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Abstract. The W3C recently released the XQuery Update Facility 1.0,
a Candidate Recommendation for an XML update language. It appears
likely that this proposal will become standard. XQuery has been equip-
ped with a formal semantics and sound type system, but there has been
little work on static analysis or typechecking of XML updates, and the
typing rules in the current W3C proposal appear unsound for “trans-
form” queries that perform embedded updates. In this paper, we investi-
gate the problem of schema alteration, or synthesizing an output schema
describing the result of an update applied to a given input schema. We
review regular expression type systems for XQuery, present a core lan-
guage and semantics for W3C-style XML updates, and develop an effect
analysis and schema alteration, which can be used as the basis for sound
typechecking for queries involving “transform”.

1 Introduction

Query and transformation languages for XML data have been studied exten-
sively, both in the database and programming language communities. The World
Wide Web Consortium (W3C) has developed XQuery, a standard XML query
language with a detailed formal semantics and type system [1,2]. Most real-world
data changes over time, and so it is also important to be able to update XML
documents and XML-based data. However, query languages such as XQuery, and
transformation languages such as XSLT, provide support only for “functional”
computation over immutable data, and are awkward for writing transformations
that update part of the data “in-place” while leaving most of the document alone.

There have been a number of proposals and prototype implementations for
XML update languages (see for example [3,4,5,6]). While no clear winner has
emerged so far, the W3C has introduced the XQuery Update Facility [7] (hence-
forth called simply “XQuery Update”), combining features from several propos-
als; this is now supported by many XML database implementations. However,
the typechecking and static analysis problems for XQuery Update (and for XML
updates more generally) remain ill-understood. In contrast to XQuery, there is
no formal semantics; moreover, the proposed typing rules for XQuery Update
only ensure that updates are minimally well-formed, and do not show how to
compute the type of the document after an update is performed. In fact, as we
shall see, the proposed typing rules in the current W3C proposal are unsound.

In this paper we develop a sound type and effect system for XQuery Update
based on regular expression types [8]. Regular expression types are closely related
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to tree automata [9] and have been employed in a number of other settings [10].
We show how to infer safe over-approximations for the results of both queries
and updates. This is nontrivial because we must consider destructive update at
the schema/type level.

A complication is that XQuery Updates have a somewhat involved “snapshot”
semantics. An update expression is first evaluated, yielding a sequence of atomic
update operations; then the atomic update sequence is sanity-checked and finally
applied. Moreover, updates are not applied in the order they were generated (as
a programmer might expect) but instead are applied in several phases: insertions
and renamings first, then replacements, then deletions.

Example 1. Consider the update:

for $y in $x//a delete $y,
for $y in $x//a, $z in $x//d return (insert $z before $y)

This deletes all nodes matching $x//a and inserts copies of all nodes matching
$x//d before the deleted nodes. Suppose the input $x has type1 doc[a[], b[], c[d[]]].
One might expect that the a node will be deleted first, so that the second update
has no effect, yielding result type doc[b[], c[d[]]]. However, the informal semantics
in the W3C proposal reorders insert operations before deletions, so the actual
result type is doc[d[], b[], c[d[]]].

Uses of ancestor or sibling XPath axes further complicate typechecking:

Example 2. Consider the update expression:

for $y in $x//a/following::b/parent::c return delete $y

Intuitively, this deletes all c nodes that are parents of b nodes that follow some
a node in the document. If the input $x has type doc[b[c[]∗, a[]∗]] then this
update has no effect; if $x : doc[a[], c[b[]∗]] then the output will always have
type doc[a[], c[]?]; if $x : doc[(c[b[]], a[])∗] then the output will always have type
$x : doc[(c[b[]], a[]+)?].

In the XQuery standard, however, the typing rules for axes such as following
and parent are very conservative: they assume that the result of a query might
be any part of the document. This would be disastrous from the point of view of
typechecking updates such as the above, however, since we would have to assume
that any part of the input could be the target of an update.

Finally, XQuery Update includes a new “transform” query expression that per-
forms updates in the middle of a query. The “transform” expression copies data
into new variables and then modifies the copied data. This complicates type-
checking because the modified values may be used in subsequent queries. The
W3C proposal’s typing rules for “transform” do not seem take this into account,
and appear unsound:

1 For brevity, we use compact, XDuce-style notation [8] for XML trees and types.
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Example 3. A typical W3C “transform” expression is of the form

copy $y := $x modify delete $y/c return $y

This expression behaves as follows: First we copy the value of $x and assign it
to $y; then we evaluate the modifying expression delete $y/c and apply the
resulting updates; finally, we return $y. Suppose $x : a[b[], c[]]. Thus, initially
$y will have the same type. According to the typing rules given in the W3C
proposal [7], the return expression will be typechecked with $y still assigned
type a[b[], c[]], so the result of the query will be assigned type a[b[], c[]], but the
return value will be of the form a[b[]].

