modal framework, a new framework extending multi-
objective optimization and referred to as multi-modal multi-
objective optimization (MoMOO), is thus proposed. For-
mally, let us first define a relaxed inclusion relationship, noted
p-inclusion.
Definition 2. (p-inclusion)
Let A and B be two subsets of set Ω, and let p be a posi-
tive real number (p ∈ [0, 1]). A is p-included in B, noted
A ⊂p B, iff |A

⋂

B| > p × |A|.
Defining adequately the support of a candidate solution X

(see below) multi-modal Pareto domination can be defined as
follows:
Definition 3. (multi-modal Pareto domination)
With same notations as in Def. 1, X mo-Pareto dominates Y ,
noted X �mo Y , iff the support of Y is p-included in that of
X , and X Pareto-dominates Y .

X �mo Y ⇐⇒ [(Supp(Y ) ⊂p Supp(X)) and (X � Y )]

In the case of STPs, the support of X = (i, I, w, r)
is naturally defined as Supp(X) = B(i, dw, r) × I , with
Supp(X) ⊂ [1, N ] × [1, T ].

In contrast with [Corne et al., 2000; Laumanns et al., 2002]
who use diversity-based heuristics for a better sampling of the
Pareto front, diversity is thus used in MoMOO to redefine and
extend the set of solutions.

2.4 Discussion
Functional brain imaging sets two specific requirements on
spatio-temporal data mining. First, the expert’s requirements
are subject to change. Much background knowledge is in-
volved in the manual extraction of stable spatio-temporal pat-
terns, e.g. about the expected localization of the active brain
areas. A flexible approach, accommodating further criteria



and allowing the user to customize the search (in particular,
tuning the thresholds on the minimal spatial or temporal am-
plitudes, or spatio-temporal alignment) is thus highly desir-
able.

Second, the approach must be scalable with respect to the
data size (number of measure points and temporal resolution).
Although the real data size is currently limited, the computa-
tional cost must be controllable in order to efficiently adjust
the user-supplied parameters; in other words, the mining al-
gorithm must be an any-time algorithm [Zilberstein, 1996].

The approach proposed is therefore based on evolution-
ary algorithms (EAs); these are widely known as stochas-
tic, population-based optimization algorithms [Bäck, 1995;
Goldberg, 2002] that are highly flexible. In particular, EAs
address multi-modal optimization [Li et al., 2002] and they
can be harnessed to sample the whole Pareto front associated
to a set of optimization criteria, with a moderate overhead
cost compared to the standard approach (i.e., optimizing a
weighted sum of the criteria gives a single point of the Pareto
front) [Deb, 2001]. Last, the computational resources needed
by EAs can be controlled in a straightforward way through
limiting the number of generations and/or the population size.

3 Overview of 4D-Miner
This section describes the 4D-Miner algorithm designed for
the detection of stable spatio-temporal patterns.

3.1 Initialization
Following [Daida, 1999], special care is devoted to the ini-
tialization of this evolutionary algorithm. The extremities of
the Pareto front, where STPs display a high correlation (re-
spectively, a low correlation) on a small spatio-temporal re-
gion (resp. a wide region), do not fulfill the expert’s expecta-
tions. Accordingly, some user-supplied thresholds are set on
the minimal spatio-temporal amplitude and alignment.

In order to focus the search on relevant STPs, the initial
population is generated using the initialization operator, sam-
pling patterns X = (i, w, I, r) as follows:

• Center i is uniformly drawn in [1, N ];

• Weight vector w is set to (1, 1, 1) (initial neighborhoods
are based on Euclidean distance);

• Interval I = [t1, t2] is such that t1 is drawn with uniform
distribution in [1, T ]; the length t2−t1 of Ij is drawn ac-
cording to a Gaussian distribution N (min`, min`/10),
where min` is a time length threshold2.

• Radius r is deterministically computed from a user-
supplied threshold minσ, corresponding to the minimal
I-alignment desired.

r = mink{dw(i, k) s.t. σI
i,k > minσ)}

All patterns X whose spatial amplitude a(X) is less than a
user-supplied threshold mina are non-admissible; they will
not be selected to generate new offspring. The user-supplied
thresholds thus govern the proportion of usable individuals in
the initial population.

