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Abstract

Nous nous intéressons à la classe des programmes appliqués aux bases
de données (DP1). Un tel programme contient des appels (sous forme de
requêtes SQL) à une base de données hébergée sur un serveur. Pour chaque
requête, le coût d’exécution associé est composé du coût d’exécution de la re-
quête en elle-même ainsi que du coût de soumission de la requête au serveur
et de transfert des données, via le réseau, entre le programme et le serveur.
Par défaut, un DP génère un grand nombre de requêtes SQL élémentaires
vers le serveur. Cette méthode prive le serveur de la possibilité d’optimiser
les requêtes de façon globale. Nous proposons ici une méthode permettant
d’optimiser globalement un programme, sans en modifier le code, par min-
imisation du coût des échanges entre le programme et le serveur. À partir
du résumé du programme, nous identifions différentes stratégies de matéri-
alisation des données. La définition d’un modèle de coût associé à chaque
stratégie nous permet ensuite de choisir une stratégie globale avantageuse.
Des expérimentations montrent que la méthode que nous proposons peut
améliorer le temps d’exécution d’un DP jusqu’à plusieurs ordres de grandeur.

Keywords: database applications, data retrieval optimization, object-relational
mapping.

1 Introduction
Relational database systems dispose of a sophisticated optimization engine, capa-
ble of efficiently handling intricate queries that access many tables and express
complex conditional statements. However, most often, SQL queries are not exe-
cuted independently but embedded in traditional programming languages such as
Java, C++ or PHP. Embedded SQL programs, called database programs in the
present paper, tend to use specific navigation patterns. Typically, the code organi-
zation is driven by the logic of the application, and not by the expected efficiency
of the queries. As a result, the program execution consists of a flow of small
queries successively submitted to the data server, and poorly exploits its optimiza-
tion power. This calls for a global optimization of the program that attempts to
minimize both the number of submitted queries, and the number of fetch requests.

1L, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny 75775 Paris
Cedex 16, France. <firstname.lastname>@dauphine.fr

1DP pour “database program”.

1



Such an optimization cannot be the concern of the application programmer,
though. Indeed, writing code that minimizes the number of queries requires a so-
phisticated programming approach. It leads to execute a few, large queries that
retrieve, in one shot, large chunks of the data required by an application. These
chunks must then be organized in a convenient data structure which is finally tra-
versed and processed. This constitutes a non-natural and difficult way of building
programs.

We need a mechanism that combines the conceptual simplicity of an individual
data access based on object-like navigation, convenient to the programmer, with
a set-based retrieval strategy that limits the client-server exchanges and promotes
server-side optimization. The first issue is already addressed by several persistency
layers providers (Hibernate, Ruby-on-the-rail, The Zend Framework) which rely
on the so-called Object-Relational Mapping (ORM) approach. However, the set-
based evaluation of queries is only partially covered in these frameworks, with
ad-hoc and local solutions.

In the present paper we propose an optimization approach for database pro-
grams based on a declarative description called program summary. It describes
the sequence of accesses to the database instance, viewed as a graph supporting
navigation primitives. This declarative specification lets the optimizer manipulate
data retrieval requirements as a whole, instead of processing them as a flow of SQL
queries submitted independently to the database system. It becomes then possible
to choose a global strategy that minimizes the cost of transferring data from the
server to the client. A key feature is that the summary can be created and modified
independently from the program logic. This saves programmers from worrying
about optimization issues, and lets experts adapt the execution strategy at any mo-
ment of the application lifetime.

We analyse the characteristics of embedded query execution, and identify the
main time-consuming operations that contribute to the global execution cost. We
derive from this analysis a cost model to assess the run-time behavior of a specific
execution. Based on this cost model, we develop a rewriting strategy to obtain an
optimized scheduling of embedded queries execution for a given input database
program.

Finally, we conduct a set of experiments on the TPC-H Benchmark, applying
our optimization approach to Java/JDBC applications. Our implementation relies
on execution primitives provided by the Hibernate ORM layer. First, this confirms
that our optimization strategy can be implemented with standard engineering tools.
Second, our results show impressive improvements (one or two orders of magni-
tude faster than the standard approach). This optimization is obtained at a very low
cost: it requires the specification of the summary and the initial execution of an
optimization module that tunes the Hibernate execution strategy.

In the rest of the paper we first shortly develop the problem statement (Sec-
tion 2). We then successively present the components of our proposal. Section 3 is
devoted to our model and formalizes program summaries. Section 4 proposes our
cost model and the associated evaluation strategy. We give our experimental setting
and results in Section 5. Finally, Section 6 discusses related work and Section 7
concludes the paper.
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Customer (custKey, address, nationKey, phone, acctbal, mktsegment, comment)
Orders (orderKey, custKey, orderStatus, totalPrice, orderDate, orderPriority, clerk, ship-
Priority, comment)
LineItem (orderKey, linenumber, partKey, suppKey, quantity, extendedPrice, discount, tax,
returnFlag, lineStatus, .., comment)
Part (partKey, name, mfgr, brand, type, size, container, comment, retailPrice)
Nation (nationKey, name, regionKey, comment)
Region (regionKey, name, comment)

Figure 1: Schema of the TPC-H benchmark

2 Problem Statement
This section provides a short review of the technical aspects of SQL programming,
including an introduction to the two main techniques in use nowadays: cursor-
based navigation, and Objet-Relational Mapping (ORM) interfaces. Throughout
the paper, we use as a running example the schema of the TPC-H Benchmark [19],
given in Figure 1.

