
Optimisation de Mises à jour XML par typage et

projection

Nicole Bidoit and Dario Colazzo and Noor Malla and Marina Sahakyan

Université de Paris-Sud, Laboratoire de Recherche en Informatique, Bâtiment 490,
F-91405 Orsay Cedex, France

Abstract. La projection est une des techniques utilisées pour permettre
de réduire les besoins en terme de taille mémoire nécessaire aux moteurs
de requêtes XML "in-memory". L’idée sous-jacente à cette technique est
simple : étant donnée une requête Q à évaluer sur un document XML
D, au lieu de procéder au calcul des réponses de Q sur D, la requête
Q est évaluée sur un document D′, plus petit que D, obtenu lors du
chargement de dernier en mémoire, par élagage des parties de D qui ne
sont pas utiles pour Q. Le document Q′ qui celui sur lequel la requête Q

est calculée, est une projection du document initial Q. Il est souvent de
taille drastiquement inférieure à celle de Q. Ceci est dû au fait que les
requêtes sont en général très sélectives.
Alors que cette technique de projection a été étudiée et développée assez
largement pour l’interrogation de document XML, à notre connaissance,
ce type de technique n’a pas été explorée ni appliquée aux mises à jour
de documents XML. L’objet de cet article est donc de proposer une
technique d’optimisation de mises à jour de documents au format XML,
exploitant le typage des documents.

XML projection is one of the main adopted optimization techniques for
reducing memory consumption in XQuery in-memory engines. The main
idea behind this technique is quite simple: given a query Q over an XML
document D, instead of evaluating Q on D, the query Q is evaluated on
a smaller document D′ obtained from D by pruning out, at loading-time,
parts of D that are unrelevant for Q. The actual queried document D′ is
a projection of the original one, and is often much smaller than D due
to the fact that queries tend to be quite selective in general. While pro-
jection techniques have been extensively investigated for XML querying,
we are not aware of applications to XML updating. The purpose of the
paper is to investigate a projection based optimization mechanism for
updates.

1 Introduction

XML projection is one of the main adopted optimization techniques for reducing
memory consumption in XQuery in-memory engines. The main idea behind this
technique is quite simple: given a query Q over an XML document D, instead of
evaluating Q on D, the query Q is evaluated on a smaller document D′ obtained

from D by pruning out, at loading-time, parts of D that are unrelevant for Q.
The actual queried document D′ is a projection of the original one, and is often
much smaller than D due to the fact that queries tend to be quite selective in
general.

In order to determine an optimal projection D′ several approaches exist [7,
9, 15, 16], and most of them are based on query path extraction: all the paths oc-
curring in Q, and expressing the real data-needs for the query, are first extracted
and then used to build the projection D′. In particular, the type based approach
[7] assumes that queried data are typed by a DTD, and uses extracted paths to
determine, by means of type inference, what are the type names of the elements
really needed for the query; this set of type names is dubbed type-projector. Once
a type-projector has been inferred, building the projection D′ is a quite efficient
and simple operation: D is visited according to document order, by a buffer-less
SAX parser, and only elements whose label types are in the type projector are
kept in the projection D′.

While projection techniques have been extensively investigated for XML
querying, we are not aware of any applications to XML updating. At a first
glance, such an extension seems to issue at least two challenges: i) a new path
extraction mechanism has to be devised in order to deal with update operations,
and ii) a technique has to be found in order to make updates persistent. Solv-
ing these two challenges, would allow sensible optimizations in terms of memory
(and even time) consumption for several in-memory XML querying engines like,
just to mention some of them, Galax [2], Saxon [4], QuizX/open [3], and eXist
[1]. All of them share a common modality to perform updates: the input docu-
ment is first loaded in main memory, then updated, and finally stored back on
the disk. As a consequence, each one of these systems have some limitations on
the maximal size of documents that can be processed. For instance, we checked
that for eXist, QuizX/open and Saxon it is not possible to update documents
whose size is greater than 150 MB (no matter the update query at hand) with
standard settings and memory limitations (we are quite confident that similar
limitations hold for systems we have not tested yet).

In order to overcome these limitations we are actively working on both issues
i) and ii). Concerning the first one, we have soon realized that sound projectors
for updates U can be easily obtained by a simple extension of the path extraction
algorithm in [7]. Once paths in U have been extracted, the existing type projector
inference algorithm in [7] is used to extract a type projector for paths in U , and
hence for U since its paths soundly approximate its semantics. Type-projectors
obtained in this way are precise enough to ensure great benefits in terms of
reduction of main memory consumptions for in-memory engines. Nevertheless,
as discussed in the conclusion, we are currently and independently investigating
extracting type projector for update expression for improving memory size and
execution time requirements.

Due to space limitations and since propagating updates to secondary memory
storage is a real new problem, we focus, in this article, on the second issue
ii) previously mentioned. Thus we consider the following scenario. For a query

update U , the document D is assumed to be typed by a DTD and the projection
D′ of D is built using a type-projector π inferred by a projector inference system
[7]. The assumption here is that π is a sound projector for U (we will characterize
soundness), and that the projection D′ aims at keeping in memory only parts of
the document D relevant for evaluating the query update U . The next step of the
update mechanism consists of applying the query update U over the projection
D′ building a new document U(D′). As opposed to what happen for a simple
query, the document U(D′) is not the final expected result U(D). In general,
they are distinct documents: in particular, all the sub-trees pruned out during
the projection phase are obviously missing in U(D′), while they are present in the
expected result U(D). Hence the problem to be solved is how can we efficiently
produce U(D) starting from U(D′).

