
Deadline Fair Scheduling: Bridging the Theory and Practice of Proportionate
Fair Scheduling in Multiprocessor Systems

�

Abhishek Chandra, Micah Adler and Prashant Shenoy
Department of Computer Science,

University of Massachusetts,
Amherst, MA 01003�

abhishek,micah,shenoy � @cs.umass.edu

Abstract

In this paper, we present Deadline Fair Scheduling
(DFS), a proportionate-fair CPU scheduling algorithm for
multiprocessor servers. A particular focus of our work is to
investigate practical issues in instantiating proportionate-
fair (P-fair) schedulers into conventional operating sys-
tems. We show via a simulation study that characteris-
tics of conventional operating systems such as the asyn-
chrony in scheduling multiple processors, frequent arrivals
and departures of tasks, and variable quantum durations
can cause proportionate-fair schedulers to become non-
work-conserving. To overcome this drawback, we combine
DFS with an auxiliary work-conserving scheduler to ensure
work-conserving behavior at all times. We then propose
techniques to account for processor affinities while schedul-
ing tasks in multiprocessor environments. We implement the
resulting scheduler in the Linux kernel and evaluate its per-
formance using various applications and benchmarks. Our
experimental results show that DFS can achieve proportion-
ate allocation, performance isolation and work-conserving
behavior at the expense of a small increase in the schedul-
ing overhead. We conclude that practical considerations
such as work-conserving behavior and processor affinities
when incorporated into a P-fair scheduler such as DFS can
result in a practical approach for scheduling tasks in a mul-
tiprocessor operating system.

1. Introduction

Recent advances in computing and communication tech-
nologies have led to a proliferation of demanding appli-
cations such as streaming audio and video players, multi-
player games, and online virtual worlds. A key character-
�
This research was supported in part by a NSF Career award CCR-

9984030, NSF grants ANI 9977635, CDA-9502639, EIA-0080119, Intel,
IBM, EMC, Sprint, and the University of Massachusetts.

istic of these applications is that they impose (soft) real-
time constraints, and consequently, require predictable per-
formance guarantees from the underlying operating system.
Several resource management techniques have been devel-
oped for predictable allocation of processor bandwidth to
meet the needs of such applications [2, 3, 10, 16]. Propor-
tionate fair schedulers are one such class of scheduling al-
gorithms [5]. A proportionate-fair (P-fair) scheduler allows
an application to request ��� time units every ��� time quanta
and guarantees that over any 	 quanta, 	�
� , a contin-
uously running application will receive between ������ ��� 	��
and � � �� � � 	�� quanta of service. P-fairness is a strong notion
of fairness, since it ensures that, at any instant, no appli-
cation is more than one quantum away from its due share.
Another characteristic of P-fairness is that it generalizes to
environments containing multiple instances of a resource
(e.g., multiprocessor systems).

Several P-fair schedulers have been proposed over the
past few years [1, 4, 14]. Most of these research efforts
have focused on theoretical analyses of these schedulers.
In this paper, we consider practical issues that arise when
implementing a proportionate-fair scheduler into a multi-
processor operating system kernel. Our research effort has
led to several contributions. First, we propose a new P-fair
scheduling algorithm referred to as Deadline Fair Schedul-
ing (DFS) for multiprocessor environments. We then show
using simulations that typical characteristics of multipro-
cessor operating systems such as the asynchrony in schedul-
ing multiple processors, frequent arrivals and departures of
tasks, and variable quantum durations can cause a P-fair
scheduler such as DFS to become non-work-conserving.
Since a non-work-conserving scheduler can cause a proces-
sor to remain idle even in the presence of runnable tasks
(which reduces processor utilization), an important practi-
cal consideration is to ensure work-conserving behavior at
all times. To achieve this objective, we draw upon the con-
cept of fair airport scheduling [12] to combine DFS with
an auxiliary work-conserving scheduler in order to guaran-
tee work-conserving behavior. Another practical considera-

tion for multiprocessor schedulers is the ability to take pro-
cessor affinities [18] into account while making scheduling
decisions—scheduling a thread on the same processor en-
ables it to benefit from data cached from previous schedul-
ing instances and improves the effectiveness of a processor
cache. We propose techniques that enable a P-fair sched-
uler such as DFS to account for processor affinities; our
technique involves a practical tradeoff between three con-
flicting considerations—fairness, scheduling efficiency, and
processor cache performance.