2.1 Cursor-based navigation: the n + 1 queries problem
Consider a program that produces invoices to customers. Its typical structure is
summarized by the pseudo-code shown in Figure 2. In terms of data accesses,
the program can be described with SQL queries and the three well-known cursor
primitives open, fetch and close. The primitives are processed by a driver compo-
nent incorporated in the client application. The standard behavior of SQL drivers
is to send a remote instruction to the data server, for each call to either open or
fetch. This involves repeated query compilations and network round-trips. Inci-
dental evidence shows that they constitute a major factor in the performance of
SQL programs execution, much more important than the server-side execution of
the query itself. [5] reports for instance a 99% overhead of network communication
over query time. See also [18], page 165, on the cost of cursor iterations.

In technical terms, the situation is most often referred to as the “n + 1 query
problem”, denoting the execution of a nested loop join on the client side. Assume
for instance that the program processes 1,000 invoices. There is one execution of
query q1 for retrieving the customers, and 1,000 executions of queries q2 and q3
for, respectively, the nations and orders of each customer. Each execution of either
q2 or q3 retrieves only a very small part of the total information needed by the
program. The full set of nations or orders could actually be easily obtained with
a single SQL query. Splitting the data retrieval in many small pieces constitutes
a major penalty. As an illustration, one of our experiments shows that the direct
execution of our invoice program takes 28 mns (!) on a relatively small MySQL
database with 20,000 customers. Loading all the required data in the application
program with a single large query takes only 35 s. Similar results are observed for
other database servers.

Proliferation of small queries could be avoided and replaced by the execution of
a few, large queries. Unfortunately, this contradicts the natural and safe program-
ming practice of retrieving an information only when it needs to be processed. The
programmer should not worry about data management issues (e.g., storing data in
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open ( q1 : s e l e c t ∗ from Customer where mktsegment= ’ t o u r i s m ’ )
whi le (C := f e t c h ( q1 ) ) do
/ / Do s o m e t h i n g w i t h C
[ . . . ]
/ / A cc es s t o t h e n a t i o n
open ( q2 : s e l e c t ∗ from N a t i on where na t i onKey=C .

na t i onKey )
N := f e t c h ( q2 )
c l o s e ( q2 )
/ / Loop on C ’ s o r d e r s
open ( q3 : s e l e c t ∗ from Order where cus tKey=C . cus tKey )
whi le (O := f e t c h ( q3 ) ) do
/ / A cc es s t o t h e l i n e i t e m s

open ( q4 : s e l e c t ∗ from L i n e I t e m where orderKey=O.
orderKey )

whi le ( L := f e t c h ( q4 ) ) do
/ / a c c e s s p a r t s , e t c .

enddo
c l o s e ( q4 )

enddo / / End loop on o r d e r s
c l o s e ( q3 )

enddo / / End loop on c u s t o m e r s c l o s e ( q1 )

Figure 2: A simple invoice program.

temporary structures for future use), but rather focus on the mere application logic.
Our sample program can be equivalently rewritten (in terms of data retrieval)

with only one query, using joins and outer joins (Figure 3). Although this ap-
proach does avoid the n+1 query pitfall, an immediate downside is that each row T
obtained in the fetch loop mixes information on customers, nations, orders and line
items. Moreover, each customer is repeated with each of his Order occurrences,
and both are repeated for each order’s item. Manipulating this representation in-
volves an intricate and redundant decoding process which is incompatible with
basic software design principles.

2.2 Interfacing with Objet-Relational Mappings
Programming techniques that convert data between relational databases and object-
oriented programming languages are collectively known as Object-Relational Map-
ping (ORM in short). Basically, the idea is to create a virtual object database which
is materialized on demand. Most of the software development platforms (e.g.,
J2EE/Hibernate [11], PHP/Zend [15], Ruby and Rails [21], etc.) come equipped
with an ORM layer that helps to better integrate application logic with data access
and manipulation.

Figure 4 shows the invoice program written in ORM style. A clear advantage
is that SQL queries are now completely hidden under an object-based navigation
process. However, with respect to the underlying query execution scheduling, the
difference remains mostly syntactical. The ORM approach clearly favours a scat-
tered execution of trivial queries. In the worse case, each navigation operation
towards an object (e.g., from a customer to its nation) or a collection (e.g., from
a customer to his orders) is implemented with a dedicated SQL query, which re-
sults in an execution process essentially similar to the cursor-based version of our
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open ( q1 : s e l e c t ∗ from Customer as C j o i n N a t i on on
na t i onKey=C . na t i onKey
outer j o i n Order as O on O. cus tKey=C . cus tKey
outer j o i n L i n e i t e m as L on L . orderKey=O. orderKey

where mktsegment= ’ t o u r i s m ’ )
whi le ( T := f e t c h ( q1 ) ) do
/ / T c o n t a i n s c u s t o m e r + n a t i o n + o r d e r + l i n e i t e m
[ Decode T t o o b t a i n t h e c u s t o m e r C −− P r o c e s s C ( when

met f o r t h e f i r s t t i me ) ]
[ Decode T t o o b t a i n t h e n a t i o n N −− P r o c e s s N]
[ Decode T t o o b t a i n t h e o r d e r O −− P r o c e s s O]
[ Decode T t o o b t a i n t h e l i n e i t em L −− P r o c e s s L ]
[ . . . ]

enddo / / End loop on c u s t o m e r s c l o s e ( q1 )

Figure 3: The invoice program, rewritten with outer joins

f o r each (C in C u s t o m e r C o l l e c t i o n . f i l t e r ( mktsegment= ’
t o u r i s m ’ ) ) do
/ / Do s o m e t h i n g w i t h C
[ . . . ]
/ / A cc es s t o t h e n a t i o n

N := C . n a t i o n ;
/ / Loop on C ’ s o r d e r s
f o r each (O in C . o r d e r s ) do
/ / P r o c e s s o r d e r s

enddo / / End loop on o r d e r s
enddo

Figure 4: The invoice program implemented over an ORM layer.

program, or even worse (e.g., one query per record when records are made into
objects).

