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Abstract. We provide a formal definition of information flows in XML transfor-
mations and, more generally, in the presence of type driven computations and de-
scribe a sound technique to detect transformations that may leak private or con-
fidential information. We also outline a general framework to check middleware-
located information flows.

1 Introduction
XML is becoming the de facto standard document format for data on the Web. Its dif-
fusion however is characterized by two correlated paradoxes:

1. Despite the increasing success of XML for exchanging and manipulating informa-
tion on the Web, little attention has been paid to characterize and analyze informa-
tion flows of XML transformations and, specifically, their security implications.

2. As shown by the standardization process, XML documents are intrinsically typed
(cf. the notions of well-formedness and validity). Nevertheless, the “standard” pro-
gramming languages used to manipulate them are essentially untyped, in the sense
that even when they are equipped with a type system the latter does not use the type
information of XML documents.

If we consider the self-descriptive nature of XML documents, these paradoxes are less
surprising than it may seem: XML documents use tags to delimit some content, and
these tags can be considered as type information about the content they delimit. There-
fore, XML documents—even those that do not contain a DTD—are in some sense “self-
typed” constructions and this makes the definition of a type system for XML transform-
ers difficult. As long as a type system often constitutes a first basic step toward the defi-
nition of security analyses of transformations, this may partially explain the absence of
formal tools to characterize insecure information flows.

Goal. The aim of this article is to define and characterize information flows in XML
transformations in order to single out potentially insecure transformations, that is trans-
formations that may leak confidential or private information. To that end we study trans-
formations defined in a typed programming language for XML documents. There are
several candidates for such a language, since several attempts have been made in the
literature to overcome the second of the XML paradoxes (e.g., HaXML [21], JWIG [3],
Xtatic [11], XDuce [13], XQuery [8], and YATL [4]).

In this work we characterize and analyze information flows for transformations de-
fined in

�
Duce [2]. There are several reasons to choose

�
Duce as target language for

our study. First and foremost, unlike other XML-oriented languages,
�

Duce is general
purpose, in that it provides besides XML types several other datatypes, enabling to pro-
gram general (even XML unrelated) applications. Second, among the known languages
for XML, it possesses the richest type algebra. Finally, its semantic and set theoretic
foundations make it a good candidate for defining or hosting a declarative query lan-
guage (see [2]) and, as such, it nicely fits our scenario of global queries on the Web.

Problems. We said that the difficulty of defining type systems for XML transforma-
tions resides in the self-typing nature of the documents. More precisely, this self-typing



characteristic induces “type based” (or “type driven”) computations: matching on doc-
ument tags roughly corresponds to matching documents’ types; similarly, producing el-
ements with different tags corresponds to outputting results of different types. In some
sense, typed XML transformations are akin to the application of typecase constructions
where the different cases may return differently typed results (this is accounted for in

�
Duce by the use of dynamically bound overloaded functions). The presence of type

driven computations makes the task of capturing information flows much harder and
constitutes the main novelty and challenge of this study. In fact we cannot resort to
classical data flow analyses since they are usually applied to computational frameworks
whose dynamic semantics does not strictly depend on run-time types. A second chal-
lenge is that information flows (more precisely, their absence) are usually characterized
in terms of the so-called non-interference property [12]. Our study demonstrates that
in the presence of type driven computations this notion must be modified so as to in-
clude static type knowledge, otherwise we end up with very trivial analyses. Finally,
the last challenge is to define flow analysis for a pattern-matching based language—as

�
Duce is—since this stands at least two obstacles: ����� pattern matching is a dynamic

type-case, therefore we have to propagate type information in the subsequent matches;
������� the use of a matching policy (first-match as in

�
Duce or best match as in XSLT)

induces dependencies among the different components of an alternative pattern as well
as among different cases of a pattern-matching expression and this must be taken into
account when characterizing information flows (the sole fact of knowing that a pattern
did not match may produce a flow of information).

Contributions. The contributions of this article are essentially three:
1. it provides a formal definition and study of information flows in the context of XML

transformations and, more generally, in the presence of type driven computations;
2. it describes a sound technique to detect XML document transformations that cause

insecure information flows, and formally proves its correctness;
3. by defining security annotations and by relating various kind of analyses (static/dy-

namic, sound/complete) to different query scenarios, it proposes a general frame-
work for checking security of middleware-located information flows.

Example. The development of our presentation can be illustrated by an example. Con-
sider the following XML document which stores names and salaries of the workers of a

<?xml version="1.0"?>
<company>

<worker>
<surname>Durand</surname>

<name>Paul</name>
<salary>6500</salary>

</worker>
<worker>

<surname>Dupond</surname>
<name>Jean</name>
<salary>1800</salary>

</worker>
<worker>

<surname>Martin</surname>
<name>Jules</name>
<salary>1200</salary>

</worker>
</company>

fictive company. We imagine that while generic users
are allowed to perform queries on this document, the
information about salaries must only be accessible to
authorized users. Therefore we need a way to detect
queries that may reveal information about salaries, in
order to reject them when they are performed by unau-
thorized users. A first naive technique to obtain it
would be to mark the salary elements and dynamically
reject all queries that contain marks in their result. Un-
fortunately, this approach is clearly inadequate since
the information about salaries can be deduced as fol-
lows: perform a query that returns the list of all work-
ers whose salary is greater than � and then iterate the

query by varying � until we obtain as many different results as workers.



A more effective solution is to reject all the queries whose result accesses the value
of the salary elements. For example consider the following two queries:

[Q1] Get the list of all workers
[Q2] Get the list of all workers whose salary is greater than � 1600

The first query can be always safely executed while the second one must be forbidden
to unauthorized users. This can be obtained by enforcing an access control policy. For
instance this is done in [7,6] by executing a query on a view (in the database sense)
obtained by pruning from the XML documents all data the owner of the query has not
the right to access.

While enforcing access control is enough for simple policies like the above, it soon
becomes inadequate with slightly more complicated policies. For instance imagine that
instead of forbidding access to salaries we want to allow queries owned by generic users
to access salaries (e.g. for statistical purposes) but in a way that prevents these queries
from associating a specific worker with her/his salary. This corresponds to rejecting
all queries whose result depends both on the value of salary elements and on that of
name or surname elements (but queries like Q1 or a query that returns all salaries are
acceptable). To enforce this constraint we have to switch from an access analysis to a
dependency (or information flow) analysis.3

Causal security policies, such as above, can be formalized by the notion of non-
interference, that can be restated for XML documents as follows: a set of elements
does not interfere with the result of a given query if for all possible contents of the
elements the query always returns the same result. In our example, consider the set of
all documents obtained from our XML document by replacing the content of salary
elements by arbitrary numeric values. Query Q1 is interference-free since when it is
applied to all these documents it always returns the same result. Query Q2 instead is
not interference-free since its results may differ.