To recover soundness for “transform” expressions it is necessary to ensure that
the types of updated variables remain correct after the update is performed. One
trivial, but unsatisfying way to do so is to set updated variables’ types to Any,
a type that matches any XML document. Another possibility, perhaps that in-
tended by the W3C proposal, is that that the data should be revalidated after
each update snapshot completes (including updates in the modify clause of a
transform). Such revalidation could ensure that the type information remains
valid after a transform is done, so the above example would result in a run-time
type error. However, the current draft is ambiguous on this point: it does specify
that some revalidation should take place but does not specify that revalidation
should ensure that types are preserved [7, Sec. 2.4.5]. In any case, dynamic revali-
dation is potentially costly, and would require the schema designer to anticipate
all possible changes to the schema in advance, thus precluding typechecking
XQuery Update expressions that, for example, add new elements to the docu-
ment that were not present in the original schema.

As these examples illustrate, it is easy to find pathological updates for which
“good” output schemas appear difficult to predict. In fact, in general there may
be no schema (based on regular expression types) that exactly captures the out-
put of a query, because the range of a query or update over a regular input lan-
guage may not be regular [11]. Even typechecking an update given a fixed input
and output schema is hard in general, and undecidable for full XQuery Update.
Nevertheless, it is worthwhile to find sound, static overapproximations to the re-
sult of an XML query or update. We focus on developing a pragmatic approach
that demonstrates reasonable behavior on common cases. It is already difficult
just to develop a nontrivial sound analysis for the W3C proposal, however, and
experimental validation of the practical utility of our approach is beyond the
scope of this paper.

Prior work has been done on typechecking and other static analyses for Up-
dateX [3,12] and Flux [4], and other XML update proposals [5]. However, no
prior work applies directly to the W3C’s current XQuery Update proposal. While
Benedikt et al. [3,12] considered a language similar to XQuery Update, they did
not investigate typechecking. Cheney [4] studied regular expression typecheck-
ing for Flux, an XML update language that is simpler, but also less expressive,
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than XQuery Update. Ghelli et al. studied commutativity analysis for an update
language whose semantics differs substantially from the current version [5].

We want to emphasize that we consider a strict sublanguage of XQuery Up-
dates that includes many key features but excludes some complications to the
XML data model (such as attributes, processing instructions, etc.). We also leave
out the “replace value of” operation [7]. However, extensions to handle these fea-
tures appear straightforward. We also do not model the optional XML Schema
validation, dynamic type-name tags, or revalidation features of XQuery Update.
Instead, we adopt a purely structural type system with subtyping based on
language inclusion, as in XQuery and much other previous work on typed XML
programming languages [1,2,8,10,4]. Thus, our approach applies to any conform-
ing implementation of XQuery Update, independent of whether it implements
validation.

In this paper, we consider these related problems for XQuery Updates:

– pending effect analysis : given a schema and an update, approximate the
possible atomic updates (“effect”) generated by the update.

– schema alteration: given a schema and an update effect, find an output
schema that approximates the results of applying atomic updates described
by the effect.

Prior work on typechecking of queries has not handled upward axes, since they
use regular expression types that specify only the hedge or subtree structure
of returned nodes, not their position within a larger schema. To handle the
interaction of schemas and updates, we develop a type and effect system that
can record this information. Hence our approach applies to a language that
contains all XPath axis steps.

In many XML processing settings (particularly databases) we can assume a
fixed input schema and type declarations for the free variables of the expression,
so we do not consider the (likely harder) schema inference problem of inferring
types for both input variables and results.

Due to space limitations, in the body of the paper we omit full treatment of
“transform” queries; however, the omitted material is straightforward given the
results in the paper, and is provided in the companion technical report [13]. We
omit proofs and standard or straightforward definitions; these are also provided
in a companion technical report. The technical report also presents extended
examples.

Outline. The rest of this paper is structured as follows: Section 2 reviews core
XQuery and schema languages we will use, and Section 3 introduces the atomic
update and XQuery Update languages, along with their operational semantics.
Section 4 defines a pending effect analysis for update expressions and proves
its soundness. Section 5 presents a schema alteration algorithm that applies a
pending effect to a schema. We discuss a prototype implementation in Section 6.
Section 7 discusses related and future work and Section 8 concludes.
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2 Background

W3C XQuery Update 1.0 extends XQuery, which is already a large language.
Even restricting attention to a core language, we must present a great deal of
background material. In this section we review XML stores, regular expression
types, XPath steps, and queries. Whenever possible we omit standard definitions
that can be found in previous work or in [13].

XML stores. Let Loc be a set of locations l. A location sequence L is a list of
locations; we write () for the empty location sequence and L · L′ for sequence
composition. A store σ is a mapping from locations to constructors k, defined
as follows:

k ::= text[s] | a[L]

where s is a string, a is an element node label and L is a list of locations. A
well-formed store corresponds to an acyclic forest of XML trees. (We follow the
XML data model and XQuery semantics in storing data values such as strings
using “text nodes” in the store.)

We introduce a copying judgment σ, L
copy�→ σ′, L′ that, intuitively, extends σ

to a store σ′ by copying the subtree under each location in L to a fresh subtree,
collecting the resulting locations in list L′. This judgment is defined formally
in [13].