2In case t2 is greater than T , another interval I is sampled.

The computational complexity is in O(P × N × min`),
where P is the population size, N is the number of measure
points and min` is the average length of the intervals.

3.2 Variation operators
From parent X = (i, w, I, r), mutation generates an off-
spring by one among the following operators:

• replacing center i with another measure point in
B(i, w, r);

• mutating w and r using self-adaptive Gaussian mutation
[Bäck, 1995];

• incrementing or decrementing the bounds of interval I ;

• generating a brand new individual (using the initializa-
tion operator).

The crossover operator, starting from parent X , first selects
the mate pattern Y = (i′, w′, I ′, r′) by tournament selection,
Y minimizing the sum of the Euclidean distance between i
and i′, and the distance between the center of I and I ′ among
K patterns uniformly selected in the population, where K is
set to P/10 in all the experiments. The offspring is generated
by:

• replacing i with the center i′ of the mate pattern Y ;

• replacing w (resp. r) using an arithmetic crossover of w
and w′ (respectively r and r′);

• replacing I by the smallest interval containing I and I ′.

An offspring is said admissible iff it satisfies the user-supplied
thresholds mentioned in the initialization step.

3.3 Selection scheme
A Pareto archive is constructed with size L (set to 10 ×P in
the experiments).

A steady-state scheme is used; at each step, an admissible
parent X is selected among K uniformly drawn individuals
in the population, by retaining the one which is dominated by
the fewest individuals in the archive (Pareto tournament [Deb,
2001]). A single offspring Y is generated from X by applying
a variation operator among the ones mentioned above.

Offspring Y is evaluated by computing criteria
a(Y ), `(Y ), σ(Y ). Y is rejected if it is mo-Pareto dominated
in the population; otherwise, it replaces a non-admissible
individual in the population if any; if none it replaces an in-
dividual selected after anti-Pareto tournament (the individual
out of K randomly selected ones in the population, that is
dominated by the most individuals in the archive).

The archive is updated every P generations, replacing the
mo-Pareto dominated individuals in the archive with individ-
uals selected from the population after Pareto tournament.

4 Experimental setting and goal
This section presents the goal of the experiments, describes
the artificial and real-world datasets used, and finally gives
the parameters of the algorithm and the performance mea-
sures used to evaluate the algorithm.



4.1 Goals of experiments and datasets
The initial goal is to provide the expert with a usable STP de-
tection algorithm. The real datasets have been collected from
people observing a moving ball. Each dataset involves 151
measure points and the number of time steps is 875. As can be
noted from Fig. 1, which shows a representative dataset, the
amplitude of the activities widely vary along the time dimen-
sion. The other goal is to assess the scalability and the perfor-
mances of 4D-Miner, which is done using artificial datasets.

The artificial datasets are generated as follows. N mea-
sure points are located in uniformly selected locations in the
3D domain [0, 1]3. Activities are initialized from random cu-
mulative uniform noise, with Ci(t + 1) = Ci(t) + ε, and
ε is drawn according to U(0, τ). Every target STP S =
(i, w, I, r, δ) is defined from a center i, a weight vector w,
a time interval I , a radius r, and a fading factor δ, used to
bias the activities as detailed below. The activity CS of the
STP S is the average activity in the spatio-temporal region
B(i, w, r) × I . Thereafter, activities are biased according to
the target STPs: for each measure point j, for each STP S
such that j is influenced by S (dw(i, j) < r), the activity
Cj(t) is smoothed as

Cj(t) = (1 − e−αi(j,t))Cj(t) + e−αi(j,t)CS

where αi(j, t) = dw(i, j) + δ × d(t, I)

and d(t, I) is the distance of t to interval I (0 if t belongs
to I , otherwise the minimum distance of t to the bounds of
I). The scalability of 4D-Miner is assessed from its empirical
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Figure 2: An artificial STP (T = 2000, N = 2000)

complexity depending on the number N of measure points
and the number T of time steps.