A precise definition of non-interference constitutes the first step of our approach
since it defines the set of queries that are safe. The following step is to devise one or
more techniques to determine the safety/unsafety of queries. To that end we first classify
components that store confidential information by annotating data elements by labels
of the form ��� . The � intuitively represents a security classification of the information
stored in the element (e.g., public or private, but it could be any label from a possibly
unordered set) while � is a type that describes the static information publicly available
about the data’s content (e.g. for salaries it records that the element stores an integer
in a given range)4. Next we recast the notion of non-interference in terms of labeled
elements, namely, we say that a transformation is free of interference from all elements
labeled by � , if its result does not change when the content of the � -labeled elements
vary over the type indicated in the label. Our research plan consists of the definition
of three different analyses to be used as in the scenario of Figure 1 in the next page.
According to it an interactive query (that is, a query that was written to be executed just
once) will first pass through a complete static analysis (that rejects transformations that

3 While for this specific example it is still possible to resort to access control techniques (execute the query
on two different views obtained by stripping in one all salaries and in the other all names and surnames)
these sole techniques soon become insufficient, as shown by the example in Section 6.

4 We do not require the existence of any order on such labels (in our framework security policies will be
expressed in terms of presence/absence rather than relative order of label), therefore our labels must not
to be confounded with the security labels used in multilevel security systems



are manifestly unsafe) and then through a sound dynamic analysis. Instead, programs
that are expected to be used several times will pass through a cycle of sound static
analysis (possibly preceded by a complete analysis) before being executed without any
further dynamic check. In this paper we concentrate on the sound dynamic analysis for

�
Duce programs, that is, the grayed part of the figure.

Outline. We start in Section 2 by a brief overview of the functional core of
�

Duce.
In Section 3 we formally define the non-interference property for

�
Duce programs

and introduce
�

Duce � a conservative extension5 of
�

Duce in which expressions oc-
curring in a program may appear labeled by security labels. Section 4 is the core of
our work. It defines the dynamic analysis that detects interference free programs. The
idea is to define an operational semantics for

�
Duce � such that ����� it preserves the

semantics of unlabeled programs and � ��� � it ensures that whenever a label � is absent
from the final result of a program, then the program is free of interference from all
expressions labeled by � . Thanks to these properties the analyzer has simply to la-
bel and run a transformation and to refuse to return the (unlabeled) result when this
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Fig. 1. Analysis scenarios

contains unauthorized labels. Of course
the heart of the problem is label propa-
gation in pattern matching, whose def-
inition is made difficult by the type
driven semantics, the presence of sub-
typing, and the use of a first-match
policy. In Section 5 we prove that
our analysis satisfies the aforemen-
tioned properties; this goes through
proving that

�
Duce � satisfies the

subject-reduction property, that it pre-
serves the semantics of

�
Duce, and

that it constitutes a sound analysis
for the non-interference property. The
last two points present some technical
difficulties (without any practical im-
pact) due to the type system of

�
Duce

that does not satisfy the minimum typing property and induces in
�

Duce � a non-
deterministic semantics: thus the two properties must be proved to hold for all possible
reductions of a program. In Section 6 we comment a more significant example that il-
lustrates some security policies that cannot be expressed in terms of access control. We
conclude our presentation by sketching in Section 7 some research perspectives.

Related work. Security issues for XML have been addressed by several works but
none of them tackles the problem of information flows. They either focus on access
control (e.g., [10,7,6]) or on lower level security features such as encryption and dig-
ital signatures for which commercial products are becoming available (e.g [14]). For
instance, Damiani et al. [7,6] detect accesses to confidential data by applying a static
marking of the documents and by dynamically stripping off marked elements. In other
words, they deal with access control (confidential data is accessed for computing the

5 The extension is conservative with respect to both the type theory and the equational (reduction) theory.



result) whereas our approach accounts for implicit flows (confidential information can
be inferred from the result) like the detection of covert channels. The same holds true
for the work of Gabillon and Bruno [10] where access control is performed by running
queries on views of the XML documents dynamically generated by stripping off unau-
thorized data. Other works devise flow analyses for programming languages for XML
(e.g., [3]) but these analyses are not developed to verify security properties.

The study presented here draws ideas from several sources. The dynamic prop-
agation of labels was first introduced in Abadi et al. [1], where a dependency anal-
ysis for call-by-name

�
-calculus is defined by extending the reduction semantics to

labeled
�

-terms. Although their work was not motivated by security reasons (they ad-
dress optimization issues) what we describe here essentially adapts their technique to
type driven reductions. Label propagation was successively used for security purposes
in later works, for instance [5,15,16,17]. In particular, in [15] Myers and Liskov use
labels for the same purposes as we do; however their security model is defined for and
relies on languages that explicitly manipulate labels, while in our or in Abadi’s et al.
approach, properties are stated for an unlabeled language and labels are introduced on
the top of it as a technique to identify (unlabeled) programs satisfying these proper-
ties. Finally, all the cited label-based approaches fundamentally differ from the study
presented here in that they do not account for type driven semantics (nor for pattern
matching) distinctive of XML transformations.

The presence of type driven computations preclude us the use of classical definitions
and detection techniques of non-interference (e.g. those of [19,20]), since in this case ig-
noring static type information would yield a far too weak definition of non-interference.
Actually, our notion of non-interference differs from the classical one in that the latter
usually relies on a hierarchical structuring of security levels (high-level inputs do not
interfere with low-level outputs) while here we spot non-interference of single pieces
of code (the value of some data does not interfere with the result of a query). This dif-
ference must be understood as the fact that we want to characterize the flows in a single
transformation while classical non-interference rather applies to system-wide flows.

2 The CDuce language
�

Duce is a functional programming language tailored to the manipulation of XML
<company>[

<worker>[
<surname>"Durand"
<name>"Paul"
<salary>[6500] ]

<worker>[
<surname>"Dupond"
<name>"Jean"
<salary>[1800] ]

<worker>[
<surname>"Martin"
<name>"Jules"
<salary>[1200] ]

]

type Company = <company>[Worker*]
type Worker = <worker>[Sname Name Salary]
type Sname = <surname>String
type Name = <name>String
type Salary = <salary>[Int]

documents, for which it uses its own nota-
tion. The XML document in the previous
section becomes in

�
Duce the expression on

the right. The syntax is mostly self describ-
ing: tags are denoted by angle brackets and
are followed by sequences. Sequences are
delimited by square brackets and in this case
are formed by other elements, but in general
they may contain expressions of any type
(note that some tags are followed by strings
as the latter are encoded in

�
Duce as se-

quences of characters). This expression has
the type Company defined right below it. The
types of sequences are defined by regular ex-



pressions on types. For example, the first type declaration states that a company is a
sequence tagged by <company> and composed of zero or more worker elements. Had
we defined the type of workers as follows:

Worker2 = <worker ceo=?Bool>[ Sname Name Salary (Email | Tel)? ]

then workers elements would have an optional (as indicated by =?) boolean attribute
and list a last optional element that is either of type Tel or of type Email. Note also that
Worker is a subtype of Worker2 since every value of the former type is also a value of
the latter type. The queries defined in the previous section can be expressed as:

[Q1:] let <company>x = mycompany in transform x with <worker>[ y z _ ] ➔ [ <worker>[ y z ] ]

[Q2:] type MoreThanMe = <salary>[1600--*]
let <company>x = mycompany in transform x with <worker>[ y z MoreThanMe ] ➔ [ <worker>[ y z ] ]

where mycompany is a variable that denotes our previous <company> XML document.
In the first query the let expression matches mycompany against a pattern that binds

the variable x to the sequence of worker elements of mycompany. The transform ex-
pression applies to each element of a sequence a pattern that returns a sequence and
then concatenates all the results (non matching elements are simply discarded). In this
case it transforms the sequence of Worker elements into a sequence of <worker>-tagged
elements containing just surname and name elements (y and z respectively capture the
surname and name elements, while the _ pattern matches every value). Had we defined
the type Company as <company>[(Worker|Client)*], that is a heterogeneous sequence
of workers and clients, then Q1 would still have returned the same result as transform
would discard client elements. The query Q2 is similar, with the only difference that
the transform pattern matches only if the salary element has type MoreThanMe, that is,
if its content is an integer greater than or equal to 1600.6

A detailed presentation of
�

Duce is out of the scope of this paper. The interested
reader can refer to [2] and try the interactive prototype at www.cduce.org. For the pur-
pose of this work it will suffice to say that all

�
Duce constructions are encoded in the

following core language defined in [9]:

��������� �	�
��� �� � � ������� ���� �����	���� ���������� ��� ������� ���� � �
�
���� � � �	 !�	"#�%$

We use � to range over types,
�

over boolean combinations, � over atoms, and
 

over
basic types (Int, Char, . . . );

"
and

$
denote respectively the empty and top type, and to-

gether with arrows and products they form the atoms of arbitrary boolean combinations
(negation, union, and intersection types) and recursive types

� �& � .7 The expressions of
the language are:
' �(� �*) �,+!� fun -/. �1032 2 254(0(6�7�7�7 6 �98:22 254;8=<:> +�?A@ ' � ' � ' �

� > ' �AB ' �
?C�

match ' with D � ➔ ' � |D � ➔ ' �

The syntax is essentially that of a higher-order functional language with constants, pairs
and pattern-matching. What distinguishes it from similar languages is the definition of
patterns (given later) and of functions. In the latter note that the name of a function
(which may appear in its body as functions can be recursive) is annotated by a non
empty list of arrow types (this list is called the interface of the function). The presence

6 The results the two queries are the central and right expressions in Figure 4 from which we erase all the
label annotations of the form E(FHG , IJFKG , or LMF;G

7 The distinction between atoms and combinations is introduced in order to avoid meaningless recursive
types such as NPO�Q OCR R RSO



of more than one arrow type declares the overloaded nature of the function, which has
all these types, thus their intersection as well (see the typing rule for functions later on).

The operational semantics is defined in terms of the set � of values, ranged over by� and formed by all closed and well-typed
�

Duce expressions of the form
� � � � ) �

fun -/. �1012 2 2 4(0K6�7�7�7 6 �98A22 254;8=<A> +	?A@ ' � > � �AB � �
?

The semantics is given by the reduction relation � , which is defined as follows:

� � � � � ��� '�� � ��� -	� � �
� +�� �� 0�� fun ����� � � � ���� 7 � �
� match � with D � ➔ ' � |D � ➔ ' � ��� ' � � � � D �

� ������ 0 ��"! �
� match � with D � ➔ ' � |D � ➔ ' � ��� ' � � � � D �

� ������ 0
�#!%$ ������& ��'! �
where ( denotes the matching failure and ')� � � D � is the expression obtained by applying
the substitution � � D to ' . The first rule is standard * -reduction for recursive functions.
The second rule states that if the first pattern matches, then the expression of the first
branch is executed after having applied to it the substitution � � D � of the variables cap-
tured by D � when matching � . The second rule states that the same happens for the
second branch when the first pattern fails and the second matches (the static type sys-
tem of

�
Duce ensures that the patterns cannot both fail).

Reductions can take place in any evaluation context. A context, denoted by + is an
expression with a hole substituted for a sub-expression. An evaluation context, denoted
by , , is a context whose hole is not in the scope of an abstraction or of a pattern and
which induces a (leftmost) evaluation order on applications and pairs. Formally, ' � '.-
implies , � ' � �/, � '�- � , where , is defined as

, ����� � �%� > , B ' ? � > � B , ?5� , ' � � , �
match , with D � ➔ ' � |D � ➔ ' �

As anticipated, key definitions for
�

Duce are those of pattern and pattern matching. A
regular tree built from the following grammar

D �K� � + �
�

� D ��0 0 0 D �
� D �

� � � D �
� � � � D ��11 1 D � � � � � � � � + ���������*) � � �

is a pattern if ����� on every infinite branch of it there are infinite occurrences of the pair
constructor8, ������� patterns in an alternative capture the same variables, and ��������� patterns
in a conjunction capture pairwise distinct variables. The semantics of patterns is defined
by the matching operation: the matching of value � against a pattern D is denoted by � � D
and returns either ( (matching failure) or a substitution from the variables of D into � :
� � ���3254 if � � � � � ���3( if � � � � � �� � + �32 +76� � 4 � � � � � + ��������� ) � � �&�32 +76� )�4� � D �

� � � D � � � � D � if � � D �98�3( � � D �
� � � D � � � � D � if � � D � �:(� � D ��00 0 D � � � � D �<; � � D � � � � � � D ��11 1 D � � � �&�:( if � is not a pair> � � B � �

? � � � ��D � 1 1 1 D � � � �&� � � � D � ; � � � D �

where = � ; = � is ( when = � �>( or = � �>( and otherwise is the substitution
=@?A� Dom

�B 0 �DC Dom
EB�&F�

defined as = � + � �G= � � + � when
+ ? Dom �H= � �JI Dom �H= � � , as

= � + � �K= � � + � when
+ ? Dom �L= � �MI Dom �L= � � , and as = � + � � > = � � + � B = � � + � ? when+ ? Dom �L= � �ON Dom �L= � � .

The semantics of patterns is rather intuitive. There are two possible causes of fail-
ure for a pattern matching: a type constraint which is not satisfied by the matched

8 Infinite trees represent recursive patterns while the condition on infinite branches endows the set of patterns
with a well-founded order that ensures termination for the algorithms of typing and matching.