We have implemented DFS in the Linux operating sys-
tem and have made the source code available to the research
community.1 We chose Linux over a real-time kernel such
as Spring [17], since we are primarily interested in exam-
ining the practicality of using a P-fair scheduler for mul-
timedia and soft real-time applications and we believe that
such applications will typically coexist with traditional best-
effort applications on a conventional operating system. We
experimentally evaluate the efficacy of our scheduler using
numerous applications and benchmarks. Our results show
that DFS can achieve proportionate allocation, application
isolation and work-conserving behavior, albeit at a slight
increase in scheduling overhead. We conclude from these
results that a careful blend of theoretical and practical con-
siderations can yield a P-fair scheduler suitable for conven-
tional multiprocessor operating systems.

The rest of this paper is structured as follows. Section 2
presents basic concepts in fair proportional-share schedul-
ing. Section 3 presents our deadline fair scheduling al-
gorithm. Sections 4 and 5 discuss two practical issues in
implementing DFS, namely work-conserving behavior and
processor affinities. Section 6 presents the details of the
DFS implementation in Linux. Section 7 presents the re-
sults of our experimental evaluation and we present our con-
clusions in Section 8.

2. Proportional-Share Scheduling and
Proportionate-Fairness: Basic Concepts

Popular applications such as streaming audio and video
and multi-player games have timing constraints and require
performance guarantees from the underlying operating sys-
tem. Such applications fall under the category of soft real-
time applications—due to their timing constraints, the util-
ity provided to users is maximized by maximizing the num-
ber of real-time constraints (e.g., deadlines) that are met,
but unlike hard real-time applications, occasional violations
of these constraints do not result in incorrect execution or
catastrophic consequences.

Several resource management mechanisms have been
developed to explicitly deal with soft real-time applications
[2, 10, 11, 15, 19]. These mechanisms broadly fall un-
der the category of proportional-share schedulers—these

1See http://lass.cs.umass.edu/software/gms

schedulers associate an intrinsic rate with each applica-
tion and allocate bandwidth in proportion to the specified
rates. Schedulers based on generalized processor sharing
(GPS) [15] such as weighted fair sharing [9], start-time
fair queuing [11] and borrowed virtual time [10] are one
class of proportional-share schedulers. West et al. [20]
have described a deadline-based proportional-share sched-
uler which takes into account acceptable loss rates for mul-
tiple streams. Recently, several studies have focused on
proportional-share scheduling in multiprocessors. Jones et
al. have proposed a reservation-based scheduler for mul-
tiprocessors in [13], while relative weight-based allocation
for multiprocessor systems was studied in [6].

Proportionate fair (P-fair) schedulers are another class
of proportional-share schedulers. P-fairness is based on the
notion of proportionate progress [5]. Each application re-
quests � � quanta of service every � � time quanta. The sched-
uler then allocates processor bandwidth to applications such
that, over any 	 time quanta, 	
 � , a continuously running
application receives between ��� �� � � 	�� and � � �� � � 	�� quanta
of service. As indicated in Section 1, P-fairness is a strong
notion of fairness, since it ensures that, at any instant, no ap-
plication is more than one quantum away from its due share.
Unlike GPS-fairness which assumes that applications can
be serviced in terms of infinitesimally small time quanta, P-
fairness assumes that applications are allocated finite dura-
tion quanta (and thus is a more practical notion of fairness).
However, the above definition of P-fairness assumes that
the quantum duration is fixed. In practice, blocking or I/O
events might cause an application to relinquish the proces-
sor before it has used up its entire allocated quantum, and
hence, quantum durations tend to vary from one quantum
to another. Moreover, P-fairness implicitly assumes that
the set of tasks in the system is fixed. In practice, arrivals
and departures of tasks as well as blocking and unblocking
events can cause the task set to vary over time.