The main contribution of this paper for solving this problem is an algorithm,
called Merge that takes as input the projector π, the input D and the partial
updated document U(D′), and outputs the expected result U(D). This algorithm
works in a streaming fashion, and processes D and U(D′) in a parallel and a
strictly synchronized way. Moreover, it uses a buffer whose size is upper bounded
by the maximal depth of D. The use of the projector π and of some specific
element labeling, are the two crucial ingredients allowing one to proceed in a
streaming manner.

Another positive aspect of our framework lies on the fact that the new tech-
nique can be used with any in-memory engine, since it does not require any
change in the internal algorithms of the engine itself, nor it requires query rewrit-
ing. To make some preliminary tests, we have implemented the proposed projec-
tion and merging algorithm in Java. We have considered the popular and largely
optimized Saxon system [4] to run some update queries over several XMark doc-
uments of growing size. This framework forces us to wait until the partial result
U(D′) is stored on second memory storage which is of course not necessary (see
future work in last section). Even under such an environment, our evaluation
tests show that not only memory consumption is noteworthy optimized, but
also total execution time is sometimes drastically reduced.

The article is organized as follows. Section 2 is devoted to presenting pre-
liminary definitions and notations. Our update query scenario is introduced in
Section 3 through a motivating example. Section 3 is also devoted to discussing
type projector for update query again through examples. The formal presenta-
tion of type projector and of the overall update query mechanism is developed
in Section 4 which fully details the merging process including implementation
issues. Section 5 summarizes evaluation tests made based on a first implementa-
tion of our method. We conclude by discussing some related works and further
research directions in Section 6.

2 Preliminaries

Data Model We use a data model which is essentially that used in [11, 7, 10], and
defined by the following grammar.

Forest f ::= () | f, f | t Trees t ::= string | l[f]

An XML data model instance is a forest f , consisting of an ordered sequence
of labelled ordered XML trees (the empty forest is noted as ()). Each tree t is
either an l labeled element l[f] whose content is f , or a string base value string.
For simplicity, we do not consider attributes1.

Each sub-tree t of a forest f is associated to a unique identifier i, ranging over
N∗, with N being the set of naturals. The identifier i represents the location of
the sub-tree t inside f . ǫ denotes the empty location, and i · i′ the composition
of two locations i, i

′.

Definition 1 (LT(f) – f@i – loc(f) and trees(f)).
The set LT(f) is a set of pairs (i, t) such that t is located at i inside f . This

set is defined as follows.

LT(()) = ∅
LT(string) = {(ǫ, string)}

LT(l[f]) = {(ǫ, l[f])} ∪ LT(f)
LT(t1, . . . , tn) =

⋃n

1 {(i · i, t′) | (i, t′) ∈ LT(ti)}

We write f@i for the only tree t such that (i, t) ∈ LT(f), if such a tree exists,
otherwise f@i stands for the undefined value undef . We also define loc(f) =
{i | (i, t) ∈ LT(f)} and trees(f) = {t | (i, t) ∈ LT(f)}.

The following definition is needed in order to introduce data projection.

Definition 2. Given a forest f and a set of locations I, we denote as f|I the
forest obtained from f by replacing each subtree f@i, for i ∈ I ∩ loc(f), with the
empty forest ().

Our notion of data projection is very similar to that of [7]:

Definition 3 (Projection). Given two forests f and f ′ we say that f ′ is a
projection of f if and only if f ′ = f|I for a set of locations I.

We consider input XML trees valid wrt a schema defined by means of the
DTD language, which is widely used in practice [8].

For simplicity of notation, we represent DTD as in [12]. So, given a finite
set of tag symbols Σ, and the reserved symbol String, a DTD over Σ is a tuple
(d, sd) where d is a total function from Σ to the set of regular expressions over
Σ ∪ {String}, and sd is the root symbol (of course sd ∈ Σ). In the following,
given a regular expression r we write L(r) and S(r) to indicate, respectively, the
language it generates, and the set of symbols in Σ it contains.

Example 1. The following DTD will be used in the paper as a running example.
The starting symbol is doc.

doc → a+ toto a → b?,c*,d+
c → (String | b | f)* d → (b | f)+ toto b,f → String

Note that the only mixed-content used in this DTD is that for the typing of
c elements.

1 The algorithm we are going to present can be trivially extended to handle them.

In the sequel we will need the following notation: given a tree t, we denote as
rlab(t) the label type of the root of t, so rlab(t) = l if t = l[f], while rlab(t) =
String if t = String.

A tree t is valid wrt d if and only if there exists f ′ such that t = sd[f
′] and

for each i ∈ loc(t), if t@i = l[f] then :

– f = () ⇒ ǫ ∈ L(d(l)) ;
– f = t1, . . . , tn ⇒ rlab(t1) · . . . · rlab(tn) ∈ L(d(l)).

We will write t ∈ d to indicate that t is valid wrt to d.

Update query language As already said, the update language considered here
is XQuery Update Facility [5], as it is the main current proposal for XML up-
dates. The only XQuery Update Facility update mechanism we do not consider
is transform , which we discard for simplicity of treatment, and which we will
consider in subsequent stages of this work.