The ORM paradigm constitutes nevertheless a first step towards an asynchronous
execution of data manipulations and data server requests. Advanced ORM layers,
such as Hibernate, provide some preliminary support for either prefetching data or
storing in a client cache a part of the database which is repeatedly accessed by a
program. Choosing an appropriate strategy remains however a matter of expertise,
and depends on hints expressed at the schema level, and not at the program level.
Besides, it is unclear how the relevant choices can be generalized so as to cover a
wide and generic class of programs. Our approach, outlined below, aims at filling
this gap.

2.3 Approach overview
The architecture is summarized in Figure 5. Client applications consist of two
layers . The upper one deals with the tasks related the application logic. From
this layer point of view, accessing the database is reduced to navigating in a local
data graph managed by the lower layer called object layer. It stores a local cache
containing a subset of the database instance used by the application. This cache is
structured as a graph, called program trace in the following, where nodes represent
objects, and edges represent relationships. The object layer is in charge of interact-
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ing with the data server and provides navigation primitives on the program trace.
It acts therefore as an ORM layer.

program trace

application

Application
logic

Object
layer

data
access

q1, q2, ..., qn decode

Database
server

summary
declaration

Query processing and optimization

optimization

S

executionSQL queries Query results

Client

Figure 5: System architecture

The main issue is to decide when and how the program trace is materialized.
A simple solution is a lazy strategy (the default approach of ORM systems) which
executes a query on a collection when an element of the collection is not found in
the local cache. This gives rise to the n+1 query problem explained above.

In order to promote a global strategy based on a full view of the program be-
havior, we define the content of the program trace by a high-level declaration called
summary. The summary is transmitted by the upper layer to the object layer com-
ponent at the beginning of an execution, and is used by the object layer as a global
specification that serves to determine an appropriate materialization strategy for the
program trace. Basically, the object layer carries out an optimization mechanism
that produces a set q1, q2, . . . , qn of SQL queries along with scheduling rules. Each
query is in charge of producing a specific part of the program trace, and must be
executed when this part needs to be materialized.

An important factor to consider is the cost of maintaining the local cache. The
decode operation shown in Figure 5 must be processed when a query result is
transmitted to the client. This query may be a join, which creates rows in the
result set that mix several objects from the data graph. Consider for instance a join
between Customer, Nation and Order. Decoding a row from the result set involves
an extraction of a single node for the customer, a node for the nation, and one node
for each order. Edges between these nodes must be created as well. Although this
decoding can be automatically handled by the object layer, its processing overhead
must be considered.

3 Program summaries

3.1 The data graph
We model the database as a directed graph and each tuple in the database as a
vertex in the graph. Each link (foreign-key, primary-key) is modeled as a directed
edge between the corresponding tuples. The graph is virtual, and must be partially
materialized during the program evaluation process.

A part of the data graph is shown in Figure 6 for a TPC-H database. The main
feature of this representation is the simplicity and concision of the concepts in
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Figure 6: A part of the virtual graph

use: each vertex corresponds either to a tuple or a value; each edge is labeled and
represents an association between vertices. The edges cover all the various links
which are usually distinguished in a relational database, namely tuple-to-attribute
and tuple-to-tuple.

In this spirit, we define an associated notion of schema. Let T ,R,A be sets of
symbols pairwise disjoint, T finite, and R,A countably infinite. The elements of
T are atomic types, those in R relation names, and those in A attribute names. A
(graph database) schema is a directed labeled graph (V, E, λ, µ) where V ⊆ T ∪ R
is a set of vertex, and E ⊆ (V ∩ R) × V is a set of edges. λ is a labeling function
from E to relation or attribute names, and µ is a multiplicity function from E to
{1, ∗}. If µ(e) = 1, this indicates that there can be at most one instance of e in
the database for a given initial vertex; if µ(e) = ∗, multiple instances are allowed.
Figure 7 shows a part of the graph schema of our sample database.

custKey

1 multiplicity * multiplicity

orderStatus

string

totalPrice

real

date

orderDateshipPriority
integer

Order

orderKey

items

integer

lineNumber
quantity

integer

productDescript

string

real
tax

LineItem

partKey

string
string

suppKey

adress

Customer

acctbal

string string

phone

mksegment
string

string comment
string

orders

Figure 7: The schema of the data graph

Given a relational database, there exists a straightforward mapping between the
relational schemas and instances and the graph schemas and instances.
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3.2 Program summaries
A program summary is a concise and simple representation of the part of the
database instance accessed by a program P during its execution. A summary S
is built from path expressions. Syntactically, paths expressions correspond to a
subset of the XPath language [20]. In its simplest form, a path expression is a se-
quence of labels of edges pairwise connected in a graph schema. A path expression
may contain predicates which are Boolean combinations of atomic formulas of the
form q = value where q is a path expression. The general form of a path expression
is l1[p1].l2[p2]. · · · .ln[pn] where each pi such that 1 ≤ i ≤ n is a predicate and each
li, 1 ≤ i ≤ n is either a label, either the root vertex symbol db.