The performances of 4D-Miner are measured using the
standard criteria in information retrieval, recall and precision.
The recall is the fraction of target STPs that are identified by
4D-Miner, i.e. p-included in an individual in the archive; the
precision is the fraction of relevant individuals in the archive
(p-included in a target STP). For each experimental setting
(see below), the recall and precision are averaged over 21 in-
dependent runs. The number of target STPs is set to 10 in
all experiments. Each STP influences a number of measure
points varying in [10,20], during intervals uniformly selected
in [1, T ] with length varying in [15, 25], and δ uniformly se-
lected in [0, .05]. Each problem instance thus includes STPs
with various levels of difficulty; the detection is hindered as
the spatio-temporal support (r and I) is comparatively low
and the δ parameter increases (the regularity is not visible
outside interval I , as in Fig 2).

4.2 Experimental setting
The experiments reported in the next section considers a pop-
ulation size P = 200, evolved along 8000 generations (8,000
fitness evaluations per run). A few preliminary runs were
used to adjust the operator rates; the mutation and crossover
rates are respectively set to .7 and .3.

The number N of measure points ranges in
{500, 1000, 2000, 4000}. The number T of time steps
ranges in {1000, 2000, 4000, 8000}.

The thresholds used in the initialization are: mina = 5
(minimum number of curves supporting a pattern); min` = 5
(minimum temporal amplitude of a pattern); minσ = .1
(minimum spatio-temporal alignment of two curves in a pat-
tern).

For computational efficiency, the p-inclusion is computed
as: X is p-included in Y if the center i of X belongs to the
spatial support of Y , and there is an overlap between their
time intervals.

The maximal size of the datasets (T = 8000, N = 4000)
is 456 Mo. Computational runtimes are given on PC-Pentium
IV, 2.4 GHz. 4D-Miner is written in C++.

5 Experimental validation
This section reports on the experiments done using 4D-Miner.

5.1 Experiments on real datasets
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Figure 3: A stable spatio-temporal pattern, involving 8 mea-
sure points within interval [289,297], alignment .2930

Typical STPs found in the real datasets are shown in Figs. 3
and 4, showing all curves belonging to the STP plus the time-
window of the pattern. The runtime is less than 1 minute (PC
Pentium 1.4 GHz). As discussed in section 2.3, many relevant
STPs are Pareto-dominated: typically the STP shown in Fig
3 is dominated by the one in Fig 4.

These patterns are considered satisfactory by the expert.
All experiments confirm the importance of the user-defined
thresholds, controlling the quality of the initial population.
Due to the variability of the data, these threshold parameters
are adjusted for each new experiment.

The coarse tuning of the parameters can be achieved based
on the desired proportion of admissible individuals in the ini-
tial population. However, the fine-tuning of the parameters
could not be automatized up to now, and it still requires run-
ning 4D-Miner a few times. For this reason, the control of
the computational cost through the population size and num-
ber of generations is one of the key features of the algorithm.
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Figure 4: Another stable spatio-temporal pattern involving 9
measure points within interval [644,664], alignment .3963

5.2 Multi-objective multi-modal optimization
The good scalability of 4D-Miner is illustrated in Fig. 5.
The empirical complexity of the approach is insensitive to
the number of time steps T and linear in the number N of
measure points. This computational robustness confirms the
analysis (section 3.1), the evaluation of each pattern has linear
complexity in N . On-going work is concerned with exploit-
ing additional data structures inspired from [Wu et al., 2004]
in order to decrease the complexity in N . Table 1 reports the
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Figure 5: Computational cost vs N , for T =
1000, 2000, 4000, 8000. (in seconds, on PC 2.4 GHz)

recall achieved by 4D-Miner over the range of experiments,
averaged over 21 independent runs, together with the stan-
dard deviation. On-line performances are illustrated on Fig

N T
1,000 2,000 4,000 8,000

500 98 ± 5 93 ± 9 92 ± 7 79 ± 16
1000 96 ± 6 96 ± 6 82 ± 14 67 ± 12
2000 96 ± 5 87 ± 12 72 ± 14 49 ± 15
4000 89 ± 10 81 ± 13 56 ± 14 32 ± 16