Several algorithms have been proposed which achieve
P-fairness in an ideal model — synchronized, fixed quan-
tum durations and a fixed task set [1, 4, 5]. In the context
of multiprocessors, P-fair schedulers for static and migrat-
able tasks have been studied in [14]. Most of these papers
have focused on the theoretical aspects of P-fair schedul-
ing. In this paper, we propose an algorithm based on the
notion of P-fairness which achieves proportional-share in
practical systems. This algorithm is clearly defined even
when the system has variable quantum durations and ar-
rivals and departures of tasks. Moreover, when the quantum
sizes and the task set are fixed, it achieves P-fairness. To
seamlessly account for non-ideal system considerations, in
this paper, we use a modified definition of P-fairness for the
ideal model: Let

� � denote the share of the processor band-
width that is requested by task � in a � -processor system.
Then, over any 	 time quanta, 	
 � , a continuously run-
ning application should receive between ��� ���� �

�
� � 	�� and

� � ���� �
�
� � 	�� quanta of service. Observe that, in the ideal

model, this definition reduces to the original definition of P-
fairness in the case where

� ���� �� � and
� � � � � � (which

corresponds to the tasks using up all the quantums available
on the processors).

A final dimension for classifying proportional-share
schedulers is whether they are work-conserving or non-
work-conserving. A scheduler is defined to be work-
conserving if it never lets a processor idle so long as there
are runnable tasks in the system. Non-work-conserving
schedulers, on the other hand, can let idle a processor even
in the presence of runnable tasks. Intuitively, a work-
conserving proportional-share scheduler treats the shares al-
located to an application as lower-bounds—a task can re-
ceive more than its requested share if some other task does
not utilize its share. A non-work-conserving proportional-
share scheduler treats these shares as upper-bounds—a task
does not receive more than its requested share even if
the processor is idle. To achieve good resource utiliza-
tion, schedulers employed in conventional operating sys-
tems tend to be work-conserving in nature.

In what follows, we present a scheduling algorithm for
multiprocessor environments based on the notion of propor-
tionate fairness. We then consider two practical issues that
will require us to relax the notion of strict P-fairness (i.e, we
trade strict P-fairness for more practical considerations).

3. Deadline Fair Scheduling

3.1. System Model

Consider a � -processor system that services � tasks. At
any instant, some subset of these tasks will be runnable
while the remaining tasks are blocked on I/O or synchro-
nization events. Let � denote the number of runnable tasks
at any instant. In such a scenario, the CPU scheduler must
decide which of these � tasks to schedule on the � pro-
cessors. We assume that each scheduled task is assigned
a quantum duration of ���	� � ; a task may either utilize its
entire allocation or voluntarily relinquish the processor if it
blocks before its allocated quantum ends. Consequently, as
is typical on most multiprocessor systems, we assume that
quanta on different processors are neither synchronized with
each other, nor do they have a fixed duration. An important
consequence of this assumption is that each processor needs
to individually invoke the CPU scheduler when its current
quantum ends, and hence, scheduling decisions on different
processors are not synchronized with one another.

Given such an environment, assume that each task speci-
fies a share

� � that indicates the proportion of the processor
bandwidth required by that task. Since there are � proces-
sors in the system and a task can run on only one processor
at a time, each task cannot ask for more than
� of the total
system bandwidth. Consequently, a necessary condition for

feasibility of the current set of tasks is as follows:
� ������
 � � ���

� (1)

This condition forms the basis for admission control in our
scheduler and is used to limit the number of tasks in the
system. Our Deadline Fair Scheduling (DFS) algorithm
achieves these allocations based on the notion of propor-
tionate fairness. To see how this is done, we first present
the intuition behind our algorithm and then provide the pre-
cise details.

3.2. DFS: Key Concepts

Conceptually, DFS schedules each task periodically; the
period of each task depends on its share

� � . DFS uses an
eligibility criterion to ensure that each task runs at most
once in each period and uses internally generated deadlines
to ensure that each task runs at least once in each period.2

The eligibility criterion makes each task eligible at the start
of each period; once scheduled on a processor, a task be-
comes ineligible until its next period begins (thereby allow-
ing other eligible tasks to run before the task runs again).
Each eligible task is stamped with an internally generated
deadline. The deadline is typically set to the end of its pe-
riod in order for the task to run by the end of its period.
DFS schedules eligible tasks in earliest deadline first order
to ensure each task receives its due share before the end of
its period. Together, the eligibility criterion and the dead-
lines allow each task to receive processor bandwidth based
on the requested shares, while ensuring that no task gets
more or less than its due share in each period.