���������	�
��� � var
� ���� � ��� � ����� � ��� ������� ��� � ��� ��� ���� � � �

�
pair

� ���� � ��� � ����� � ��� ����� � � � ��� ��� � �
�
appl

�

(for  �"!  $# ##&%% %(' �*)) ),+  �-!  $## #/...&% %%0' ��))) )����1�32&46555*7 �988 8;:: : 5 5 597 �;888 �=<��>2�?>@A7$?>�B���C?B����?
���

match
�

with
7 � ➔

� � |
7 � ➔

� � ��DD DFE ?(G H�IAJK;L�M � ?
�
match

�
NPORQ(S �=<��
����� ? �T<��>UV��WWW ?YX �[Z Z \ � ?$]] ] 2 ? �"���&�02 ?
��

fun
U�^ F 0`__ _ H 0,a Z Z Z a F 8 _ _ _ H 8Rb ��� �Cc �1� WW W ?dX �[Z Z \ � ?$]] ] 2 ? � abstr

� �����&�02/4e�
����&��� �

subsum
�

Fig. 2. Typing rules

value, or a pair pattern applied to a value that is not a pair. The alternative pattern
D �
� � � D � has a first-match policy: the object is matched against D � if and only if the

matching against D � fails. When a variable
+

appears on both sides of a pair pat-
tern, the two captured elements are paired together as expressed by the third case of
the definition of ; . The default-value pattern � � � + ����������) � � � usually appears in the right-
hand side of an alternative pattern to return a default value when the left-hand side
fails. The combination of multiply-occurring variables and default-value patterns within
recursive patterns allow very expressive captures: for instance, the recursive pattern
D � � � � + 0 0 0 Int 1 1 1 D � � � � � � � � � _ 1 1 1 D � � � � � � � � � + ��������� nil� � � binds

+
to the sublist of all integers occurring in a het-

erogeneous list (encoded à la lisp) when this is matched against it. On the whole, all
a pattern does is to decompose values in subcomponents that are bound to variables
and/or matched against types, whence the type driven computation.

Values are also at the basis of the definition of subtyping. Indeed, the key charac-
teristic of

�
Duce (from which all others derive) is that the subtyping relation is defined

semantically via a set theoretic interpretation of the types. This interpretation is very
easy to define: a type is interpreted as the set of all values that have that type. So for ex-
ample � � � � � � � is the set of all expressions ( f � , f � ) where �0g is a value of type � g ; � � � � � � �

is the set of all closed functional expressions fun
U�h H 0�a Z Z Z a H 80i ( � )

�
that when applied to a

value of type � � return a result in � � ; union, intersection, and negation of types have the
usual set theoretic meaning. This (semantic) interpretation is used to define the (syntac-
tic) subtyping relation: a type j is a subtype of � if the interpretation of j is contained in
the interpretation of � .

Typing rules for
�

Duce are summarized in Figure 2. For a more detailed explanation
the reader can refer to [9]. Rules (var), (pair), and (subsum) are standard. The rule
(appl) is less common, since one usually expects � � to be of the form j � � � �kj � and the
rule to infer for the application the type j � provided that � ��l j � . However because of
the presence of boolean combinations � could be for example of the form � �`j � � � �nm � � � � �
�`j � � � �om � � � . To that end we introduce a partial binary operator on types p . Intuitively
�qpBj denotes the least type (if it exists) such that � l jC��� � �qpBj � and the rule (appl) does
not fail only if the operator is defined (in practice, we subsume � � to the least arrow type
with domain � � ). So, for example, if our function of type � �`j � � � �rm � � � � � �*j � � � �sm � � � is
applied to an expression of type �*j �

� � � j � � , then the type system will infer that the result
of the application has type � �`j � � � �nm � � � �`j � � � �nm � � ��p �`j �

� � � j � �&� �>m �
� � � m � � . Similarly

we introduce two projections operators t � and t � such that t � � � � (respectively t � � � � )
is the least type that makes � l t � � � � � $ (respectively

$ ��t � � � � ) hold. It is important
to note that p , t � , and t � are all computable (once more see [9]).



Rule (abstr) is not very standard, either. It states that a (possibly overloaded) func-
tion is typed by the intersection of all the types declared in its interface: we repeat the
check for each type in the interface and handle the typing of recursive calls by recording
for - the expected type. Actually the rule in Figure 2, is a simplification of the

�
Duce

rule in [9], the latter is very technical and makes the minimum typing property fail (so
that there does not exist a canonical type representing the set of all types of a given
expression). However, we will see that this does not affect our analysis and, therefore,
that the rule defined in Figure 2 is enough.

Finally the rule (match) states that the type of a matching operation is the union of
the types of the branches9, and for that it uses several auxiliary notations: � denotes
syntactic equivalence of types whereas � denotes the semantic one ( j�� � only if j and
� denote the same set of values); j � D denotes the type environment that assigns types to
the capture variables of D when this is matched against a value of type j ; � � � D��� � denotes
the type accepted by D , that is, the type whose interpretation is the set of all values for
which D does not fail:

� � � D��� ��� 2 � � � � D 8� (94 . Again,
� � � � � � is computable. The type system

is sound since it satisfies the subject reduction property: if ��� ' � � and ' �
	 ' - , then
��� '
- � � (where ��	 means “reduces in zero or more steps”).

3 Non-interference and labels
The first step toward the definition of our security analysis is the characterization of
information flows. In general, these are difficult to define and therefore it is customary to
rather characterize their absence via the non-interference property: given an expression' , a sub-expression '�- occurring in ' does not interfere with ' if and only if whenever' returns some result, then also every expression obtained from ' by replacing '5- by a
different expression yields the same result. Note that this (informal) definition does not
involve types and because of that it is unsuitable to describe non-interference for type
driven semantics. A definition of non-interference for

�
Duce transformations must take

types into account.
Types have been widely used in previous work on language-based information-flow

security (see [18] for a very broad review) and non-interference definitions have been
given for typed languages. What is new in our framework is that the essence of the
definition of non-interference relies on types. In particular, changing the type of an ex-
pression occurrence in a program can change the non-interference properties of that
expression occurrence. Therefore our definition of non-interference is stated with re-
spect to a type � :
Definition 1 (Occurrence). Let ' be a

�
Duce expression. An occurrence � of ' is a

(root starting) path of the abstract syntax tree of ' . If � is an occurrence of ' , we use'� to denote the sub-expression of ' occurring at � , and + � � � to denote the context
obtained from ' by inserting a hole at � . Thus ' � + � � '  � .
Definition 2 (Non-interference w.r.t. � ). Let ' be a

�
Duce expression, � an occur-

rence of ' , and � a type. The occurrence � does not interfere in ' with respect to � if
and only if for all

�
Duce values � and � - , if ��� �)- � � and ' ��	 � then + � � ��- � ��	 � .

Let ' be the application of a query to an XML document that stores some information
of type � in an element located at � . We want to define when the query allows one to

9 Precisely, of the branches that have a chance to match, that is those for which  ?����� . This distinction
matters when typing overloaded functions: see [9].



infer information about � more precise than its type. The definition above states that
the information stored in � is not disclosed if the fact of storing any value � - of type �
in � does not change the result of the query.

The definition is reasonable as it simply encompasses the static knowledge about
the type of an occurrence. For instance, on our example it states that a query is safe
(i.e. interference free) if and only if it cannot distinguish two documents that contain
two different integers in corresponding salary elements. Similarly, a query that distin-
guishes documents with integer salaries from documents in which salaries elements
contain boolean values is safe, too10: this is reasonable to the extent that such a test
cannot in practice be performed as it would contradict the static knowledge we (or an
attacker) have of the document. This new definition induces also a very nice interpreta-
tion of security, according to which a transformation is safe if it does not reveal (about
confidential data) any information that is not already statically known.