Regular expression types. Following previous work [8,10,4], we employ regular
expression types τ for XML queries and updates:

τ ::= () | T | a[τ ] | δ | τ, τ ′ | τ |τ ′ | τ∗

Here, δ is the base type of “data” (e.g. strings), and T, T′, . . . ∈ TName are type
names. We consider schemas S mapping type names to types. In order to ensure
regularity, we forbid uses of top-level type names in S(T) ; for example, both
the type definitions T �→ a[], T, b[]|() and T′ �→ a[T′], T′|() are forbidden, whereas
T′ �→ a[T′]∗ is allowed (and is equivalent to T′ �→ a[T′], T′|()). Such schemas are
called regular. A type whose type names are drawn from S is called an S-type.

Regular schemas are very general and flexible, but they are awkward for our
purposes. There are two reasons for this. First, we want to be able to typecheck
queries and updates involving navigation axes such as descendant, ancestor
and following more accurately than the default XQuery approach. Second, it
is non-obvious how to apply the effects of updates to general regular schemas.

Both problems can be ameliorated using flat schemas. Flat schemas provide
an explicit type name for each “part” (e.g. element or data type) in the schema
corresponding to a “part” of a document. This makes them more suitable for
updating. Flat schemas are defined as follows:

Definition 1. A flat type is a regular expression over type names. A flat schema
is a schema in which all type definitions are either of the form T �→ δ, or T �→ a[τ ]
where τ is a flat type.
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σ(l) = a[L] σ |=S L : τ

σ |=S l : a[τ ]

σ(l) = text[s]

σ |=S l : δ σ |=S () : ()

σ |=S L1 : τ1 σ |=S L2 : τ2

σ |=S L1 · L2 : τ1, τ2

σ |=S L : τ1

σ |=S L : τ1|τ2

σ |=S L : τ2

σ |=S L : τ1|τ2

σ |=S L : () | τ, τ∗

σ |=S L : τ∗
σ |=S L : S(T)

σ |=S L : T

Fig. 1. Validation rules

In a flat schema, a type name is mapped to either a single element a[τ ] (with flat
content type τ) or δ. For example, X, (Y∗, Z)∗ is a flat type and X �→ a[X, (Y∗, Z)∗]
is a flat schema rule.

Flat schemas are syntactically more restrictive than general schemas, and
hence they are less convenient for users. Fortunately, it is always possible to
translate a regular schema S to an equivalent flat schema S′, as follows: First
introduce new type definitions T �→ a[τ ] for each type of the form a[τ ] occurring
in the original schema, rewriting the existing definitions and un-nesting nested
element constructors. Then, “inline” all occurrences of the original type names
in the schema with their new definitions. Other S-types in a context Γ can
also be translated to S′-types in this way. As an example, the flat schema S′

corresponding to Y �→ a[Y]∗ is Z �→ a[Z∗], and the flat S′-type corresponding to
the S-type Y is Z∗.

Validation. We define a validation relation σ |=S L : τ that states that in store σ
and schema S, location sequence L matches type τ . The rules in Figure 1 define
validation.

Aliasing. In determining types for updates, we will have to know whether two
types can point to the same thing – this is a critical part of the algorithm in the
beginning of Section 5. Types T and T′ may alias2 (with respect to S) provided
that for some σ and l ∈ dom(σ), we have σ |=S l : T and σ |=S l : T′.

Equivalently, types T and T′ do not alias provided that they are disjoint, con-
sidered as regular tree languages (with respect to S viewed as a tree automaton).
Disjointness is decidable for regular languages, and for restricted expressions (e.g.
1-unambiguous), tractable procedures are known [14,15]. For the purposes of this
paper we assume that we are given sound alias sets aliasS(T) such that if T and
T′ may alias we have T′ ∈ aliasS(T).

XPath axes. XPath is an important sublanguage of both XQuery and XQuery
Update. XPath steps are expressions of the form:

step ::= ax::φ φ ::= ∗ | n | text
ax ::= self | child | descendant | parent | ancestor | · · ·

2 Aliasing means that two names refer to the same thing. In pointer analysis, aliasing
usually means that two variable names refer to the same memory location. Here,
aliasing means two type names may match the same store location.
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The semantics and static analysis problems for XPath have been well-studied
[16,9]. We will abstract away from the details of XPath in this paper, by in-
troducing judgments σ |= l/ax ::φ

step⇒ L to model XPath step evaluation and
S � T/ax ::φ

step⇒ τ to model static typechecking for XPath steps. For the pur-
poses of this paper, we assume that these relations satisfy the following soundness
property:

Lemma 1. If S � T/ax ::φ
step⇒ τ and σ |= l/ax ::φ

step⇒ L and σ |=S l : T then
σ |=S L : τ .

Environments and type contexts. We employ (dynamic) environments γ mapping
variables x, y, . . . ∈ Var to location sequences L, and type contexts (also known as
static environments) Γ mapping variables to regular expression types. We write
• for an empty environment or type context, and write γ[x := L] for the result
of updating a context by binding x to L.

A type context is flat if its types are flat. An S-context is a context whose
types are S-types. We also write σ |=S γ : Γ to indicate that ∀x ∈ dom(Γ). σ |=S

γ(x) : Γ(x).

Queries. We introduce a core XQuery fragment, following Colazzo et al. [10].

q ::= x | () | q, q′ | a[q] | s | x/step
| if q then q1 else q2 | let x := q in q′ | for x ∈ q return q′

The empty sequence (), element constructor a[q], sequential composition q, q′ and
string s expressions build XML values. Variables and let-bindings are standard;
conditionals branch depending on whether their first argument is nonempty.
The expression x/step performs an XPath step starting from x. The iteration
expression for x ∈ q return q′ evaluates q to L, and evaluates q′ with x bound
to each location l in L, concatenating the results in order.