3 Motivating examples and discussion

This section is devoted to introducing and illustrating the update scenario through
examples, as well as some of the choices and assumptions made in the formal
presentation. Indeed, the second part of this section focuses on the features of
the update type projector. Recall, once again, that, although type-projector is
an important component of our update mechanism, the purpose of the paper is
not to present how such projectors are extracted from updates.

The update scenario through an example Let us consider the DTD d specified
by the following regular expressions (it is a variant of the DTD of Example 1):

doc → a+ toto a → b?,c*,d+ toto b, d → (b | f)+ toto c, f → String?

Let us consider the following update query U :

for $x in /doc/a where $x/b

return (delete nodes $x/c/text(), rename node $x/b as ’c’)

Consider the document t of Figure 1.a on which the update U should be
applied. As already outlined in the introduction, the update will be performed by
first pruning the document t, in order to keep in main-memory a sub-document
of t, as small as possible but of course "sufficient" for evaluating the update. Let
us now explain how we proceed.

First, we assume, that the document element nodes are labelled by their loca-
tion identifiers as depicted by document tλ in Figure 1.c. The location identifiers
are inserted as subscript of the node labels in the picture. Note that this step is
virtual and only considered for the purpose of the explanation (in practice tλ is
not materialized and location identifiers are computed on the fly).

The adorned document tλ is then pruned by projection with respect to a
type-projector derived from the update query U and from the DTD d. As shown
in [7], in order to determine a type-projector for a query, here for an update, an

important preliminary and basic operation is required: determining the type of
nodes used and returned by the query/update. This type inference is made by
using the paths extracted by the query.

Indeed, for the current update U , the extraction of the type-projector is the
same as for the following pure query Q:

for $x in /doc/a where $x/b return <res> $x/c <res>

For this query, first the paths /doc/a/b and /doc/a/c//node() are ex-
tracted. Note that in the second one the //node() is added, indicating that
for building the result we need all the descendants of c nodes. Then, the type
of nodes traversed by these paths are inferred, thus obtaining the type projector
τ={doc, a, b, c, String}. During projection of the input document, only nodes
of these types will be retained.

The projection tλτ of the document tλ with respect to the type projector τ is
shown in Figure 1.d. The update query U is then evaluated over the projected
document, producing a partial result U(tλ|π) (see Figure 1.e). It is important to
note here that the update query performed over the projected document is the
original update query U : no rewriting of U is required.

The updated partial document is of course not what is expected as the final
result. The last step of the update scenario is dedicated to building the final
updated document U(t). In order to do this, the adorned document tλ is merged
in a streaming fashion with the, in memory, updated partial document U(tλ|π).
In other words, thanks to the location identifiers, both documents are parsed in
a synchronized manner: (i) elements in tλ (for instance the d elements for our
current example) that have been pruned, before the partial update, are recovered
during the merge phase, in the right order; (ii) elements in tλ that have been
projected are output in the result with the changes (rename, delete) made by
the partial update registered in the document U(tλ|π), in the right order.

A two level type projector for updates In the previous motivating example, for
the purpose of illustrating the overall update mechanism, we chose a simple
update query leading to a quite obvious type projector. The aim of the following
discussion is to motivate and introduce through examples the main features of
type projectors for update. Next, the reader should pay attention to the fact
that we consider the DTD of Example 1.

1. String node projection The first point of the discussion is indeed related
to update as well as to pure query. So, let us go back to considering the pure
query Q previously given and the type projector τ = {doc, a, b, c, String} for
this query. Although the DTD is different, this type projector is sound. It is able
to ensure sensible size reductions, however it is not minimal due to the presence
of the String type. The problem comes from the fact that, to ensure efficiency,
projection is performed in streaming, by visiting the document according to
document order (in a SAX like fashion) and by retaining nodes whose types
are in the projector. This implies that when the string children of a b node are
met, with the b node a child of an a node, these text nodes are kept in the

doc

a

b

f

’oof’

c

’on’

c

’del’

d

f

’foo’

d

f

’go’

f

’og’

a

d

f

’foo’

f

’og’

(a) XML document t

esp doc

a

c

f

’oof’

c c d

f

’foo’

d

f

’go’

f

’og’

a

d

f

’foo’

f

’og’

(b) Updated XML document U(t)

doc [ǫ]

a [1]

b [1.1]

f [1.1.1]

’oof’

c [1.2]

’on’

c [1.3]

’del’

d [1.4]

f [1.4.1]

’foo’

d [1.5]

f [1.5.1]

’go’

f [1.5.2]

’og’

a [2]

d [2.1]

f [2.1.1]

’foo’

f [2.1.2]

’og’

(c) XML document t adorned with location identifiers

doc [ǫ]

a [1]

b [1.1] c [1.2]

’on’

c [1.3]

’del’

a [2]

espace doc [ǫ]

a [1]

c [1.1] c [1.2] c [1.3]

a [2]

(d) t projected with respect to τ (e) Partial Update of t wrt τ and U

Fig. 1. Update scenario : motivating example

projection (since String is in the type projector), although they are not needed
for evaluating the query Q .

To overcome this problem we adopt the following solution: we consider a
two-level type projector π = (τ, κ) where τ contains all the needed node types
but the String type, and κ is a subset of τ containing the types of nodes whose
string children are to be kept in the projection, because needed by the query. Of
course, using two-level type projectors requires a slight change in the projection
process: when textual nodes are encountered during the streaming visit, these
ones are retained if and only if their father type is in κ.