A last more technical point. In Definition 2 we tested non-interferent occurrences
against values rather than against generic expressions. This simplifies the definition
inasmuch as we do not have to take into account the typing and the possible capture of
variables that are free in the expressions inserted in the context. However, this does not
undermine the generality of our definition as shown by Proposition 1:

Definition 3 ( � � � � � -contexts). Let � and
�

be type environments, � and � - types, and
+ � � a context. + � � is a � � � � 1 � � � - � -context if � �3+ � � � � is provable under the
hypothesis that

� - � � � � � - holds for every extension
� - of

�
.

Proposition 1 (Generality). Let ' be a
�

Duce expression such that � � ' � � . Let �
be an occurrence that does not interfere in ' w.r.t. � - . Then for all � - , � - - , and ' - , if
� - 1 � 1 � - - � '
- � � - , ' ��	 � , and + � � � is a � � � - 1 � � � � - - 1 � � � - � -context, then + � � ' - � ��	 � .

Our next step consists in defining a way to identify occurrences. This can be easily
obtained by marking

�
Duce expressions by security labels. Thus we define

�
Duce �

obtained from
�

Duce by adding expressions of the form “ � �&� ' ”, where � is a type and
� is a metavariable ranging over a set � of labels. As anticipated labels are indexed
by types that record the static knowledge of the expression at issue. The type is used
to verify non-interference of the expression. This is considered not to interfere with a
given computation if the fact of making the labeled occurrence vary over the values of
the type specified by the label does not affect the final result of the computation.

Of course, this is sensible only if the fact of making the occurrence vary over such
a type yields well-typed expressions. In other terms, as suggested by Proposition 1,

� � ' �qj j l �
��� � � � � ' � � �

the type indexing a label must be a viable type for the expres-
sion marked by the label. In order to formalize this property we
endow

�
Duce � with a type system formed by all the typing

rules of
�

Duce, summarized in Figure 2, plus the one on right.
By definition a

�
Duce � expression is a

�
Duce expression where some subexpres-

sions are marked by a list of labels. We call strip the function that transforms the former
into the latter by erasing all the lists of labels and we denote if by ��� .

Technically, we consider the syntax of
�

Duce � as a description of a decoration of
the syntax tree of ' in the sense that the (lists of) labels are not nodes of the syntax

10 More interestingly, had we defined salaries to be of type <salary>[1600- -*], then also the query Q2 would
result safe (i.e. interference free).



trees but tags marking these nodes.11 The reason for this choice is that in this way the
same path � denotes an occurrence of a

�
Duce � expression and the corresponding

occurrence in the stripped expression. In this way we avoid to define complex map-
pings between occurrences of expressions in

�
Duce � and the corresponding ones in

the stripped version. In particular this makes the following property hold

Proposition 2. Let ' be a
�

Duce � term with an occurrence � , then ����� � '  � � � ' � 
and � ��� � �H+ � � '  � � � + � ��� � � ' �  �
which yields a simpler statement of the non-interference theorem (Theorem 2).

4 Security analysis
Our analysis is defined by endowing

�
Duce � with an operational semantics defined

so that � � � it preserves
�

Duce semantics on stripped terms ( ' � 	 ��� � ' � ��	 � � � )
and ������� label propagation provides a sound non-interference analysis for

�
Duce ex-

pression (i.e., if a label is not propagated, then the labeled expression does not interfere
with the result). It is not difficult to define a trivially sound analysis (just propagate all
labels)12. The hard task is to define a fine-grained analysis that propagates as few labels
as possible. Needless to say that the core of the definition is label propagation in pattern
matching, where several kinds of information flows are possible:

p Direct (or “explicit”) information flows, due to the binding of labeled expressions
to variables, such as in: match e with <worker>[ x y <salary>[z] ] ➔ . . . z. . . | . . .
where the value of the salary is bound to z and flows through it into the first branch
expression.

p Indirect (or “implicit”) information flows due to patterns: the information flows by
the deconstruction of the matched value and/or the satisfaction of type constraints,
such as in: match e with <worker>[ x y <salary>[1--900] ] ➔ e � | . . .
where the information of the range of the salary flows into e � .

p Indirect information flows due to use of a first match policy: information can be
acquired from the failure of the previous branch:

match e with <worker>[ x y <salary>[1- -900] ] ➔e � | __ ➔e �
where the information that the salary value is not in (1- -900) flows into e � .

The last example also shows that non-interference is undecidable as the non-interference
of the value of the salary element is equivalent to deciding the equivalence of e � and
e � (

�
Duce is Turing-complete).

Once we have established whether a label must be propagated or not, here comes
the problem to decide with which type we have to decorate it so as not to infringe
subject-reduction. Consider the example of the application of a labeled function value
to another value: � � 4322 2 � � � � � � � . Surely the function, seen as a piece of data, interferes
with the computation. Therefore its label must be propagated. A sound solution is to
reduce the application to �	� � � � � � � � , for a suitable choice of m . Here the choice for m
is easy: the type system ensures that � � is of type j therefore it suffices to take m � � .
When the type of the label is not an arrow but a generic type � - , then we resort to the p
operator and set m equal to � - p/j - for some j - such that � � �qj - .
11 More formally we consider that a 
 Duce � term denotes a pair formed by a 
 Duce term and a map from

the (root starting) paths of the abstract syntax tree of the term to possibly empty lists of labels.
12 The analogous trivially complete analysis is the one that does not propagate any label
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Fig. 3. Propagating labels with patterns

Formally, we start by ����� defining
�

Duce � values, which are obtained by adding to
the definition of

�
Duce values the production � ����� � ��� � ; � � ��� defining the semantics

of � � � for the new values in the following case: � � �&� � � � 1 � � � � � � � � D ��11 1 D � � � ��� � ��� D �
; � ��� D � ;
and ������� � adding to evaluation contexts the production , ����� � � �), . Note however that
we do not define a pattern for labels, as we want labels to describe information flow,
rather than to affect it.

Next we define the operator “ .. .. .. ” that calculates the set of labels that must be prop-
agated at pattern matching. More precisely, ' .. .. ..�D denotes the list of all labels that must
be propagated when matching expression ' against pattern D , and is defined in Figure 3
(where “@” and “::” are the “append” and “cons” list operators, respectively). This def-
inition forms the core of our analysis, therefore it is worth explaining it in some details.
Let � � ' � denote the set of labels occurring in ' , then all the labels in � .. .. .. D are contained
in � � � � . The idea is to collect in � .. .. ..�D all the labels that mark expressions whose value
may affect the result of the matching. Intuitively, the definition of “ .. .. .. ” must ensure that
if a label � in � � � � is not in � .. .. ..�D , then for all � - obtained by substituting in � some
� -labeled occurrences by “admissible” (i.e. that respect the type constraints indexing � )
values, the match � - � D either always succeeds or always fails.13

The first two cases in Figure 3 are the easiest ones insofar as variables and default-
value patterns always succeed; therefore no label needs to be propagated.