Example 1 Here are some examples of path expressions over our sample schema.
db.Order[OrderS tatus = ′sent′].LineItem.quantity;
db.Order[OrderS tatus = ′sent′];
Customer[Nation.Region.name = ′Europe′].Order.LineItem.

A program summary is simply a tree of path expressions.

Definition 1 (Summary) A summary is inductively defined as follows :

• if expr is a path expression, then @expr{} is a summary;

• if p is a path expression and {s1, · · · , sk}, k ≥ 0 are summaries, then
@p{s1; · · · ; sk} is a summary.

The semantics of the language corresponds to nested loops that explore the
data graph, one loop per path expression. This navigation produces the trace of
a summary S , which is a finite unfolding of the graph GI representing the nodes
visited during the evaluation of S . Formally:

Definition 2 (Trace of a summary) Let S be a summary, represented as a tree of
path expressions. Let GI be a data graph and v be one of its vertices. The trace
TS ,v(GI) of S on node v with respect to GI is a tree, subgraph of GI and rooted at
v, defined inductively as follows:

1. if S is @l{} where l is a label, then TS ,v(GI) is the subgraph of GI containing

all the edges v
l
→ v′;

2. if S is @p.l{} where p is a path expression and l is a label, then TS ,v(GI) is

T@p{},v(GI) ∪ {v′
l
→ v′′, v′ ∈ terminal(T@p{},v(GI))}

3. if S is a summary of the form @p{s1; ...; sk} thenTS ,v(GI) =
⊎

1≤i≤k T@p.si{},v(GI)

The trace TS (GI) of S is defined by TS ,root(GI) (where root is the pseudo-root
of GI).

Our approach associates a summary S to a program P. The trace of S defines
a subset of the data graph that needs to be transferred from the server to the client
during the execution of P. Figure 8 shows a summary of the invoice program and
its interpretation.
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@db.Customer[mktsegment=’tourism’]{
@Nation{};
@Order{
@LineItem[lineNumber=2]{
@Part{}
}

}
}

collector

.phone
address

tourism
mkSegment

Nation
Customer

1 place du Mal de
Lattre de Tassigny
75016 Paris

.name

France

(+33)1 69 45 67 89

Order

Customer
Order

LineItem

.
comment

quantity

1

lineNumber
2

72,99.
orderStatus

totalPrice sent

extentedPrice
24,99

Blu−ray Wall E

Figure 8: A program summary and its interpretation

Note that we do not require a summary to be complete, i.e., P may need to ac-
cess some parts of the database instance which are beyond the trace of its summary.
This is not a problem, since the default client/server interaction (i.e., lazy execution
of SQL queries) can be used in such cases. However, when P requires some data
in the semantics of its declared summary, this information should be found in the
local cache. The summary must therefore cover to the costly part of the program
execution.

4 Materialization
In the present section, we analyse the optimization space, propose a cost model and
define an optimization strategy. All the examples are based on the invoice program.

4.1 The optimization space: outer join, union and decorrelation
Rewriting rules take a program summary S and generate an SQL execution which
materializes the trace of S . The materialization process can be described in terms
of SQL queries, open and fetch operations, and finally a decode(TP, r, t) operator
which takes as input a row r from a result set, extracts from r a node of type t, and
inserts this node in the trace TP.

The basic rewriting strategy, denoted L in the following, retrieves the data
node only when they are needed. As discussed in Section 2, it generates a large
number of query executions and client-server round-trips.

Rule 1 (Lazy) The trace of @t1[p1]{@t2[p2]} can be materialized by the fol-
lowing SQL program:

open ( q1 : s e l e c t ∗ from t 1 where p1 ) w h i l e ( r1 :=
f e t c h ( q1 ) ) do

decode (TP , r1 , t1 )
open ( q2 : s e l e c t ∗ from t 2 where p2 and t 2 . i d _ t 1 = r1 . i d )
w h i l e ( r2 := f e t c h ( q2 ) ) do

decode (TP , r2 , t2 )
enddo

enddo
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Rule 1 generalizes to summaries of the form @t1[p1]{@t2[p2]; · · ·;
@tn[pn]} by adding inner loops. It corresponds to the ”natural” way of writ-
ing a database program, fetching a row just in time, and throwing it out when it
has been exploited. The next rule materializes the trace of a summary with a single
query based on outer joins.

Rule 2 (Outer joins) The trace of @t1[p1]{@t2[p2]} can be materialized by the
following SQL program:

open ( q1 : s e l e c t ∗ from t 1 o u t e r j o i n t 2 on t 1 . i d= t 2 . i d _ t 1
where

p1 and p2 ) w h i l e ( r := f e t c h ( q1 ) ) do
decode (TP , r , t1 )
decode (TP , r , t2 )

enddo

Rule 2 generalizes to summaries of the form @t1[p1]{@t2[p2]; · · ·; @tn[pn]}
by adding the Union operator. The (unique) SQL query becomes:

s e l e c t ( expression ) from t 1 outer j o i n t 2 on t 1 . i d= t 2 . i d _ t 1
where p1 and p2

union
· · ·

union
s e l e c t ( expression ) from t 1 outer j o i n t n on t 1 . i d= t n . i d _ t 1

where p1 and pn

where expression standardizes schemas of tables t1...tn, by adding null values
on unmatchable attributes.

The code shown in Figure 3 retrieves the data of the invoice program thanks
to his rewriting strategy, denoted S. A clear advantage is the minimization
of the number of query executions which reaches here his minimal value, 1. The
number of fetches is also reduced with respect to the lazy evaluation. The overhead
with this rule is the cost of the decode operation which must deal with large rows
containing several nodes. Two distinct rows may also contain the same node (e.g,
a customer repeated with each of his orders), leading to redundant decoding.