To intuitively understand how the eligibility criteria and
deadlines are determined, let us assume that the quantum
length=1, that each task always runs for an entire quantum,
and that there are no arrivals or departures of tasks into the
system3. Let � ������� be the number of times that task � has
been run up to time � , where time 0 is the instant in time be-
fore the first quantum, time 1 is the instant in time between
the first and second quanta, and so on. With these assump-
tions, to maintain P-fairness, we require that for all times �
and tasks � ,� � � � �������
 � ��� � � ��� ��� �"! � � � ��#����
 � ��$&%
where � � � is the total processing capacity on the � proces-
sors in time ' ��()��� . The eligibility requirements ensure that� � � ��� never exceeds this range, and the deadlines ensure
that � ��� ��� never falls short of this range. In particular, for

2In other words, we can consider each task to consist of periodic sub-
tasks, whose release times are determined using the eligibility criteria, and
each subtask needs to execute once before its deadline expires.

3The actual scheduling algorithm does not make any of these assump-
tions; we do so here for simplicity of exposition.

task � to be run during a quantum, it must be the case that
at the end of that quantum, � ������� is not too large. Thus, we
specify that task � is eligible to be run at time � only if

� � � ����� � � ! � ��� � � � � ��#����
 � � $ % (2)

The deadlines ensure that a job is always run early enough
that � � � ��� never becomes too small. Thus, at time � we
specify the deadline for the completion of the next run of
task � (which will be the � ��� ����� � st run) to be the first time��� such that � ��� � � �������
 � � � � � ��� ����� � %
Since � ��� ��� and � � are always integers, this is equivalent to
setting � � � ! � � � � ����� � � ������
 � �� � � $ % (3)

With our assumptions (no arrivals or departures, and ev-
ery task always runs for a full quantum), it can be shown
that, if at every time step, we run the � eligible tasks with
smallest deadlines (with suitable rules for breaking ties, as
described below), then no task will ever miss its deadline.
This, combined with the eligibility requirements, ensures
that the resulting schedule of tasks is P-fair. That schedule
is also work-conserving.

Since the actual scenario where we apply this algorithm
has both variable length quantum lengths, as well as arrivals
and departures, the actual DFS algorithm will use a slightly
different method for accounting for the amount of CPU ser-
vice that each task has achieved. This greatly simplifies the
accounting for the scenario we need to deal with. We shall
also see that in this more difficult scenario, the algorithm is
not work-conserving, and we shall remedy this by enhanc-
ing the basic DFS algorithm to ensure work-conserving be-
havior. The method of accounting that we shall use for the
basic DFS algorithm also interfaces very easily with these
enhancements.

To understand the accounting method, assume that for
every task � , � � denotes the CPU service received by the
task so far. All tasks that are initially in the system start
with a value of � � set to 0. Whenever task � is run, � � is
incremented as � � �	� �
�
� � . In GPS-based algorithms
such as WFQ [9] and SFQ [11], the quantity � � is referred
to as the start tag of task � ; we use the same terminology
here. Let � � � � � � � � � � �� � � � � . Intuitively, � is a
weighted average of the progress made by the tasks in the
system at time � , and is referred to as the virtual time in the
system. Substituting � � � � � ������� � � and � � � ��� � � � �
into Equation 2, we see that the eligibility criteria becomes� � � � ��� � � � � ������� ��� � � � � � � .

Let � � , the finish tag of task � , be the CPU service re-
ceived by task � at the end of the next quantum where

task � is run. Then, � � ��� ���
� � . Substituting � � �� � ��������� � ��� � � into Equation 3, we see that the deadline for

task � becomes � � � � �������� � �� � ��� . Together, the eligibil-

ity condition and the deadlines enable DFS to ensure P-fair
allocation. Having provided the intuition for our algorithm,
in what follows, we provide the details of our scheduling
algorithm.