We model the operational semantics of queries using a judgment σ, γ |= q ⇒
σ′, L. Note that the store σ may grow as a result of allocation, for example in
evaluating expressions of the form a[q] and s. We employ an auxiliary judgment
σ, γ |= q

copy⇒ σ′, L that is used for element node construction and later in the
semantics of inserts (see Section 3) and transforms [13, Sec. 6]. The rules defining
these judgments are given in [13]; here are two illustrative rules:

σ, γ |= q ⇒ σ0, L0 σ0, L0
copy�→ σ′, L

σ, γ |= q
copy⇒ σ′, L

σ, γ |= q
copy⇒ σ′, L l 	∈ dom(σ′)

σ, γ |= a[q]⇒ σ′[l := a[L]], l

Note that the second rule employs the auxiliary “copying” judgment, which
simply evaluates a query and makes a fresh copy of the result.
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3 Core XQuery Updates

Atomic updates. We consider atomic updates of the form:

ι ::= ins(L, d, l) | del(l) | repl(l, L) | ren(l, a)
d ::=← | → | ↓ | ↙ | ↘

Here, the direction d indicates whether to insert before (←), after (→), or into
the child list in first (↙), last (↘) or arbitrary position (↓). Moreover, we con-
sider sequences of atomic updates ω with the empty sequence written ε and
concatenation written ω; ω′.

Updating expressions. We now define the syntax of updating expressions, based
roughly on those of the W3C XQuery Update proposal.

u ::= () | u, u′ | if q then u1 else u2 | for x ∈ q return u | let x := q in u

| insert q d q0 | replace q0 with q | rename q0 as a | delete q0

The XQuery Update proposal overloads existing query syntax for updates. The
() expression is a “no-op” update, expression u, u′ is sequential composition, and
let-bindings, conditionals, and for-loops are also included. There are four basic
update expressions: insertion insert q d q0, which says to insert a copy of q in
position d relative to the value of q0; deletion delete q0, which says to delete
the value of q0; renaming rename q0 as a, which says to rename the value of q0

to a and replacement replace q0 with q, which says to replace the value of q0

with a copy of q. In each case, the target expression q0 is expected to evaluate
to a single node; if not, evaluation fails.

Semantics. Updates have a multi-phase semantics. First, the updating expres-
sion is evaluated, resulting in a pending update list ω. We model this phase
using an update evaluation judgment σ, γ |= u⇒ σ′, ω, along with an auxiliary
judgment σ, γ, x ∈ L |=� u ⇒ σ′, ω that handles for-loops. The rules for these
judgments are presented in Figure 2. Note that again the store may grow as
a result of allocation, but the values of existing locations in σ do not change
in this phase. Next, ω is checked to ensure, for example, that no node is the
target of multiple rename or replace instructions. We do not model this sanity-
check phase explicitly here; instead we simply introduce an abstract predicate
sanitycheck(ω) that checks that ω is a valid update sequence. Finally, the pend-
ing updates are applied to the store. The semantics of atomic updates is defined
using the judgment σ |= ι � σ′ presented in Figure 3.

One natural-seeming semantics for update application is simply to apply the
updates in ω in (left-to-right) order. However, this naive semantics is not what
the W3C proposal actually specifies [7]. Instead, updates are applied in the fol-
lowing order: (1) “insert into” and rename operations, (2) “insert before, after, as
first” and “as last” operations, (3) “replace” operations, and finally (4) “delete”
operations. (There is an extra stage for “replace value of” operations in [7], which
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σ, γ |= ()⇒ σ, ε

σ1, γ |= u1 ⇒ σ2, ω1 σ2, γ |= u2 ⇒ σ3, ω2

σ1, γ |= u1, u2 ⇒ σ3, ω1; ω2

σ1, γ |= q ⇒ σ2, l · L σ2, γ |= u1 ⇒ σ3, ω1

σ1, γ |= if q then u1 else u2 ⇒ σ3, ω1

σ1, γ |= q ⇒ σ2, () σ2, γ |= u2 ⇒ σ3, ω2

σ1, γ |= if q then u1 else u2 ⇒ σ3, ω2

σ1, γ |= q ⇒ L, σ2 σ2, γ[x := L] |= u⇒ σ3, ω

σ1, γ |= let x = q in u⇒ σ3, ω

σ1, γ |= q ⇒ L, σ2 σ2, γ, x ∈ L |=� u⇒ σ3, ω

σ1, γ |= for x ∈ q return u⇒ σ3, ω

σ1, γ |= q1
copy⇒ σ2, L1 σ2, γ |= q2 ⇒ σ3, l2

σ1, γ |= insert q1 d q2 ⇒ σ3, ins(L1, d, l2)

σ1, γ |= q ⇒ σ2, l

σ1, γ |= delete q ⇒ σ2, del(l)

σ1, γ |= q1 ⇒ σ2, l1 σ2, γ |= q2
copy⇒ σ3, L2

σ1, γ |= replace q1 with q2 ⇒ σ3, repl(l1, L2)