Finally, the last rule that we consider is the decorrelation rule (D). It
evaluates separately one query for each database table involved in the production
of the program trace.

Rule 3 (Decorrelation) Let @t1[p1]{@t2[p2]} be a summary. The trace can be
materialized by the following SQL program:

open ( q2 : s e l e c t ∗ from t 2 where p2 and i d in ( s e l e c t ∗ from
t 1

where p1 ) ) w h i l e ( r2 := f e t c h ( q2 ) ) do
decode (TP , r2 , t2 )

enddo open ( q1 : s e l e c t ∗ from t 1 where p1 ) w h i l e ( r1 :=
f e t c h ( q1 ) ) do

decode (TP , r1 , t1 )
enddo
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Consider for instance the summary @Customer[mktsegment=’tourism’]
{@Nation}. The materialization process based on Rule 3 executes the following
queries:

q1 : s e l e c t ∗ from Customer where mktsegment= ’ t o u r i s m ’
q2 : s e l e c t ∗ from Na t i on where na t i onKey in ( s e l e c t

na t i onKey from Customer where mktsegment= ’ t o u r i s m ’ )

Rule 3 generalizes trivially to summaries of the form @t1[p1] {@t2[p2];
· · ·; @tn[pn]}. Although this seems to yield complex queries, this technique
limits the cost of decode because each fetch retrieves a row which directly corre-
sponds to a unique node in TP.

4.2 The cost model
We now analyse the cost of materialization strategies that result from the applica-
tion of rewriting rules. We assume that (i) the cost of executing a query on the
server side is constant and does not depend on the query size, and (ii) the cost
of transmitting a row from the server to the client is independent from the row
size. Part of our experiments will be devoted to confirming these assumptions. We
model the cost of the query evaluation process as a linear combination of three key
operations: open, fetch, and decode:

cost = Copen × Nopen +Cnet × N f etch +Cdecode × Ndecode (1)

Copen, Cnet, and Cdecode represent the relative importance of each key operation.
They depend on many factors, including the programming language, the network
bandwidth, the database server efficiency, etc. We postpone their study to the per-
formance evaluation, and focus on an estimation of Nopen, N f etch and Ndecode for a
basic program summary @t1[p1]{@t2[p2]}.

In the following, |t1| (resp. |t2|) denotes the number of rows of t1 (resp. t2) in the
trace of the summary, and α the average number of rows from t2 matching a row
from t1 (i.e., the average number of executions of the inner loop in L mode).
Table 1 summarizes the values of Nopen, N f etch and Ndecode for L (Rule 1),
S (Rule 2) and D (Rule 3).

The L mode exhibits the larger number of open, because a query on t2 is
executed for each row of t1. The number of fetch is |t1| * (1 + Max(α, 1)). t1 is
fetched once in the outer loop, and there is at least one fetch in the inner loop, even
if α = 0 (i.e., no matching row in t2). In such a case, the first fetch executed in the
inner loop returns a null object, yet it still counts for one exchange with the data
server.

S yields exactly one open, and thus completely avoids the N+1 query
problem. N f etch is equal to Max(|t1|, α|t1|) because of the outer join. The ma-
terialization process is identical to the L mode. Finally, the D strategy
retrieves separately t1 and the related rows in t2, for a total number of fetches equal
to |t1| + |t2|. Each row is fetched once, and decoded independently.

Both S and D avoid the N+1 queries problem. The difference lies in
the trade-off between the number of fetches, which is always lower for S, and
the cost of decode, which depends on α. We distinguish two cases. If α ∈ [0, 1],
there is at most one row from t2 matching a row from t1. In that case the cost of
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Nopen N f etch Ndecode
L 1 + |t1| |t1| (1 +Max(1, α)) |t1| (1 + α)
S 1 Max(|t1|, α|t1|) |t1| (1 + α)
D 2 |t1| + |t2| |t1| + |t2|

Table 1: Cost analysis of the rewriting strategies for the summary
@t1[p1]{@t2[p2]}

decode is 2 ∗ |t1| for S, and |t1| + |t2| < 2 ∗ |t1| for D. The latter choice is
likely to be the better.

Example 2 Consider the summary @customer{@nation} over the TPC-H bench-
mark. Since there is a many-to-one relationship between Customer and Nation,
α = 1. Now, assume an instance with 10, 000 customers and 200 nations. S
performs an outer join, with 10, 000 fetch and 20, 000 decode. Note that a same
nation is decoded, on average, 50 times.

D executes 2 queries, and at most 10, 200 fetch and decode. The number
of fetch is slightly larger with respect to S because customers and nations are
retrieved separately, but the strategy avoids redundant decoding of nations.

If α > 1, there are, on average, several rows from t2 matching a row from t1.
The cost of decode is |t1| ∗ (1 + α) both for S and D. Since the former
generates less fetch, it should be preferred.

Example 3 Consider the summary @customer{@order} over the TPC-H bench-
mark. Since there is a one-to-many relationship between customer and order,
α > 1. Now, assume an instance with 10, 000 customers and 50, 000 orders where
α = 5. S performs an outer join, with 50, 000 fetch and 60, 000 decode.
D executes 2 queries, 60, 000 fetch and decode. The first strategy saves
10,000 fetch and must be preferred.

Based on to the previous analysis, the following guidelines can be adopted:

1. a node fetched through a many-to-one relationship must be kept in the cache
until its parent loop is not completed: this is the case for instance for Nation
nodes;

2. a node fetched through a one-to-many relationship needs not be kept in the
cache once it has been processed by the program: this is the case for instance
for the Order nodes.