For the current example, the two-level projector is (τ, κ) with τ={doc, a, b, c}
and κ={c}. It enables to project only the necessary string values, which are, for
the example, the textual children of c nodes.

The remaining discussion shows that the use of two-level projectors is further
motivated by other needs. Recall that, in our framework, the projected document
is updated and then the updated partial document is adequately merged with
the original input in order to propagate updates. As expected, we soon realized
that the more we prune during projection, the more difficult and complex the
merge phase is. So, in some cases, we choose to prune less in order to simplify
the merge algorithm. Given a DTD and an update query, we will distinguish a
set of critical labels corresponding to the types of nodes for which we require to
keep all children. We will collect critical labels in κ and we will require that if
l ∈ κ then all children labels of l are in τ .

The critical update operations are i) insert and replace updates, plus ii) all
those updates potentially touching mixed-content nodes.

2. Insert-into updates Consider the following update U1:
2

for $x in /doc/a where $x/b

return for $y in $x/d

return return insert node <f>some text</f> as last into $y

One could think that a minimal and correct projector for U1 is the following one
π1 = ({doc, a, b, d}, ∅), since the children of d nodes are not apparently touched
and needed by the query. According to this choice, after the document has been
projected, we would insert the new f element in empty d elements, since in the
projected document we do not keep any children of d nodes.

In this case, during the merge phase we would need to recover all the pruned
children of d nodes, and put them before the new inserted node. Ensuring this is
quite hard if none of the children of d nodes is kept, since the merge process is
not assumed to use the query update, and only relies on the original and partial
updated documents. In other words, the information at hands during merging is
not sufficient to recover the order of the d children, the old ones w.r.t. the new
one. To solve this problem, we adopt a solution ensuring a good compromise
between simplicity and efficiency. This solution consists of keeping in κ all the
types touched by the target expressions of such insert-into operations; for the

2 We use the as last option here, but the same considerations hold for the other kinds
of insert-into updates.

above example we keep d in κ. According to what was previously stated, this
implies that all labels (b and f) of children of d are in τ as well. For the current
example, the type projector is then specified by π′

1 = ({doc, a, b, d, f}, {d}). The
projection generated by π′

1 ensures that when a new node is inserted into a d

node, in the projected document, it will have all the siblings it should have in the
final result with the correct ordering. This entails that the merging phase in this
case is immediate: the children of d to be output in the final result are exactly the
one occurring in the partial updated document (the process is recursive and we
are talking here about the top level elements which are children of a d element).

For the same reasons, the above considerations hold for updates containing
the insert-before/after or replace operators. In the case of insert-before/
after updates, the critical labels can easily be obtained by first inferring label
types for the target expression, and then by considering as critical the father3

label of these ones (a context-based type system like that provided in [7] allows
this kind of type inference, in a very precise way, even in the presence of labels
with multiple fathers). For example, consider

for $x in /doc/a/d/f insert node after $x

Since the label type corresponding to the target expression is f , its father label
d is considered as critical .

Replace updates are in some sense equivalent to a delete followed by an
insert-into update.

3. Mixed-Content We now turn to illustrating a second type of situation which
requires a careful treatement at the level of the projector in order to facilitate
the merging phase. Thus here, we are concerned about elements having mixed-
content children.

Consider the following update U2:

for $x in /doc/a/c where $x/text() return delete nodes $x/b

The above query deletes b children of each c element containing some text
children. One could say that, in order to have a sound projector for this query
only text and b children of c nodes must be retained, while f children can be
pruned out. Unfortunately, it may happen, for example, that two text children of
a c element are separated by one f element and thus during projection the two
text nodes collapse into a unique text node. Moreover, the update performed on
the projected document may further collapse text nodes. Of course this situation
makes quite complex the merging phase, since it would be quite hard to split
the collapsed text nodes back into the original ones, in order to produce the
expected updated original document.

Therefore, we solve this problem by enforcing that, as soon as a mixed-content
element (like the c element of our example) is touched by the update, every child
node of this element (String, b and f children) must be projected. In this way
no text node of the mixed content is erroneously collapsed with another node
during projection or update processing. Concerning the current example, we will

3 A label l is a father of a in the DTD d, if d(l) = r and a is used in r.

consider the type projector π′
2 = ({doc, a, c, b, f}, {c}). This choice of projector

entails a very easy merging phase, as in the case of insert-into update.
Of course, for insert-into like updates and mixed-content, alternative solu-

tions could be adopted for optimizing the memory consumption, but for the
moment we prefer to keep things simple, while ensuring at the same time strong
improvements in terms of memory and time reduction during update execution,
as shown by our test results reported later.

Before concluding the section, we would like to outline the fact that opera-
tions like delete and rename do not entail critical labels (of course this is true
in the case that these operations do not touch mixed-contents). This is because
the type of elements touched by their target expressions are in the projector,
and the presence of these types (together with position labels) is sufficient for
the merge phase.

4 Update scenario

The forthcoming presentation aims at describing, in an abstract manner, the
update scenario introduced in the previous section. We will afterwards explain
how the abstract update mechanism is implemented. This section is organized as
follows. First, we define the update type projector, then we detail the steps of the
update mechanism. This will allow us to address the notion of sound projector.