Matching a constant is also simple as there is no label to propagate. Note, however,
that we use an index to distinguish two different cases of non-propagation: the case in
which labels are not propagated because the pattern always fails ( � fail) and the case

13 However, this is not enough to ensure non-interference: for instance consider
N E Bool G0/ S211 11 11�N true 3 3 3 N N N54 G 6G 6G 67 S S S*S�88 8 N

false 3 3 3 N N N54 G 6G 6G 6:9 S S S`S which always succeeds.



in which they are not propagated because the pattern always succeed ( � ok). When we
match a labeled value against a pattern D and the type of the label does not intersect the
type accepted by D , then we know that making � varying over � always fails.

The case for a type constraint pattern is the key one, as
�

Duce’s pattern matching
is nothing but a highly sophisticated type-case with capture variables: if � - � � � � � "

, then
we are in the previous case so � � � always fails; if � - l � , then for every � of type � - , � � �
always succeeds so no label is propagated; otherwise, for all ��- in the intersection of �
and � - ��- � � succeeds, while for ��- in their difference it fails, thus we propagate � and
check for other labels.

When the matched value is a pair then we propagate the union of the labels prop-
agated by matching each sub-value against the corresponding projection of � provided
that: ����� the projections are defined, because otherwise we are matching a pair against
a type with no product among its super-types (e.g., j � � ) and the pattern always
fails, and � � ��� none of the two sub-matching fails, because the whole pattern would
then fail and therefore it would be silly to propagate the labels of the other component.
Note that this case uses the distinction between � ok and � fail, the other cases being
in conjunction and pair patterns—which fail if any sub-check fails—and in disjunction
patterns—which fail if both sub-checks fail—. Since there is no pattern that decon-
structs functions, these can be soundly matched only against types (or captured). Note
however that the type of a function value is fixed by its interface. Therefore even if we
make labeled expressions occurring in the function vary, this does not affect the type of
the function, ergo the result of pattern matching. For this reason � fun - . �10M$�7�7 $ �98 < > +�?A@ ' � .. .. .. �
is dealt in the same way as constant values. The cases of conjunction patterns as well as
those for pair patterns need no particular insight. It may be worth just noticing that in
the first case of pair patterns � is propagated also when the pattern always succeeds (i.e.
� l � � � � � � D ��11 1 D � � � � � � � ) as the simple fact of deconstructing the pair may yield interference14.

The cases for alternative patterns are more interesting as they take into account the
use of the first match policy. In particular in the first two equations for match, propaga-
tion is calculated only on D � or D � according to whether the first match always succeeds
or always fails. If instead the result cannot be determined with certainty, then the label
is propagated and the search for other labels is continued on � . All remaining rules are
straightforward.

Now that we have determined the labels to propagate we have to choose the type
constraints to decorate them with. Let

�
be a list � � �

�
�    ��� � of labels, � a type, and '

an expression, we use the notation � � � � � ' to denote the expression �
�

� � � �

� �/   ���� � '
obtained by prefixing ' by the � -indexed labels in

�
. This notation is used to index the la-

bels deduced by “ .. .. .. ” and define the operational semantics of
�

Duce � as follows (a bet-
ter definition can be found in the on-line extended version available atwww.cduce.org):

f � f ��� ��� f � @�U	� f � @C��
 if f � �� �!$#�U h Z Z Z i �
���� ���� F � f � � f ��� � F�� H � � f � f � � if
� � f � �02 and

� � 2 is defined
match f with

7 � ➔
� � |

7 � ➔
� ��� � f��� �� �� 7 � � F �3� � � f @A7 � 
 if f @A7 � ��	%

and
� ��� � � f @A7 � 
;���

match f with
7 � ➔

� � |
7 � ➔

� � � � f��� �� �� 5 5 5`7 � 8 8 8 � F �9� f��� �� �� 7 � � F ��� � � f @A7 � 
 if f @A7 � � %F< f @A7 � �� %
and

� ��� � � f @A7 � 
;���
The rule for “unlabeled” applications does not change, while the one for applications

14 For example , consider
N E Bool � � � F G / S211 11 11 N N N9N true 3 3 3 N N N54 G 6G 6G 6 7 S S S*S�88 8 N false 3 3 3 N N N 4 G 6G 6G 6�9 S S S*S + + + _ S S S



<company>[
<worker>[

<surname> � String:"Durand"
<name> � String:"Paul"
<salary>[

�
Int:6500 ]

]
<worker>[

<surname> � String:"Dupond"
<name> � String:"Jean"
<salary>[

�
Int:1800]

]
<worker>[

<surname> � String:"Martin"
<name> � String:"Jules"
<salary>[

�
Int:1200]

]
]

<company>[
<worker>[

<surname> � String:"Durand"
<name> � String:"Paul"

]
<worker>[

<surname> � String:"Dupond"
<name> � String:"Jean"

]
<worker>[

<surname> � String:"Martin"
<name> � String:"Jules"

]
]

<company>[
(
�

<worker>[Surname Name] :
<worker>[

<surname> � String:"Durand"
<name> � String:"Paul"

] )
(
�

<worker>[Surname Name] :
<worker>[

<surname> � String:"Dupond"
<name> � String:"Jean"

] )
]

Fig. 4. Labeled XML document and the results of queries Q1 and Q2.
of a labeled function changes as we explained early in this section. Matching clearly is
the key rule. Branch selection is performed as in

�
Duce but the labels determined by .. .. ..

and indexed by the type of the reductum are prepended to the result. In particular if the
first branch is selected, then we just propagate the labels in � .. .. .. D � , as the second pattern
is not even checked. But if the second branch is selected then the result is prepended by
both � .. .. .. D � and � .. .. .. � � � D � � � � : while the first set of labels highlights the first of the two kinds
of indirect flows present in

�
Duce, namely, those due to pattern matching, the second

set of labels fingers the other kind of flows possible in
�

Duce, that is those generated by
branch dependency induced by first match policy. Since we selected the second branch' � knows that D � failed and, therefore, that the matched value � does not belong to (the
semantic interpretation of) the type

� � � D��� � . Therefore, we must also propagate all those
labels in � whose content can be (even partially) deduced from the failure of D � . By
definition these are the labels of � .. .. .. � � � � � � � D � � � � � or equivalently (see Lemma 2) of � .. .. .. � � � D � � � � .

The reduction semantics we obtain is non deterministic since in case of reduction of
a pattern matching or of a labeled function we resort to the type system for determining
the type decoration of the reductum’s labels (and we know that

�
Duce type system does

not enjoy the minimum typing property). As a matter of facts, we have not described a
single analysis but a whole family of analyses. This is slightly annoying from a theo-
retical viewpoint since we have to prove that all of them are sound so that, in practice,
we can use any of them. However this has no consequence under the practical aspect:
first, since we deal with a finite number of labels and types it is always possible to find
the best analysis; second, since this problem already resides in the

�
Duce type system

a choice was already made by the implementation. So we follow the implementation
of

�
Duce and use in Figures 3 and in the operational semantics of

�
Duce � the types

inferred by the
�

Duce’s type-checker: we end up with the best analysis (in the family
described above) that is sound with the current implementation of

�
Duce.