4.3 The optimization algorithm
The algorithm takes as input a program summary S viewed as a tree of path expres-
sions (the generalization to forests is immediate). It proceeds in two steps. First
S is partitioned in blocks, each block being associated to a specific rewriting rule.
Second the blocks are evaluated using a bottom-up order.

Figure 9 illustrates the technique applied to the invoice program. The summary
S is shown on the left part. Each node is a table name in the TPC-H database. S is
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first labelled with relationship cardinalities which can be either * (one to many) or
1 (many to one). The partitioning procedure starts from the root node, Customer,
scans the summary top-down, and ”cuts” the edges corresponding to a many-to-one
relationship. One obtains a main block, D, and two sub-blocks, B and C, respectively
rooted at Nation, and Part. The procedure is recursively called for each sub-block.
This further decomposes the block B by creating a new sub-block rooted at Region.

Part

A−

B−

C−

D−Customer

Nation Order

LineItemRegion

Part

*

*

1

1

1

*

*

1

1

1

Customer

Nation Order

LineItemRegion

Part

Customer

Nation Order

LineItemRegion

Figure 9: Illustration of the optimization algorithm

Each block contitutes a sub-summary which is materialized as follows:

1. Inside each block, Rule 2 (S) is applied. Block D for instance yields an
outer join Customer-Order-LineItem.

2. When a block b2 is a child of a block b1 (i.e., the summary is of the form
@b1{@b2}), Rule 3 (D) is applied. For instance a decorrelated query
on Part is executed to materialize the trace of block C.

The scheduling of the materialization follows a bottom-up approach. Block A
and C must be executed first. Their results are put in the cache. Block B follows,
then block D. Note that when the loop on the outer join Customer-Order-LineItem
is carried out, the related Nation and Part tuples can be found in the cache.

The optimization algorithm minimizes the number of decode operation (in fact,
it is easy to see that each row in the trace is only decoded once). More generally, it
satisfies the following property.

Proposition 1 (Global optimization of materialization) Let I be an instance such
that the average number of instances of any one-to-many relationship is greater
than 1. Then, for any program summary S , the optimization algorithm minimizes
Nopen + N f etch + Ndecode.

Assume first that the summary consists of a single block of the form
@t1[p1]{@t2[p2]}. By definition of a block, the relationship is one-to-many
and α > 1. Referring to Table 1, it is easy to prove that the S strategy mini-
mizes Nopen + N f etch + Ndecode. By induction on the form of the block, this extends
to a block of any size.

Next, consider a summary with several blocks. Blocks can now be seen as
tables and relations between blocks are many-to-one. Referring to Table 1, it is
easy to prove that the D strategy minimizes Nopen + N f etch + Ndecode for a
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simple summary of the form @t1[p1]{@t2[p2]} with α ≤ 1. By induction on the
form of the summary, this extends to any summary.

The condition states that the instance is not degenerated, i.e., that it matches the
schema structure in terms of cardinalities. The algorithm delivers then the best plan
if we make the simplified assumption that the costs of open, fetch and decode are
roughly similar. As mentioned above, these costs actually depend on many factors,
but our evaluation strategy, designed to limit the impact of each factor, is expected
to remain robust enough.

5 Experiments
We conducted extensive experiments to assess the gain obtained by our method.
We first briefly describe our experimental setting, then discuss our results.

5.1 Experimental setting
The optimization approach has been implemented, in Java, as an extension of the
Hibernate 3.3.0 ORM layer. Application programs can be written with standard
Hibernate techniques, the only specificity being a call to the optimization module,
at the beginning of the program, providing the summary. The module analyses the
summary, applies the optimization algorithm, and performs the necessary actions
to enable the resulting strategy. The main actions at this step consist either in exe-
cuting some queries and putting their result in the cache or tuning some Hibernate
parameters to obtain the required execution schedule.

The program and the data server run on two distinct computers, connected by
a LAN (Local Area Network) network. Programs run under Windows XP with a
CPU clock rate of 1.73 GHz and 1GB in main memory. Data servers are hosted on
Windows XP operating system with an Intel Core2 Duo processor having 3 GB in
main memory and a CPU clock rate of 2.26 GHz. We used the following RDBMS:
MySQL 5.0, PostgreSQL 8.1 and Microsoft SQLServer 2005. The database is
a synthetic instance of the TPC-H schema, generated with various size. In the
following, Dataset(n) denotes an instance with n customers and 2*n parts. Each
instance follows a simple distribution which associates two orders to each customer
and two lineitems to each order. n parts are involved in the association between
Lineitem and Part.

We report the experiments for three programs over this schema, Psimple, Pcust
and Ppart, whose summaries are shown on Figure 10. In order to validate our
choices, we compare the result of the following execution strategies: L (an
execution similar to a cursor-based implementation); S (the data graph is
materialized with a single query that (outer) joins all the relations accessed by
the program), and O, our optimized strategy which combines outer joins and
decorrelation.
5.2 Constant cost of open and fetch
Recall that our cost model assumes that the costs of open and fetch are constant,
and thus independent from, respectively, the query size or the row size. In order to
validate these assumptions, we first extracted the following SQL queries from the
Pcust program, over the Dataset(20K) SQLServer database:
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Figure 10: Summaries of the Psimple, Pcust and Ppart programs