Update type projector First of all, we formally define projectors:

Definition 4 (Type Projector). Given a DTD d over the alphabet Σ, a type
projector is a pair (τ, κ) such that i) τ ⊆ Σ, ii) for each l ∈ κ we have S(d(l)) ⊆ τ ,
iii) sd ∈ τ and for each s ∈ τ there exists l ∈ τ such that d(l) = r and s occurs
in r.

As previously mentioned, the above conditions have the following meaning:
τ is the set of types (labels) of nodes that are to be kept in a projection of a
tree t ∈ d, and κ contains types of nodes that are to be kept in the projection
together with all their children, some of which may be String children. The last
condition ensures that it is never the case that a node is kept into a projection
without its father.

It is worth observing that deciding, during the projector inference, which
labels have to be collected in κ requires to determine what are the types of nodes
selected by the target expressions in the update. This can easily be achieved by
adapting several well established type analysis techniques [11, 7, 10].

Definition 5 (Type Driven Projection). Given a type projector π = (τ, κ)
for d, and a tree t ∈ d. The π-projection of t is the projection tI(t,π) where

I(t, π) = {i | t@i = l[f] ∧ l 6∈ τ} ∪
∪ {i.i | ¬(t@i.i = string ∧ t@i = l[f] ∧ l ∈ κ)}.

Location adornment We consider the document tλ obtained from t by la-
belling its elements by their location identifiers. As already mentioned in Sec-
tion 3, this step is virtual. The implementation subsection will further clarify
this point. Formally, tλ is such that:

− loc(t) = loc(tλ), and
− if t@i=string then tλ@i = string, otherwise

for any i ∈ loc(t), rlab(t@i) = l iff rlab(tλ@i) = li
Trees (forests) enriched with location are called l-trees (l-forests). Note that,

the notions of validity wrt a DTD d and of projection remain the same for l-trees
(l-forests).

Update projector soundness The key idea for characterizing a sound up-
date projector is to consider as a starting point the document t with location
adornment, and to express that, over tλ, projection and update U commute.

Definition 6 (Sound update projector). A projector π is correct for the
update query U over d if and only if for each t ∈ d, we have: i) π is well-formed
with respect to critical updates (as defined in Definition 4 and ii) U(tλ|π) =

U(tλ)|π.

In the above definition, one has to pay attention to the fact that once again,
when updating tλ with U , the new elements inserted in tλ are location-less and
adorned with the dummy location ⊥. The above definition tells that, when an
update projector is sound, elements located "out" of the location set I(t, π) =
I(tλ, π) are not influential for the update: the query part of the update does
not use these elements which are neither updated (touched by an insertion, a
renaming, a replacement or a deletion).

The Merge function We are now ready to detail the merging process by
defining the function Merge. This function takes as input the updated partial
document U(tλ|π), the adorned document tλ, the update projector π, and pro-
duces the final result U(t). We have:

U(t) = Merge < tλ > < U(tλ|π) >

(for the sake of simplicity, we keep π implicit in the notation of Merge.).

We will describe afterwards an efficient implementation of Merge that has
been realized to proceed to some evaluation whose results are promising. The
function Merge is formalized in Figure 2. For the sake of simplicity, we assume
that the update projector π = (τ, κ) is implicit. The following notations are
used: given a location identifier i, we write i.j � i.i iff j = i + 1 and the closure4

(resp. reflexive closure) of � is denoted by �
+, resp. by �

∗.

4 Intuitively, if i.j �
∗
i.i then the node at location i.j is a right sibbling of the node

located at i.i.

Let us now provide some comments concerning the way the Merge function
proceeds. Basically, the function Merge parses in parallel the two l-forests Fλ

and Fu. One has to keep in mind that Fλ is a sub-forest of the input well-formed
l-tree tλ and Fu is a sub-forest of the updated partial l-tree U(tλ|π) which is
not necessarilly well-formed. Moreover, the following pre-condition holds wrt to
π: (†) it is assumed that the parent node of Fu is not critical. The function
DMerge takes care of forests having a critical parent node and will be presented
afterwards. The way the function Merge merges the first tree li[f

′] of Fλ with
the first tree l′i′ [f

′
u] of Fu relies on the location identifiers i and i

′ and on the
update projector π = (τ, κ) which indicates what are the elements to output in
U(t) and also how to synchronize the parsing of both forests. More precisely:

First of all, it should be highlighted here that, because of the pre-condition (†)
and because update type projectors are well-formed wrt critical updates, none
of the top level trees in Fλ is of type String.

Thus, when (see Line 2) the first subtree of the forest Fu is a string, this string
has neither been projected nor updated, otherwise the father of this string node
would have had a critical label and DMerge would take care of this case. As a
consequence, this string can not participate to any kind of merging and has to
be simply output.

Line 3 deals with the case where the label l of li[f
′] belongs to τ . Thus this tree

has been projected but then deleted through U (i′ �+
i indicates that, roughly,

the element l′i′ [f
′
u] comes after the element li[f

′]). Thus li[f
′] is not output in

U(t).

Line 4 deals with the case where the label l of li[f
′] is not in τ . This tree has

not been projected because it was not a target of U , hence it has to be output
in U(t).