σ1, γ |= q ⇒ σ2, l

σ1, γ |= rename q as a⇒ σ2, ren(l, a)

σ, γ, x ∈ () |=� u⇒ σ, ε

σ1, γ[x := l] |= u⇒ σ2, ω1 σ2, γ, x ∈ L |=� u⇒ σ3, ω2

σ1, γ, x ∈ l · L |=� u⇒ σ3, ω1; ω2

Fig. 2. Rules for evaluating update expressions to pending update lists

σ(l′) = a[L1 · l · L2]

σ |= ins(L,←, l) � σ[l′ := a[L1 · L · l · L2]]

σ(l) = a[L′]

σ |= ins(L,↙, l) � σ[l := a[L · L′]]
σ(l′) = a[L1 · l · L2]

σ |= ins(L,→, l) � σ[l′ := a[L1 · l · L · L2]]

σ(l) = a[L′]

σ |= ins(L,↘, l) � σ[l := a[L′ · L]]
σ(l) = a[L1 · L2]

σ |= ins(L, ↓, l) � σ[l := a[L1 · L · L2]]

σ(l) = a[L]

σ |= ren(l, b) � σ[l := b[L]]

σ(l′) = a[L1 · l · L2]

σ |= repl(l, L) � σ[l′ := a[L1 · L · L2]]

σ(l′) = a[L1 · l · L2]

σ |= del(l) � σ[l′ := a[L1 · L2]]

Fig. 3. Semantics of atomic updates

stage(ins( , ↓, )) = 1

stage(ren( , )) = 1

stage(ins( , d, )) = 2 (d ∈ {←,→,↙,↘})
stage(repl( , )) = 3

stage(del( )) = 4

σ0 |=1 ω � σ1 σ1 |=2 ω � σ2 σ2 |=3 ω � σ3 σ3 |=4 ω � σ4

σ0 |= ω � σ4 σ |=i ε � σ

σ |=i ωj � σ′ σ′ |=i ωk � σ′′ {j, k} = {1, 2}
σ |=i ω1, ω2 � σ′′

σ |= ι � σ′

σ |=stage(ι) ι � σ′
stage(ι) 	= i

σ |=i ι � σ

σ, γ |= u⇒ σ′, ω sanitycheck(ω) σ′ |= ω � σ′′

σ, γ |= u � σ′′

Fig. 4. Update application
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we omit.) Subject to these constraints, the order of application within each stage
is unspecified. To model this behavior we introduce a judgment σ |= ω � σ′

along with an auxiliary function stage(ι) and judgment σ |=i ω � σ′ for stages
i ∈ {1, 2, 3, 4}. The rules defining these judgments are shown in Figure 3. Note
that the rule for sequential composition permits arbitrary reordering of update
sequences (which are also identified up to associativity). Static analyses for the
W3C semantics are not in general valid for the naive, “in-order” semantics and
vice versa.

The final rule in Figure 4 defines the judgment σ, γ |= u � σ′, which evaluates
an update, checks that the resulting pending update list is valid, and then applies
the updates to the store.

Inferring Types. For functional programs (i.e., queries) on documents, the notion
of a valid type for an expression is fairly clear: given a schema S and expression
e, a typing is a representation (e.g. by a regular expression type) of a set of trees;
it is valid if it represents all of the possible hedges of subtrees returned by the
query. Since XML updates modify the input store but do not return a value,
the appropriate notion of a valid typing is less familiar. Our goal is to define a
typing judgment S, Γ � u � S′, Γ′ that relates an update u, input schema S and
a S-context Γ to a new schema S′ and a new S′-context Γ′ in which the types of
variables in Γ have been adjusted to account for the changes made by the update.
The basic correctness criterion we expect for this judgment is that if the initial
store satisfies Γ with respect to S, then the final store resulting from applying u
satisfies the type context Γ′ with respect to S′. This property (Corollary 1) is the
main result of the paper. Typically, the initial store will consist of a single tree
and the environment γ will map a single variable $doc to the root of the tree.
In this case our correctness property guarantees that the portion of the output
reachable from this root will satisfy the new schema S′.

4 Type and Effect Analysis

Query result type analysis. First, for queries we would like to define a typecheck-
ing judgment S; Γ � q : τ that calculates return type τ for q when run in context
Γ. Previous work on type systems for XML queries has been based on general
regular-expression types [1,10]; here, however, we want to infer flattened types.
To do this in the presence of element-node constructor expressions, we may need
to add rules to the schema, so we employ a judgment S; Γ � q : τ ; S′. The rules
are mostly straightforward generalizations of those in Colazzo et al. [10] and so
are relegated to [13]. The key new rules with respect to previous work are those
for node construction and XPath axis steps, respectively:

S; Γ � q : τ ; S′ T 	∈ dom(S′)
S; Γ � a[q] : T; S′[T := a[τ ]]

S � Γ(x)/ax :: φ
step⇒ τ

S; Γ � x/ax :: φ : τ ; S
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σ |=S L : τ σ |=S l : T

σ |=S ins(L, d, l) : ins(τ, d, T)

σ |=S l : T

σ |=S del(l) : del(T)

σ |=S l : T

σ |=S ren(l, a) : ren(T, a)

σ |=S l : T σ |=S L : τ

σ |=S repl(l, L) : repl(T, τ )