3.3. Details of the Scheduling Algorithm

The precise DFS algorithm works as described below.
Each task in the system is associated with a share

� � , a
start tag � � and a finish tag � � . When a new task arrives,
its start tag is initialized as � � � � , where � is the current
virtual time of the system (defined below). When a task
runs on a processor, its start tag is updated at the end of the
quantum as � � �!� � �#"� � , where � is the duration for which
the thread ran in that quantum. If a blocked task wakes up,
its start tag is set to the maximum of its previous start tag
and the virtual time. Thus, we have� � �%$ max �&� ��(���� if the thread just woke up� �'� "� � if the thread is run on a processor

(4)
After computing the start tag, the new finish tag of the task
is computed as � � �(� �)�+*"� � , where ,� is the maximum
amount of time that task � can run the next time it is sched-
uled. Note that, if task � blocked during the last quantum it
was run, it will only be run for some fraction of a quantum
the next time it is scheduled, and so ,� may be smaller than� �	� � .

Initially the virtual time of the system is zero. At any in-
stant, the virtual time is defined to be the weighted average
of the CPU service received by all currently runnable tasks.
Defined as such, the virtual time may not monotonically in-
crease if a runnable task with a start tag that is above average
departs. To ensure monotonicity, we set � to the maximum
of its previous value and the average CPU service received
by a thread. That is,� � max -�� (�����
 � � � � ��#����
 � �/. (5)

If all processors are idle, the virtual time remains unchanged
and is set to the start tag (on departure) of the thread that ran
last.

At each scheduling instance, DFS computes the set of
eligible threads from the set of all runnable tasks and then
computes their deadlines as follows, where ���	� � is the max-
imum size of a quantum.0 Eligibility Criterion: A task is eligible if it satisfies the

following condition.� � � �� �	� � � � � ! � �1- �� �	� � � �� ����
 � �2. $ (6)

0 Deadline: Each eligible task is stamped with a dead-
line of ! � �� �	� � � - � ����
 � �� . $ (7)

DFS then picks the task with the smallest deadline and
schedules it for execution. Ties are broken using the follow-
ing two tie-breaking rules:0 Rule 1: If two (or more) eligible tasks have the same

deadline, pick the task � (if one exists) such that� � �� �	� � � - � ����
 � �� . ��� ! � �� �	� � � - � ����
 � �� . $ %
Intuitively, such a task becomes eligible for its next
period before its current deadline expires, and hence,
we can have more eligible tasks in the system if this
task is given preference to one that becomes eligible
later than its deadline.0 Rule 2: If multiple tasks satisfy rule 1, then pick the
task with the maximum value of ����� � , where, � � is
the group deadline [1] of the task i, and is computed as
follows.

� � � � , if

� ��� � ��������� � ��� �
	 %
Otherwise, initially,

� � � � �
� �� � ����
 � � ��
 � � � � %

From then on, whenever � � ��� � � � � �����&� � � ��� ,

� � is incremented by

� ���� � � � ����&� � � ����� ��� � � .
Intuitively, this is the task that has the most severe con-
straints on its subsequent deadlines.

Any further ties are broken arbitrarily. These tie-breaking
rules are required to ensure P-fairness in the ideal case
where there are no arrivals or departures, and every task
always runs for a full quantum.

3.4. Properties of DFS

Assuming synchronized fixed-length quanta and a fixed
set of runnable tasks, and the feasible share condition (equa-
tion 1), the following properties hold for DFS:

Lemma 1 Given a set of feasible tasks, DFS always gen-
erates a P-fair schedule.

Lemma 2 Given a set of feasible tasks, DFS is work-
conserving in nature.

DFS is similar to a P-fair scheduling algorithm proposed
in [1]. We can show that under the ideal system assumption,
DFS reduces to this algorithm. A proof of these properties
can be found in [7].

In the next two sections, we examine two practical
issues, namely work-conserving behavior and processor
affinities, that arise when implementing DFS into a mul-
tiprocessor operating system.