Lines 5 and 6 take care of the case where the parsing is synchronized over the
"same" subtrees: the locations i and i

′ are equals. The labels l and l′ may or
may not be the same. In the latter case, this means that l has been renamed
as l′ at location i by U . In line 5, condition l ∈ τ − κ indicates that li is not
a critical label wrt the update U and thus merging the sub-forest f ′ and f ′

u is
done by recursively applying Merge. In line 6, condition l ∈ κ indicates that, this
time, l is a critical label wrt the update U and in such a case, we know that all
children, what ever the type, of element l have been projected for ensuring the
update correctness. Merging the sub-forests f ′ and f ′

u is then performed slightly
differently by the function DMerge explained below.

The function DMerge proceeds in a way which is very similar to that of Merge,
but the first differs from this last one due to the following facts: i) parsing Fλ

and Fu in parallel is now guided by Fu and ii) cases where l 6∈ τ never happen. In
a nutshell, the reason for i) is that, since the two sequences Fλ and Fu contains
children of the same parent node (see case 6), and in Fλ nothing has been pruned
out at the top-level (the parent node is critical), then what has to dominate
the process of determining the final result is the new structure present in the
sequence resulted by the update U , that is Fu. This fact is in turn at the basis

of the soundness of d.2, dealing with the case where the current node tu on the
right hand-side forest is either a text or a newly inserted element. In both cases
this node has to be output. Note that this line can be applied in cases where the
process may lose synchronization (there is no move on Fλ), if not already lost
by previous DMerge steps on previous nodes of the two sequences. By a simple
case analysis on the first element of Fλ, it is easy to see that synchronization is
then recovered by other lines.

The reader can observe that line d.3 covers the same cases as line 3 although
she should pay attention to the case when Fλ=string, f . In this case, the text
node in Fλ is ignored because the correspondent text node in Fu, updated or
not by U , has, eventually, already been output by a previous application of
line d.2 (a simple case analysis can help to see this better in details). The case
treated by lines d.4 and d.5 corresponds, respectively, to line 5 and 6 of the
Merge definition. Finally, the line d.7 corresponds to the case where either every
children of a critical node has been deleted, or the critical node already had no
child before the update, and no new child has been inserted.

Implementation issues The main point is the way location adorment is han-
dled. Although the l-tree tλ is made explicit in the above formal scenario, its
materialization is not required by the implementation. The adorned projection
tλ|π is directly generated while parsing and projecting the input document t.
The location identifiers associated with nodes are introduced by means of a spe-
cial new attribute, attached to each node. Note that the potential overhead of
adding this attribute is mitigated by the size reduction ensured by projection.
Recall that, newly inserted elements have no such special attribute, and this is
crucial to recognize new elements during the merge phase.

The implementation of the Merge step does not need to materialize tλ either.
Indeed, the final updated document U(t) is produced by parsing in parallel
the input document t and the partial updated document U(tλ|π): the location

identifiers for tλ used in the Merge case analysis (Figure 2) are re-computed on
the fly.

5 Experiments

In order to validate the effectiveness of our framework, we have implemented
both projection and merge algorithms in Java, and performed several tests by
using 7 update queries on XMark documents of growing size. These seven queries
cover most of main update operations made available by XQuery Update Facility
(insert, rename, replace and delete). Queries used for experiments are indicated
below; we also indicate for each query the τ and κ components of the type
projector.

1. Insert a new annotation node for each closed__auction not containing any
children tagged as annotation.

Merge < Fλ > < Fu >=
1 Fu if Fλ = ()

otherwise assume Fλ = string, f

2 string,Merge < f > < Fu >

otherwise assume Fλ = li[f
′], f

3 Merge < f > < Fu > if l ∈ τ and either Fu = () or Fu = l′i′ [f
′

u], fu and i
′
�

+
i

4 l[f ′],Merge < f > < Fu > if l 6∈ τ and either Fu = () or Fu = l′i′ [f
′

u], fu and i
′
�

∗
i

5 l′[Merge < f ′ > < f ′

u >],Merge < f > < fu > if Fu = l′i[f
′

u], fu and l ∈ τ − κ

6 l′[DMerge < f ′ > < f ′

u >],Merge < f > < fu > if Fu = l′i[f
′

u], fu and l ∈ κ

DMerge < Fλ > < Fu >=
d.1 Fu if Fλ = ()

otherwise assume Fu = tu, fu

d.2 tu,Merge < Fλ > < fu > if tu = string or tu = l′⊥[f ′

u]

otherwise assume Fu = tu, fu and tu = l′i′ [f
′

u]

d.3 DMerge < f > < Fu > if Fλ = li[f
′], f with i

′
�

+
i or Fλ = string, f

d.4 l′[Merge < f ′ > < f ′

u >],DMerge < f > < fu > if Fλ = li′ [f
′], f and l ∈ τ − κ

d.5 l′[DMerge < f ′ > < f ′

u >],DMerge < f > < fu > if Fλ = li′ [f
′], f and l ∈ κ

d.6 l′[f ′

u], DMerge < Fλ > < fu >

otherwise assume Fu = ()

d.7 ()

Fig. 2. Definition of Merge and DMerge

for $x in doc("xmark.xml")/site/closed_auctions/closed_auction

where not ($x/annotation)

return (insert node <annotation>Empty Annotation</annotation>

as last into $x)

τ1 = { site, closed__auctions, closed__auction, seller, buyer, itemref,

price, date, quantity, type, annotation }
κ1 = { closed__auction }

2. Rename all phone nodes with personal__phone:

for $x in doc("xmark.xml")/site/people/person/phone

return (rename node $x as "personal_phone")