Fig. 5. Some representative effect validity rules

(if d ∈ {↓,↙,↘} then S′(T) 	= δ)
S; Γ 
 q : τ ;S1 S1; Γ 
 q′ : T; S2

S;Γ 
 insert q d q′ : ins(τ, d, T);S2

S; Γ 
 q : T;S′ S′(T) 	= δ

S; Γ 
 rename q as a : ren(T, a);S′

S; Γ 
 q : T;S1 S1; Γ 
 q′ : τ ;S2

S; Γ 
 replace q with q′ : repl(T, τ );S2

S; Γ 
 q : T; S′

S;Γ 
 delete q : del(T);S′

Fig. 6. Some representative update effect-inference rules

Theorem 1 (Type Soundness). If S; Γ � q : τ ; S′ then for all σ, γ, L, σ′, if
σ |=S γ : Γ and σ, γ |= q ⇒ σ′, L then σ′ |=S′ L : τ .

Update effect analysis. We next turn to the problem of statically approximating
the pending update list generated by an update expression. We use the term
(pending) effect for such static approximations. Effects have the following forms:

Ω ::= ε | Ω; Ω′ | Ω|Ω′ | Ω∗ | ins(τ, d, T) | del(T) | ren(T, a) | repl(T, τ)

The semantics of effects is defined by the judgment σ |=S ω : Ω in Figure 5; we
leave out standard rules for regular expression forms. Intuitively, σ |=S ω : Ω says
that in store σ and schema S, the atomic updates ω match the effect expression Ω.

We use judgments S; Γ � u : Ω; S′ and S; Γ; x ∈ τ �� u : Ω; S′ to infer effects for
plain and iterative updates respectively. We show some representative rules in
Figure 6; the full definition is in the technical report. Note that typechecking an
update may also require adding rules to the result schema, because of embedded
node-construction (e.g. insert foo[] ↓ x).

Theorem 2 (Effect soundness). If S; Γ � u : Ω; S′ then for all σ, γ, if σ |=S

γ : Γ and σ, γ |= u⇒ σ′, ω then σ′ |=S′ ω : Ω.

Type soundness only guarantees that the results of successful executions will
match the static type. Dynamic errors may still occur while evaluating a well-
formed query. Similarly, update effect soundness only guarantees that the results
of a successful update evaluation will match the computed effect, not that eval-
uation will be free of dynamic errors. We believe our techniques can be modified
to issue static warnings about possible dynamic errors in queries, but this is
beyond the scope of this paper.
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5 Schema Alteration

We now present an algorithm for schema alteration, that is, soundly over-
approximating the actual effects a pending update may have on a schema. Given
input type context Γ, schema S and pending effect Ω we want to infer a suitable
output schema S′ and type context Γ′. The rough idea is as follows:

1. Augment the input schema S to S̃ by adding new temporary type names
standing for “places” where updates may occur.

2. Determine which type names may match the same store location at run time,
using alias analysis (as described in Section 2).

3. Simulate the effects of each stage of atomic update application on S̃.
4. Finally, flatten the updated S̃ to S′ and update the type context Γ to Γ′.

We first illustrate the above algorithm by an example:

Example 4. Suppose we have effect Ω = ins((U, V),↙, T), del(T), ren(T, b), with
schema S given by rules S̃ �→ doc[T], T �→ a[U, V], U �→ b[], V �→ c[], and Γ = x : S.

Using the schema S we will form a new schema S̃ extending S with additional
type names and instrumented rules based on the rules of S. For example, for the
single rule T �→ a[U, V] we generate three rules:

T̃ �→ T̃←, T̃r, T̃→ T̃r �→ a[T̃c] T̃c �→ T̃↙, T̃↓, Ũ, T̃↓, Ṽ, T̃↓, T̃↘

Here, the five type names T̃↓, T̃←, T̃→, T̃↙, and T̃↘ stand for data inserted “into”,
“before”, “after”, “first into”, or “last into” T. The type name T̃r stands for the
data “replacing” T, and the type name T̃c stands for the “content” of T.

The rest of the auxiliary type names are all initially defined as (). Note there-
fore that each type T̃ in the augmented schema S̃ initially is equivalent to T in
S, in the sense that they match the same subtrees.

Next, we simulate the static effects, in order of stage. In stage 1, we perform
the rename operation, by altering the definition of T̃r to a[T̃c]|b[T̃c]. In stage 2
we simulate effect ins((U, V),↙, T) by setting T̃↙ to (U, V)∗. Here we refer to the
original types U and V in S, which have the same definitions as before. Stage 3 is
inactive, and finally in stage 4 we apply the deletion by setting T̃r to a[T̃c]|b[T̃c]|().
In this example, there are no other type names that may alias T. Had there been,
we would have applied the same changes to the aliases of T.

Finally, we re-flatten the final schema. In this case consider the rule for T̃.
Flattening and simplifying yields S̃ �→ doc[T̃1|T̃2|()], T̃1 �→ a[(U, V)∗, Ũ, Ṽ], T̃2 �→
b[(U, V)∗, Ũ, Ṽ]. Note that this type refers to both the old and new versions of
U and V (they happen to be the same in this case). We also modify the type
context to x : S̃ to reflect the change.