Customer que ry :
s e l e c t max ( c . a c c t b a l ) from Customer c

P a r t d e c o r r e l a t e d que ry :
s e l e c t max ( p . c o n t a i n e r ) from p a r t p where p . p a r t k e y in (

s e l e c t l . p a r t k e y from l i n e i t e m l where l . o r d e r k e y in (
s e l e c t o . o r d e r k e y from o r d e r s o where o . c u s t k e y in (

s e l e c t c . c u s t k e y from c u s t o m e r c ) ) )

Outer j o i n que ry :
s e l e c t max ( c . a c c t b a l ) from Customer c

l e f t outer j o i n Order o on c . c u s t k e y = o . c u s t k e y
l e f t outer j o i n l i n e i t e m l on o . o r d e r k e y = l .

o r d e r k e y

S i n g l e que ry :
s e l e c t max ( c . a c c t b a l ) from Customer c

l e f t outer j o i n Order o on c . c u s t k e y = o . c u s t k e y
l e f t outer j o i n l i n e i t e m l on o . o r d e r k e y = l .

o r d e r k e y
l e f t outer j o i n p a r t p on p . p a r t k e y= l . p a r t k e y

We measure the execution of each query on the server, independently from
communication and decoding overhead. Table 2 gives the results. The costs ob-
viously differ with respect to both the complexity of a query expression and the
specific system. With SQLServer, running a single query which retrieves all the
data needed by a program is 25 times more costly than running a simple query than
scans the Customer table (but retrieves only customer information). The ratios
become respectively 50 and 77 for PostgreSQL and MySQL. Nevertheless, they
appear negligible with respect to the number of queries executed by a program that
relies on the L strategy. An invoice program that scans the Customer table for
instance must execute 20,000 queries to retrieve the Order rows, and much more
to retrieve the LineItem rows. We conclude that the differences in query execu-
tion time on the server are negligible with respect to the N+1 query problem and
communication overhead.

Next, we analyse the impact of the row size of the fetch cost. We repeatedly
execute a program that fully scans a table with 1,000 rows. For each scan we
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Cust Q. Part Q. Outer join Q. Single Q.
SQLServer 0.016 0.281 0.391 0.412
PostgreSQL 0.031 1.344 0.532 0.828
MySQL 0.016 0.281 1.14 1.245

Table 2: Cost of executing open (server side only)

vary the size of the row created by the select clause. Table 3 shows the results. It
turns out that retrieving large rows does not make a great difference. This can be
related to the default packet size (Maximum Transmission Unit) of the underlying
network protocol. For ethernet (LAN), the max packet size is 1500 octets. The
same argument as before holds: a program retrieving 1,000 rows of 1,000-bytes
each will be about two times faster than a program that gets 2,000 rows of 500
bytes. In terms of database programming, this clearly calls for an execution of
(outer) joins, putting rows from several tables together and minimizing the number
of fetches.

Row size 50 100 300 500 800 1000 2000
Exec.time 2.8 2.9 2.9 2.95 2.968 3.078 3.359

Table 3: Impact of row size on fetch (client-server communication)

5.3 Relative costs of open, fetch and decode
We analyse independently the impact of the number of open or fetch on the pro-
gram execution. We first execute a program with a unique query that scans a table
with 10,000 rows. The number of fetch is thus constant (10,000). We vary the
number of open from 1 (the query addresses all the rows) to 10,000 (the query is
executed for each row). Results are shown in Table 4 and Figure 11. The figures
for the first column represent the cost of fetching and decoding the data, with only
one query execution. The remaining columns represent the overhead of executing
many open. Next, we scan the same table, executing only one query, but stopping
the loop after n fetch. Table 5 and Figure 11 show the results.

The linear aspects of the curves confirm our expectations. The slope in Fig-
ure 11 (constant Copen in Equation 1) is almost 1 for the three database servers.
The obvious interpretation is that queries are executed independently on the server,
therefore the cost of submitting n queries is n times the cost of submitting only
one query. The constant associated to fetch is rather 0.3-0.5 and depends on the
database system. This can be explained by low-level session cache effects, either on
the server or on the client, along with packet clustering during network exchanges.
5.4 Comparison of materialization strategies
Table 6 shows the execution time of Psimple, Pcust and Ppart programs running over
the Dataset(20K) database. We report the figures for the L, O and S
strategies. Executing independently a lot of small queries leads to dramatic exe-
cution times. The results are consistent for the three RDBMS used, and confirm
the major impact on the performances of the client/server exchanges and network
round-trips. O and S consistently outperform L by one or even two
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Nber of opens 1 500 1,000 2,000 2,500 5,000 10,000
SQLServer 5.063 5.985 6.75 8.281 8.672 16.875 45.14
PostgreSQL 3.703 12.969 22.344 42.921 49.719 96.094 208.531
MySQL 3.515 5.125 5.609 7.329 8.515 16.203 36.734

Table 4: Impact of the number of open on the program execution

Nber of fetches 1,000 2,000 3,000 4,000 5,000 7,000 8,000 9,000 10,000
SQLServer 2.875 3.156 3.329 3.438 3.781 3.891 4.046 4.297 4.375
PostgreSQL 2.078 2.375 2.484 2.625 2.735 3 3.141 3.313 3.5
MySQL 2.14 2.328 2.578 2.782 2.875 3.078 3.218 3.234 3.593

Table 5: Impact of the number of fetch on the program execution
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Figure 11: Cost evolution with respect to the number of opens and fetches

orders of magnitude, and have close execution times for the summaries Psimple and
Pcust. Interestingly, the O strategy becomes faster than S for Ppart. The
reasons lies in the number of redundant decoding carried out by Ppart.