τ2 = { site, people, person,phone }
κ2 = {}

3. Replace each address node where country equals to United States with
a new one which has a new city and country:

for $x in doc("xmark.xml")/site/people/person/address

where $x/country/text()="United States"

return (replace node $x with

<address>

<street>{$x/street/text()}</street>

<city>"NewYork"</city>

<country>"USA"</country>

<province>{$x/province/text()}</province>

<zipcode>{$x/zipcode/text()}</zipcode>

</address>)

τ3 = { site, people, person, name, emailaddress, phone, homepage,

creditcard, profile, watches, address, street, city, country, province,

zipcode }
κ3 = { person }

4. Replace each location item whose value is United States with USA:

for $x in doc("xmark.xml")/site/regions//item/location

where $x/text()="United States"

return (replace value of node $x with "USA")

τ4 = { site, regions, africa, asia, australia, europe, namerica,

samerica, item, location }
κ4 = { location }

5. Delete all mail items in all regions (africa, asia, australia, europe, namerica,
samerica):

delete nodes doc("xmark.xml")/site/regions//item/mailbox/mail

τ5 = { site, regions, africa, asia, australia, europe, namerica,

samerica, item, mailbox, mail }
κ5 = {}

6. Rename each bold child of text node with emph:

for $x in doc("xmark.xml")/site//text/bold

return (rename node $x as "emph")

τ6 = { site, regions, africa, asia, australia, europe, namerica,

samerica, item, description, parlist, listitem, text, bold, keyword,

emph, mailbox, mail, closed__auctions, closed__auction, annotation}
κ6 = { text }

7. Insert a new homepage node with www.{$x/name/text()}Page.com for each
person which does not contain an homepage child:

for $x in doc("xmark.xml")/site/people/person

where not($x/homepage)

return (insert node

<homepage>www.{$x/name/text()}Page.com</homepage>

after $x/emailaddress)

τ7 = {site, people, person, name, emailaddress, phone, address,

homepage, creditcard, profile, watches }
κ7 = { person }

To run the update queries, we used Saxon SA 9.1.0.6 with 512 MB for the
Java heap memory, on a Intel Centrino 2.00GHz laptop with 1 GB of RAM, and
running Windows XP. The size of XMark documents considered goes from 10
MB to 2 GB.

We chose Saxon for performing preliminary tests because it is fully XQuery
Update Facility compliant, because it easy to install and use, and does not make
massive use of indexes (the available main-meory is mostly used for the updated
data). In any case, we plan to use other systems in future developments of this
work.

Under these settings and without projection, Saxon was not able to update
documents whose size is greater than or equal to 148 MB, even if most of the
queries used for tests are quite selective. On the other hand, thanks to the size
reduction ensured by projection, we were able to update documents with size
up to 2 GB. The only exception is query Q6, for which our projection-based
technique was not able to update documents of size greater than 250 MB; this is
due to the fact that this query needs a very large part of the original document
(because of a large set of critical labels).

The tables below provide our test results on, respectively, the time needed for
updating original documents (Table 1), the size of projected documents (Table

2), and the total time needed to update documents in our framework (Table 3).
We do not report tables for pruning and merging time. According to the tests, it
turned out that pruning and merging time are about 50% and 40% of the total
time, respectively.

These tables, clearly show that our technique succeeds in its primarily pur-
pose: updating very large documents with in-memory systems, in the presence
of memory limitations. More extensive tests are needed. Indeed, we made some
preliminary tests with eXist [1] and we obtained very similar and encouraging
results. Increaseing the JVM memory size has also been tried: we made several
tests with 1 GB of heap memory and realized that in this case, up to 250 MB,
documents can be processed without pruning, but then Saxon took about 20
minutes to terminate the update for the seven considered queries (probably due
to intensive swapping). Fortunately, the tests performed reveal that if pruning
is used in such cases, the execution time drastically reduces to no more than 4
minutes.

Even if time optimization is not the main purpose of this work, concerning
execution time results in Table 3, it is worth observing that the reported values
include the time needed to i) load, project and store -on disk- the input docu-
ment, ii) to update the stored projected document (which includes in turn the
time needed to store this partial result), and, finally, iii) the time needed for
the merging phase. Note that, values reported in this table say that execution
times with and without projection are almost of the same order, proving that
the pruning and merging phase are not too much time consuming. In any case,
there are at least two steps that we envision to eliminate in future evolutions of
this framework: storing the pruned document on the disk (by directly putting
it in main memory for processing), and storing and re-read the partial update
pruned document (which is in main memory at the end of the process, and
which could be directly merged with the original document on the disk). These
two improvements require some kind of strong interaction with the query engine,
and hence will require further implementation efforts; anyway, we realized that
they would probably lead to a reduction of about 50% of the time indicated now
in Table 3. This would imply, that even when projection is not necessary -on
memory consumption basis- to execute the update, using projection can reduce
execution time as well.

As a final remark, we would like to stress that, the tests have been used to
experimentally check that our update evaluation scenario is correct: the results
produced by our method have been compared successfully with those obtained
with Saxon.