Another, more elaborate example is shown in Figure 7. We now describe the
schema alteration algorithm more carefully.
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Initial augmented schema:

S �→ doc[T] S̃ �→ S̃←, S̃r, S̃→ S̃r �→ a[S̃c] S̃c �→ S̃↙, S̃↓, T̃, S̃↓, S̃↘
T �→ a[U, V] T̃ �→ T̃←, T̃r, T̃→ T̃r �→ a[T̃c] T̃c �→ T̃↙, T̃↓, Ũ, T̃↓, Ṽ, T̃↓, T̃↘

U �→ b[] Ũ �→ Ũ←, Ũr, Ũ→ Ũr �→ b[Ũc] Ũc �→ Ũ↙, Ũ↓, Ũ↘
V �→ c[] Ṽ �→ Ṽ←, Ṽr, Ṽ→ Ṽr �→ c[Ṽc] Ṽc �→ Ṽ↙, Ṽ↓, Ṽ↘

All other new type names are initialized to ().
Effect:

|Ω| = {ins(V,←, U), ren(U, d), repl(V, U∗), del(T)}

Schema changes:

{
Phase 1: Phase 2: Phase 3: Phase 4:
Ũr �→ b[Ũc]|d[Ũc] Ũ← �→ V∗ Ṽr �→ c[Ṽc]|U∗ T̃r �→ a[T̃c]|()

Result schema (after some equational simplifications):

S �→ doc[T] S̃ �→ S̃r, S̃r �→ a[S̃c] S̃c �→ T̃,

T �→ a[U, V] T̃ �→ T̃r T̃r �→ a[T̃c]|() T̃c �→ Ũ, Ṽ

U �→ b[] Ũ �→ Ṽ∗, Ũr Ũr �→ b[Ũc]|d[Ũc] Ũc �→ ()

V �→ c[] Ṽ �→ Ṽr Ṽr �→ c[Ṽc]|U∗ Ṽc �→ ()

Re-flattened schema:

S �→ doc[T] T �→ a[U, V] U �→ b[] V �→ c[]

S̃ �→ a[T̃|()] T̃ �→ a[V∗, (Ũ1|Ũ2), (Ṽ0|U∗)] Ũ1 �→ b[] Ũ2 �→ d[] Ṽ0 �→ c[]

Fig. 7. Detailed example of schema alteration

Preprocessing. First we pre-compute sound approximate aliasing information
for S, computing the set alias(T) = aliasS(T) for each T. We next define the
augmented schema S̃ as follows. For each rule T �→ a[τ ] in S, we introduce rules

T̃ �→ T̃←, T̃r, T̃→ T̃r �→ a[T̃c] T̃c �→ T̃↙, h(τ), T̃↓, T̃↘

where h is the (unique) regular expression homomorphism satisfying h(U) = T̃↓, Ũ
for all U in S. We map all other new type names in S̃ to ().

Effect application. We now apply the effects to the augmented schema. The
behavior of an effect is applied to the effect’s target type name and all of its
aliases. We will ignore the regular expression structure of effects and just consider
the set of atomic effects, written |Ω|. Similarly, we write |τ | for the set of all type
names mentioned in τ . We also write

∨{τ1, . . . , τn} for the regular expression
τ1| · · · |τn.

Phase 1: To simulate insert–into operations, for each type name T, we define
the set I↓(T) = {U | ∃T′ ∈ alias(T). ∃τ. ins(τ, ↓, T′) ∈ |Ω|, U ∈ |τ |}. We then
replace rule T̃↓ �→ () with T̃↓ �→ (

∨
I↓(T))∗ in S̃. To simulate renamings, for each

type name T, we define the set N(T) = {b | ∃T′ ∈ alias(T). ren(T′, b) ∈ |Ω|}, and
replace rule T̃r �→ τ0 with T̃r �→ τ0 |

∨{b[T̃c] | b ∈ N(T)}.
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Phase 2: To simulate the remaining insert operations, we define the set Id(T) =
{τ | ∃T′ ∈ alias(T). ∃τ. ins(τ, d, T′) ∈ |Ω|} and then replace rule T̃d �→ () with
T̃d �→ (

∨
Id(T))∗ for each type name T and direction d ∈ {←,→,↙,↘}.

Phase 3: To simulate replacement operations, we construct the set R(T) = {τ |
∃T′ ∈ alias(T). ∃τ. repl(T′, τ) ∈ |Ω|} of possible replacements for each T, and
replace the rule T̃r �→ τ0 with T̃r �→ τ0 |

∨
R(T).

Phase 4: To simulate deletions, for each T, if del(U) ∈ |Ω| for some U ∈ alias(T),
replace the rule T̃r �→ τ0 with T̃r �→ τ0 | ().

Postprocessing. Once we have finished symbolically updating S̃, we also update
Γ to Γ̃ by replacing each binding x : τ in Γ with x : τ̃ , where τ̃ is the regular
expression obtained by replacing each T with T̃. We also flatten S̃ and Γ̃ to obtain
S′ and Γ′.

We will write S, Γ � Ω � S′, Γ′ to indicate that given input schema S and
typing context Γ, symbolically evaluating Ω yields flattened output schema S′

and typing context Γ′. We also define S, Γ � u � S′, Γ′ as meaning that S; Γ �
u : Ω; S′′ and S′′, Γ � Ω � S′, Γ′ hold for some S′′ and Ω.