Table 1: Recall achieved by 4D-Miner vs N and T (average
percentage and standard deviation over 21 runs)

6. These results confirm the robustness of the proposed ap-
proach: a graceful degradation of the recall is observed as T
and N increase. It must be noted that STPs occupy a negli-
gible fraction of the spatio-temporal domain (circa 10−4 for
T = 8000, N = 4000). The average precision is low, rang-
ing from 12 to 20% (results omitted due to space limitations).
However, post-pruning can be used to sort the wheat from
the chaff in the final archive, and increase the precision up to
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Figure 6: Recall achieved by 4D-Miner vs the number of fit-
ness evaluations. (T = 4000, N = 500, 1000, 2000, 4000,
average over 21 runs).

50% without decreasing the recall; the post-pruning straight-
forwardly removes the STPs with small spatial or temporal
amplitudes.
Quite different effects are obtained when the archive is pruned
along the search (e.g. by increasing the thresholds on the min-
imal spatial and temporal amplitudes), which decreases the
overall performances by an order of magnitude; interestingly,
similar effects are observed in constrained evolutionary op-
timization when the fraction of admissible solutions is very
low.

A final remark is that the performances heavily depend
upon the user-supplied thresholds (section 3.1), controlling
the diversity and effective size of the population. Indeed, a
parametric model of the dataset would enable automatic ad-
justment of these parameters. It might also be viewed as a ad-
vantage of 4D-Miner that it does not require any prior model
of the data, and that inexpensive preliminary runs can be used
to adjust the needed parameters.

6 Relevant work
This brief review does not claim exhaustiveness; the inter-
ested reader is referred to [Shekhar et al., 2003; Roddick
and Spiliopoulou, 2002] for comprehensive surveys. Spatio-
temporal data mining applications (e.g., remote sensing, envi-
ronmental studies, medical imaging) are known to be compu-
tationally heavy; as most standard statistical methods do not
scale up properly, new techniques have been developed, in-
cluding randomized variants of statistical algorithms. Many
developments are targeted at efficient access primitives and/or
complex data structures (see, e.g., [Wu et al., 2004]); an-
other line of research is based on visual and interactive data
mining (see, e.g., [Keim et al., 2004]), exploiting the unri-
valed capacities of human eyes for spotting regularities in 2D-
data. Spatio-temporal data-mining mostly focuses on clus-
tering, outlier detection, denoising, and trend analysis. For
instance, [Chudova et al., 2003] used EM algorithms for
non-parametric characterization of functional data (e.g. cy-
clone trajectories), with special care regarding the invariance
of the models with respect to temporal translations. The
main limitation of such non-parametric models, including
Markov Random Fields, is their computational complexity,
sidestepped by using randomized search for model estimates.



7 Discussion and Perspectives
This paper has proposed a stochastic approach for mining sta-
ble spatio-temporal patterns. Indeed, a very simple alterna-
tive would be to discretize the spatio-temporal domain and
compute the correlation of the signals in each cell of the dis-
cretization grid. However, it is believed that the proposed
approach presents several advantages compared to the brute
force, discretization-based, alternative. First of all, 4D-Miner
is a fast and frugal algorithm; its good performances and scal-
ability have been successfully demonstrated on medium sized
artificial datasets. Second, data mining applications specifi-
cally involve two key steps, exemplified in this paper: i) un-
derstanding the expert’s goals and requirements; ii) tuning
the parameters involved in the specifications. With regard to
both steps, the ability of working under bounded resources is
a very significant advantage; any-time algorithms allow the
user to check whether the process can deliver useful results,
at a low cost. Further research is concerned with extend-
ing 4D-Miner in a supervised learning perspective (finding
the STPs that are complete − active in several persons un-
dergoing the same experiment − and correct − not active in
the control experiment). The challenge is to directly handle
the additional constraints of completeness and correction in
the multi-objective multi-modal optimization framework pre-
sented here.
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