Let us finally apply the analysis to the queries of Section 1. In order to trace how
information of each data flows in the queries, we label the content of each sub-element
of <worker> elements by a different label as shown on the left expression of Figure 4.
The results of the analysis of Q1 and Q2 respectively are the central and right expres-
sions in Figure 4.15 Note that Q1 propagates only the labels of name and surname (the

15 Sequences are encoded by right associative nested pairs ended by ‘nil, XML elements <tag attributes>  
become triples � ‘tag ��� attributes �P ���� , while transform is obtained by iterating matching expressions on the
elements, and encapsulating the results into a sequence.



propagation is a consequence of an explicit flow), thus the analysis has correctly in-
dicated that it is safe. The analysis of Q2 instead propagates also the salary label and
therefore is rejected as insecure. The propagation of � <worker>[Surname Name] is caused by
the “ .. .. .. ” in the first match rule in

�
Duce � ’s operational semantics. In particular when

matching the pattern of transform against an element, the third rule for pairs in Figure 3
decomposes the test over each projection, one of which calculates, say in the first loop,
� � Int � 6500 � .. .. .. MoreThanMe which by the second rule for types in Figure 3 is equal to
� . Note also how the position of the label denotes different kinds of properties: for ex-
ample we specified <salary>[

� �
1200] since we wanted to capture only transformations

that depended on the content of the salary element, while if we rather had specified � �
<salary>[1200] we would have captured also transformations that test the presence of
this element (in the case it were optional).

We want to stress that our analysis can check very complex security entailments.
As explained in the introduction, the independence of the result from salary can also
be ensured by access control techniques or by stripping salary values from the source
document. However, our technique allows one to check that even if a query can access
both salaries and names it cannot correlate them. To that end it just suffices to verify that
the presence of a � or of a � label in the result implies the absence of the � label, and
vice-versa. According to this policy query Q1 would be accepted since � does not occur
in the result while query Q2 would be rejected since all the three labels are in the result.
A query that plainly returned the list of all salaries (without any name or surname) or
some statistic about them, would be considered safe, too. More generally, by using label
propagation and some logic (e.g. propositional one) on labels we can define complex
security policies whose verification, trivial in our technique, would be very hard (if not
impossible at all) by standard access control techniques, as we show in Section 6.

Finally, we can recast the analysis scenarios we outlined in the introduction (Fig-
ure 1) to the present setting. A sound static analysis for our system is an analysis that
computes labels that will be surely absent from result of the dynamic analysis, while a
complete static analysis will determine labels that will be surely present in the same re-
sult. Therefore, here completeness is stated with respect to the dynamic analysis rather
than with respect to the non-interference property. With that respect the work presented
here constitutes the cornerstone of the outlined architecture.

5 Properties
In this section we briefly enumerate the various properties of our approach. For space
reasons proofs and less important lemmas are omitted or just sketched. They are all
reported in extended version of the article available on-line.

In what follows, when we state that ' is a
�

Duce or
�

Duce � expression we im-
plicitly mean that ' is a well-typed (

�
Duce or

�
Duce � ) expression.

Lemma 1 (Strip). Let ' be a
�

Duce � expression. If ' � 	 ' - , then � ' � ��	 � ' - � .
This lemma has two important consequences, namely ����� that

�
Duce � is a conservative

extension of
�

Duce with respect to the reduction theory, and ������� that despite being non-
deterministic the reduction of

�
Duce � preserves the semantics of

�
Duce programs:

Corollary 1. Let ' be a
�

Duce � expression. If ' � ' - , and ' � ' - - , then � ' - � � � ' - - � .
The soundness of

�
Duce � type system is proved by subject reduction and is instru-

mental to the soundness of the analysis.



Theorem 1 (Subject reduction). Let ' be a
�

Duce � expression. If � � ' � � and' ��	 ' - , then ��� ' - � � .
The next lemma is useful to understand the match reduction rules of

�
Duce � .

Lemma 2. For every value � and type � , � � .. .. .. � ��� � � .. .. .. � � � � � (modulo the indexes of � )

In order to prove non-interference we need two lemmas, one that characterizes .. .. .. and
a second that is the non-interference counterpart of the standard substitution lemma in
typed

�
-calculi:

Lemma 3. Let D be a pattern, � a
�

Duce � value with an occurrence � such that �  �
��� � � � . If � 8? � .. .. .. D , then for all � - such that � � � - � � , � � � D 8�:(�� + � � � - � � D 8�:( � holds
true.

Lemma 4 (Substitution). Let D be a pattern, � a
�

Duce � value whose occurrence �
is such that �  � ���&� �)- . If � does not occur in the image of � � D and � 8? � .. .. ..�D , then for
all ��- - such that ��� ��- - � � , we have that + � � �)- - � � D is pointwise equal to � � D .

We can state the non-interference theorem: note that the non-determinism of
�

Duce � ’s
reduction is accounted for by the quantifying on all results � of the expression ' .
Theorem 2 (Non-interference). Let ' be a

�
Duce � expression, with an occurrence

� such that '  � � � � ' � . For every value � such that ' � 	 � , if � 8? � � � � , then �
is non interfering in � ' � with respect to � , i.e., � � - ? �

Duce s.t. � � � - � � , we have
�H+ � � ��- � � ��	 � � �
By using Proposition 2 it is easy to see that the conclusion of the theorem implies
the Definition 2 of non-interference, justifying in this way the “i.e.” we used in the
statement of the theorem.

6 A last example
We end our presentation by commenting a more articulated example to illustrate the

type ExamBase = <exam_base>[Person*]
type Person = <person gender="M"|"F">

[Name Birth Grade?]
type Name = <name>String
type Birth = <birth>[Year Month Day]
type Year = <year>[Int]
type Month = <month>MName
type MName= "Jan"|"Feb"|"Mar"|"Apr"| �����
type Day = <day>[1--31]
type Grade = <grade>[Int]

use of our technique to define and verify com-
plex security policies that cannot be expressed in
terms of access control. We suppose to store in
XML-documents information about persons that
have to pass some examination. The form of the
documents is described by the type declarations
on the right. As we see every document records
a list of names, with personal information, and
with an optional <grade> element that stores the numerical result of the examination.
The absence of such an element denotes that the person has not passed (that is, either
not taken or taken and failed) the examination, yet. An XML document that verifies this
schema is shown in the left column of Figure 5, while the central column reports the
result of importing the same document in

�
Duce.