Consider the summary of Ppart in Figure 10. S executes a query with 5
outer joins associating the 6 tables. Since the dataset contains 80,000 line items, the
program performs 80,000 fetches, each retrieving one large row with 6 tuples. Re-
dundant decoding is performed for orders, customers, nations and regions. There
are for instance 30 distinct nations represented in the result, but one nation appears
in each of the 80,000 rows. A same nation is therefore transmitted 2,666 times on
average!

O avoids this overhead. Region, Nation, Customer and Order are suc-
cessively put in the cache. Then an outer join in the first block Part-LineItem is
executed, leading to 80,000 fetches, but no redundant decoding.

Figure 12 shows the behavior of the execution strategies by varying the database
size. Both S and O avoid the N+1 query pitfall, and enjoy a linear increase
of execution time. L, on the other hand, executes a number of queries which is
exponential in the depth of the query summary. We use a modest database with a
few thousands rows in each table. The L technique would clearly not scale to
very large datasets.

In summary, our simple cost model leads to an effective and robust improve-

17



Psimple Pcust Ppart
S O L S O L S O L

S QLS erver 36 34 1,527 37 35 1,947 44 37 2,103
PostgreS QL 58 48 7,345 67 49 9,321 82 57 11,698
MyS QL 37 35 1,678 38 36 1,989 50 39 2,302

Table 6: Execution time of Psimple, Pcust and Ppart, in seconds
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Figure 12: Response time of the Pcust and Ppart programs execution over a
SQLServer database

ment of database program execution. Executing a tree of single queries with a
naive nesting of cursor-based table scan is a non-scalable solution. We considered
the brute-force rewriting of the whole program summary as a single query, and
showed that results in a linear behavior of the program execution, roughly propor-
tional to the number of fetched rows. Our O algorithm is a simple technique to
further improve this result, by getting rid of the redundant decoding.

6 Related work
Our work is related to studies aiming at publishing relational data as XML views [6,
17, 13, 9, 4]. These middleware systems specify a view-definition language in or-
der to map between XML and relational data: application queries expressed in
terms of semi-structured data are transformed into SQL queries. The SilkRoute
system [9] relies on XQuery expressions over canonical XML virtual views [1].
SilkRoute uses a cost-based optimization algorithm, which obtains its cost esti-
mates from the relational engine. The impact of client/server exchanges is not
considered. The ROLEX system [4] provides a dynamic, virtual DOM interface to
relational data, and supports DOM operators which are converted on the fly in SQL
queries. ROLEX optimization cost model is based on a navigation profile (adopt-
ing, like us, a very simple model for this). ROLEX query evaluation strategies
are customized for navigational access, i.e., for lazy materialization. Moreover,
the context is different from ours, since a user can navigate freely in the (virtual)
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XML document, whereas the behavior of databases programs is much more pre-
dictable. This is true as well for [13], which focuses on lazy execution, and [2]
which proposes an incremental evaluation strategy.

Decorrelation strategy is often considered for query optimization. The aim of
the decorrelation problem is to dissociate the execution of a subquery block from
that of a correlated outer block. Our problem (materialization strategy) consists in
choosing an order of data materialization in a graph, an edge v1 → v2 in this graph
beeing a kind of correlation between v1 and the subgraph rooted in v2. This prob-
lem has been widely studied in the context of SQL queries (see [12, 8, 14]). The
specification of the exported data as a tree of co-related SQL queries can be viewed
as an abstraction of nested cursors over result sets, each defined with respect to its
parents [3, 7]. Query rewriting techniques are mostly viewed in terms of database
server optimization which aims, basically, at limiting I/O operations [10, 16]. As
shown in the present paper, we can transpose these techniques to a client/server
context where the network cost is considered as predominant.

Finally, a close work is the Scalpel system [5]. Basically, Scalpel observes
the flow of queries submitted by an application, attempts to build query patterns
(typically, joins built from nested queries), and then rewrites these patterns as query
execution plans (e.g., merge join or hash joins) executed on the client side. The
system relies on a sophisticated cost-based optimizer which estimates the efficiency
of execution strategies with respect to many parameters, including the open and
fetch operations. Our approach is quite similar in its motivation and its initial
observations. It differs by several aspects: (i) we chose an explicit declaration
of the program summary, letting an expert user decide the part of the program
which must be optimized, (ii) our data model is based on a graph representation in
order to support efficiently the object-based orientation of ORM layers, and (iii) we
adopt a simple cost model, focusing on the reduction of query submissions which
constitute the major part of the total cost.

7 Conclusion and Future Work
Our approach extends ORM principles with global optimization strategy. The de-
sign of our solution does not burden the programmer’s task with complex opti-
mization issues. Instead, an optional summary must be provided during the initial
step of the program execution. The summary can be defined by an independent
expert user, even after the design and implementation of an application. Failing
to provide this information to a program simply results in a lazy materialization
mechanism, where objects are loaded whenever they are needed. However, the re-
sults obtained by our strategy outperforms this standard execution by several order
of magnitudes, with impressive improvements. The ratio between the low effort of
defining a program summary and the high gain in terms of performance makes our
approach a practical candidate for achieving physical independence.

Several extensions can be envisaged. First, our optimization techniques do not
take into account the size of the client cache. If the cache cannot hold the whole
program trace, then replacement techniques must be adopted. In the worse case a
degenerated execution can be chosen, where large blocks are evaluated using the
L strategy which limits the memory requirements. Second, our summary con-
stitutes a rather simple representation of a program behavior. This is not a problem,
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as long as it covers the costly part of a program execution. Extending the model
accuracy, taking account for instance conditional statements, could nevertheless
improve the optimizer choices. These extensions are part of future work.
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