6 Related Works and Conclusions

We have already talked in the introduction about existing approaches investi-
gating projection-based optimizations for XML querying. As already said, we
are not aware of any other existing approach on the use of document projec-
tion for XML updates. Some other works propose techniques to optimize update

Table 1. Updating Time of Original Files (in seconds)

Or. Size MB Q1 Q2 Q3 Q4 Q5 Q6 Q7

10 3.84 4.2 4.02 3.72 3.94 4.53 4.06
52 17.31 20.63 22.6 18.6 18 18.73 18.03
104 30.65 40.4 39.02 36.05 34.23 36.84 60.05
128 33.43 45.97 49.33 42.01 41.25 52.13 102.03
148 - - - - - - -

Table 2. Size of Pruned Files in MB

Or. Size MB Q1 Q2 Q3 Q4 Q5 Q6 Q7

10 0.33 0.15 0.65 0.17 0.24 6.23 0.66
52 1.7 0.78 3.31 0.89 1.2 31.4 3.32
104 3.41 1.6 6.69 1.8 2.4 62.9 6.7
128 4.12 1.93 4.66 2.22 2.99 77.3 8.29
148 4.89 2.2 9.54 2.6 3.5 89.1 9.57
250 8.13 3.8 16.1 4.37 5.75 150 16.2
312 10.1 4.7 20.1 5.5 7.4 188 20.2

1 GB 38.9 18.3 77.7 21 28.3 718 78.3
2 GB 67.7 31.8 109 36.5 49.1 1239.04 135.8

query execution time by using static analysis in order to detect independence
between several update operations, so that query rewriting techniques can be
used for logical optimization [13, 14, 6]. Our work is definitely orthogonal w.r.t.
this line of research, and for this reason, fortunately, the two techniques can be
combined in order to ensure efficiency in terms of both time and main-memory
consumption.

We are currently working on several directions in order to complete and im-
prove the here introduced framework. First of all, we are defining optimal type
rules for type-projector inference, with the aim of reducing as much as possible
the size of projected documents. Second, still to minimize size of projected doc-
uments, we envision to minimize the presence of critical labels by using some
particular kind of query rewriting techniques. Third, of course, we have to for-
mally prove correctness of the merge algorithm; here the purpose was mainly
to present the algorithm and some preliminary and promising test results. Fi-
nally, we plan to enrich our evaluation test with additional and extensive tests,
implying more complex queries and other query engines as well.

Acknowledgments We thank the anonymous referees for their valuable com-
ments and constructive criticism.

We would also like to thank Bazizi Mohamed Amine for his careful reading of
the article and for very useful discussions. This work has been partially funded
by Agence Nationale de la Recherche, decision ANR-08-DEFIS-004.

Table 3. Total Time (Prune + Update + Merge) (in seconds)

Or. Size MB Q1 Q2 Q3 Q4 Q5 Q6 Q7

10 6.06 5.98 7.2 6.38 6.47 7.3 9.71
52 25.76 25.61 26.18 25.54 25.55 32.13 41.12
104 49.23 49.75 49.63 50.73 49.75 71.24 97.18
128 61.46 62.41 61.55 62.51 62.68 83.38 136.08
148 68.95 69.85 71.16 70.06 69.81 97.58 187.58
250 116.38 119.23 121.27 119.2 113.71 192.31 281.39
312 144.59 145.38 151.38 145.05 143 - 351.29
1GB 550.78 550.74 614.98 538.92 543.01 - 1358.73
2GB 963.57 953.67 1042.48 943.01 917.67 - 2251.59

References

1. eXist. http://exist.sourceforge.net/xquery.html.
2. Galax. http://www.galaxquery.org.
3. Qizx/open. http://www.xmlmind.com/qizx/qizxopen.shtml.
4. Saxon-sa. http://saxon.sourceforge.net/.
5. Xquery update facility 1.0.

http://www.w3.org/TR/2008/CR-xquery-update-10-20080801.
6. M. Benedikt, A. Bonifati, S. Flesca, and A. Vyas. Verification of tree updates for

optimization. In CAV, pages 379–393, 2005.
7. V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyen. Type-based XML projec-

tion. In VLDB, pages 271–282, 2006.
8. G. J. Bex, F. Neven, and J. V. den Bussche. DTDs versus XML schema: A practical

study. In WebDB, pages 79–84, 2004.
9. S. Bressan, B. Catania, Z. Lacroix, Y.-G. Li, and A. Maddalena. Accelerating

queries by pruning XML documents. Data Knowl. Eng., 54(2):211–240, 2005.
10. J. Cheney. Flux: functional updates for XML. In ICFP, pages 3–14, 2008.
11. D. Colazzo, G. Ghelli, P. Manghi, and C. Sartiani. Static analysis for path cor-

rectness of XML queries. J. Funct. Program., 16(4-5):621–661, 2006.
12. W. Gelade, W. Martens, and F. Neven. Optimizing schema languages for XML: Nu-

merical constraints and interleaving. In T. Schwentick and D. Suciu, editors, ICDT,
volume 4353 of Lecture Notes in Computer Science, pages 269–283. Springer, 2007.

13. G. Ghelli, K. H. Rose, and J. Siméon. Commutativity analysis in XML update
languages. In ICDT, pages 374–388, 2007.

14. G. Ghelli, K. H. Rose, and J. Siméon. Commutativity analysis for XML updates.
ACM Trans. Database Syst., 33(4), 2008.

15. A. Marian and J. Siméon. Projecting XML documents. In VLDB ’03, pages
213–224, 2003.

16. M. Schmidt, S. Scherzinger, and C. Koch. Combined static and dynamic analysis
for effective buffer minimization in streaming XQuery evaluation. In ICDE, pages
236–245, 2007.