Imagine that examination documents can be accessed by three different categories
of users, academic staff, administrative staff, and normal users. We want academic staff
to have unconstrained access to the information stored in the examination documents
while we may wish to constrain the accesses for administration and normal users. As
an example of security requirements we may wish to enforce we have:

1. Only academic users can have information both on names and grades or on names
and birthdays simultaneously.



<?xml version="1.0"?>
<exam_base>

<person gender="M">
<name>Durand</name>
<birth>

<year>1970</year>
<month>Aug</month>
<day>10</day>

</birth>
<grade>110</grade>

</person>
<person gender="M">

<name>Dupond</name>
<birth>

<year>1953</year>
<month>Apr</month>
<day>22</day>

</birth>
</person>
<person gender="F">

<name>Dubois</name>
<birth>

<year>1965</year>
<month>Sep</month>
<day>2</day>

</birth>
<grade>120</grade>

</person>
</exam_base>

let eb : ExamBase =
<exam_base>[

<person gender="M">[
<name>"Durand"
<birth>[

<year>[1970]
<month>"Aug"
<day>[10]

]
<grade>[110]

]
<person gender="M">[

<name>"Dupond"
<birth>[

<year>[1953]
<month>"Apr"
<day>[22]

]
]
<person gender="F">[

<name>"Dubois"
<birth>[

<year>[1965]
<month>"Sep"
<day>[2]

]
<grade>[120]

]
]

let eb : ExamBase =
<exam_base>[

<person gender= stat"M"|"F" : "M">[
<name> nameString : "Durand"
<birth>[

<year>[ statInt : 1970]
<month> privateMName : "Aug"
<day>[ private(1--31) : 10]

]
passedGrade : <grade>[ resultInt : 110]

]
<person gender= stat"M"|"F" : "M">[

<name> nameString : "Dupond"
<birth>[

<year>[ statInt : 1953]
<month> privateMName : "Apr"
<day>[ private(1--31) : 22]

]
]
<person gender= stat"M"|"F" : "F">[

<name> nameString : "Dubois"
<birth>[

<year>[ statInt : 1965]
<month> privateMName : "Sep"
<day>[ private(1--31) : 2]

]
passedGrade : <grade>[ resultInt : 120]

]
]

Fig. 5. A database of examinations: in XML, in
�

Duce, and in
�

Duce �

2. The administrative users can check whether a person passed the examination (that
is, they can check for the presence of a <grade> element) but cannot access the
result.

3. Every user can ask for statistical results on grades upon criteria limited to year
of birth and gender (so that they cannot select sufficiently restrictive sets to infer
personal data).

To dynamically verify these constraints we introduce five labels that we use to clas-
sify the information stored in documents: private (that classifies the month and the
day of birth), stat (that classifies the year of birth and the gender attribute), name

type Person = <person gender= stat:("M"|"F")>
[ Name Birth ( passed:Grade)? ]

type Name = <name>( name:String)
type Year = <year>[ stat:Int]
type Month = <month>( private:MName)
type Day = <day>[ private:(1--31)]
type Grade = <grade>[ result:Int]

(that classifies names), passed (that classi-
fies grade elements), and result (that classifies
the content of grade elements). Rather than
document-wise, this classification is described
directly on types as shown by the definitions
on the right. Note that in these definitions la-
bels have no indexes (in documents they will be indexed by the types they are labeling).
Before executing a query the system uses this specification to generate a labeled version
of the document as shown in the last column of Figure 5. The query is then executed
on the labeled document (according to the semantics of

�
Duce � ) and the following

constraints16 are checked in the result:

If the owner of the query is a normal user, then the result must satisfy:
name �

� � private
�

stat
�

result
�

passed � � private �
� � stat

�
result �

16 For the sake of the example we expressed these constraints in a propositional logic where the labels are
atoms, but different languages are possible. The definition of such languages is out of the scope of the
paper and matter of future research: see Section 7.



if the owner of the query is an administrative user, then the result must satisfy:
name �

� � private
�

stat
�

result � � private �
� � stat

�
result �

where a propositional label is satisfied if and only if the label is present in the result.
Thus, for instance, the second constraint must be read: if the label name occurs in the
result then private, stat, and result cannot occur in it, and if private occurs in the result
then stat, and result do not. The difference with respect to the constraint for normal
users is that the second constraint allows name and passed to occur simultaneously in
the same result. Therefore a query that just tested the presence of a <grade> element
without checking its content would satisfy this second constraint.

If the result of a query satisfies the corresponding constraint, then its stripped ver-
sion is returned to the owner of the query.

7 Perspectives
This paper contains exploratory work toward the definition of information flows secu-
rity in XML transformations. As such it opens several perspectives both for the practical
and the theoretical aspects.

First and foremost the cost of the dynamic analysis must be checked against an
implementation (we are currently working on it). We expect this cost to be reasonably
low:

�
Duce’s pattern matching fully relies on dynamic type checking, therefore if we

embed the dynamic generation of typed security labels in
�

Duce’s runtime the resulting
overhead should be small. Also, to fill the gap with practice we must devise expressive
and user-friendly ways to describe the labeling of XML documents in the meta-data
(that is, XML Schemas and DTDs) and to express the associated security policies (for
instance, in Section 6 we expressed them in propositional logic). These security prop-
erties should be defined by sets of constraints (i.e., formulæ of an appropriate logic)
that are automatically generated from a specification expressed in an “ad hoc” language
(e.g., like the authorizations defined in [6]).

The precision of the dynamic analysis must be enhanced by program rewriting tech-
niques. To exemplify, an obvious “optimization” consists in rewriting all closed (i.e.,
without capture variables) patterns into an equivalent type constraint pattern, by replac-
ing

� � �
for &&& ,

� � �
for ||| , and � � � for � � � 1 1 1 � � � , so as to transform the pattern � � �*j � � � � 1 1 1 m 0 0 0 � � � � into

the type �*j � � � � ���� � �(m � � � � � . Indeed, the analysis on types is more precise than that on
equivalent patterns as the latter is recursively applied to subcomponents forgetting, in
doing so, many interdependencies. But other subtler rewritings could improve our anal-
ysis: for instance D � � � + 0 0 0 true � � � � � + 0 0 0 false � is equivalent to D � � + 0 0 0 � true

� � �
false �

but � � Bool � ' � .. .. ..�D � � � Bool ��� � ' .. .. .. D � � while � � Bool � ' � .. .. .. D � � � ok. This discrepancy can be
identified with the fact that the analyses of pair, intersections, and union patterns are
performed independently on the two subpatterns. Thus a possible way to tackle this
problem is by transferring some information from one pattern to the other, for exam-
ple by mimicking the automaton-based technique used by

�
Duce for the just-in-time

compilation of patterns.
Finally note that one of the main technical novelties of this work is to endow se-

curity labels with constraints. The constraints at issue are quite simple, since they just
express the static knowledge of the type of the labeled expression. It is then natural
to think of much more expressive constraints. For example we can think of endowing
labels with integrity constraints and define non-interference just in terms of consistent



databases. In this perspective a program that checked the integrity of a base would be
always interference-free even if it accessed private information. Of course checking
non-interference in this case would be even more challenging but it could pave the way
to (security) proof carrying code for XML.
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