Correctness. The main correctness properties (proved in [13]) are:

Theorem 3. Suppose S, Γ � Ω � S′, Γ′. If σ |=S γ : Γ and σ |=S ω : Ω and
σ |= ω � σ′ then σ′ |=S′ γ : Γ′.

Corollary 1. Suppose S, Γ � u � S′, Γ′ and σ |=S γ : Γ and σ, γ |= u � σ′.
Then σ′ |=S′ γ : Γ′.

6 Implementation

We have developed a prototype implementation of type and effect analysis and
schema alteration in OCaml, to demonstrate feasibility of the approach. We have
tested the implementation on a number of examples from the XQuery Update
Use Cases [17]. For these small updates and schemas, schema alteration takes
under 0.1s. Space limitations preclude a full discussion of examples; we discuss
the accuracy of the resulting schemas in [13]. However, there are several possible
avenues for improvement:

– Currently flattening produces large numbers of temporary type names, in-
creasing the size of output and limiting readability. An obvious approach
would be to do flattening only “on demand”, when further navigation effect
application requires exploration of the schema below a certain type name.

– Both effect application and flattening can produce redundancy in type ex-
pressions. Currently we simplify the regular expression types in the output
schema using basic rules such as (), τ ≡ τ ≡ τ, () and (τ∗)∗ ≡ τ∗. Post-
processing using full-fledged regular expression simplification might be more
useful [18].
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– We have implemented a simple, but inaccurate alias analysis: we assume
that two types alias if they have the same root element label. For the DTD-
based examples in [13], this is exact. However, for more complex updates and
schemas, we may need more sophisticated alias analysis to produce useful
results.

– Type and effect inference appears to be worst-case exponential in the pres-
ence of nested for-loops. In practice, typical queries and updates are small
and of low nesting depth, so we expect the size of the schema to be the dom-
inant factor. The type, effect and schema alteration algorithms appear to be
polynomial in the size of the schema for fixed expressions. Further study of
the complexity of our analysis in the worst case or for typical cases may be
of interest.

7 Related and Future Work

There is a great deal of related work on static analysis of fragments of XPath [16],
regular expression types and schema languages [8,19], and XML update language
designs [3,4,5,6,7]. We restrict attention to closely related work.

Cheney developed a typed XML update language called Flux [4], building
on the XQuery type system of Colazzo et al. [10]. Flux differs significantly from
XQuery Update and handles only child and descendant axes, but its semantics
is much simpler.

Static analysis problems besides typechecking have also been studied for XML
or object query/update languages. Bierman [20] developed an effect analysis
that tracks object-identifier generation side-effects in OQL queries. Benedikt et
al. [3,12] presented static analyses for optimizing updates in UpdateX, a precur-
sor to XQuery Update. Ghelli et al. [5] present a commutativity analysis for an
XML update language. Roughly speaking, two updates u1, u2 commute if they
have the same side-effects and results no matter which order they are run. Their
update language also differs from XQuery Update in important ways: in partic-
ular, the intended semantics of the W3C proposal (as formalized in this paper,
for example) seems to imply that u1, u2 will always have the same (potential)
side-effects as u2, u1.

There is also prior work on typechecking for XML transformations (see e.g.
Møller and Schwartzbach [21] for an overview). Much of this work focuses on de-
cidable subproblems where both input and output schemas are given in advance,
whereas we focus on developing sound, practical schema alteration techniques
for general queries and updates. Also, there is no obvious mapping from XQuery
Updates to transducers.

Balmin [22] and Barbosa et al. [23] present efficient dynamic techniques for
checking that atomic updates preserve a fixed schema. These techniques are ex-
act, but impose run-time overhead on all updates, and do not deal with changes
to schemas. Raghavachari and Shmueli [15] give efficient algorithms for revali-
dating data after updates to either the data or schema, but their approach places
stronger restrictions on schemas. It would be interesting to combine static and
dynamic revalidation techniques.
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Building partly on the type effect analyses in this paper, we develop a schema-
based independence analysis for XML queries and updates [24]. A query q and
update u are statically independent if, roughly speaking, for any initial store,
running q yields the same results as applying u and then running q. Static
independence checking is useful for avoiding expensive recomputation of query
results and perhaps also for managing safe concurrent access to XML databases.

Aliasing is a fundamental problem in static analysis, and has been studied
in a wide variety of previous contexts. We envision applying ideas from region
inference [25] or more advanced shape analysis techniques [26] to obtain more
accurate alias information. Aliasing also arises in object-oriented programming
languages in settings such as type-safe object reclassification [27] and types-
tates [28], and ideas from this work may also be useful for dealing with aliasing
in XML updates.

8 Conclusions

XML update languages are an active area of study, but so far little is known
about typechecking and static analysis for such languages. In this paper we
have given an operational semantics for the W3C’s XQuery Update Facility 1.0
and developed the first (to our knowledge) sound type system for this language
(although many details are relegated to the technical report [13]). As a Candidate
Recommendation, XQuery Update is still a work in progress and we hope that
our work will help improve the standard as well as provide a foundation for
future study of XML updates.
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