4. Ensuring Work-conserving Behavior in DFS

As indicated in Section 3.4, DFS is provably work-
conserving under the assumption of a fixed task set and syn-
chronized fixed length quanta. However, neither assump-
tion holds in a typical multiprocessor system. In this sec-
tion, we examine via a simulation study if DFS is work-
conserving in the absence of these assumptions. It is pos-
sible for DFS to become non-work-conserving since the
scheduler might mark certain runnable tasks as ineligible,
resulting in fewer eligible tasks than processors (causing
one or more processors to idle even in the presence of
runnable tasks in the system). In what follows, we first
present the methodology employed for our simulations and
then present our results.

4.1. Behavior of DFS in a Conventional Operating
System Environment

The methodology for our simulation study is as follows.
We start with an idealized system that assumes a fixed task
set and synchronized fixed length quanta. We then relax
each assumption in turn and study the impact of doing so on
the work-conserving nature (or lack thereof) of the sched-
uler. Specifically, the assumptions we relax incrementally
are synchronous quanta in the system, fixed length quantum
durations, and no arrivals and departures of tasks. At each
step, we measure the percentage of CPU cycles for which
the system becomes non-work-conserving and the number
of processors that are simultaneously idle in the non-work-
conserving mode. Such a step-by-step study helps us to de-
termine if the system exhibits non-work-conserving behav-
ior, and if so, the primary cause for this behavior. If our sim-
ulations indicate that the percentage of time for which the
system is non-work-conserving is zero or small, then a P-
fair scheduler such as DFS can be instantiated in a conven-
tional multiprocessor operating system without any mod-
ifications. In contrast, if the system becomes non-work-
conserving for significant durations, then we will need to
consider remedies to correct this behavior. As a caveat, we
have not used the tie-breaking rules outlined in the algo-
rithm in our kernel implementation and simulation study,
because, these rules are less meaningful when the ideal as-
sumptions are relaxed.

To conduct our simulation study, we simulate multipro-
cessor systems with 2, 4, 8, 16 and 32 processors. We ini-

0

2

4

6

8

10

12

0 20 40 60 80 100

Id
le

 C
P

U
 c

yc
le

s
(%

)

Avg. number of threads in the system

Asynchronous quanta, no arrivals/departures

2 cpus
4 cpus
8 cpus

16 cpus
32 cpus

0

20

40

60

80

100

1 1 4 1 8 1 16 1 32

%
 o

f n
on

-w
or

k-
co

ns
er

vi
ng

 c
lo

ck
 ti

ck
s

Number of CPUs simultaneously idle

Asynchronous quanta, no arrivals/departures

2 cpus
4 cpus

8 cpus

16 cpus

32 cpus

(a) Variation with number of tasks (b) Number of simultaneously idle processors

Figure 1. Effect of asynchronous quanta on the work-conserving behavior.

0

2

4

6

8

10

12

0 20 40 60 80 100

Id
le

 C
P

U
 c

yc
le

s
(%

)

Avg. number of threads in the system

Asynchronous quanta, arrivals/departures

2 cpus
4 cpus
8 cpus

16 cpus
32 cpus

0

20

40

60

80

100

1 1 4 1 8 1 16 1 32

%
 o

f n
on

-w
or

k-
co

ns
er

vi
ng

 c
lo

ck
 ti

ck
s

Number of CPUs simultaneously idle

Asynchronous quanta, arrivals/departures

2 cpus

4 cpus

8 cpus

16 cpus

32 cpus

(a) Variation with number of tasks (b) Number of simultaneously idle processors

Figure 2. Effect of arrivals and departures on the work-conserving behavior.

tialize the system with a certain number of runnable tasks
(Note that the actual number of tasks in a system can be
much larger than that of runnable tasks). In the scenario
where arrivals and departures are allowed, we generate
these events using exponential distributions for inter-arrival
and inter-departure times; the mean rates of arrivals and de-
partures are chosen to be identical to keep the system stable.
The processor share

� � requested by each task is chosen
randomly from a uniform distribution and we ensure that
requested shares are feasible at all times. As is true for an
actual operating system, our simulations measure time in
units of clock ticks. The maximum quantum duration is set
to 10 ticks. In the scenario where the quantum duration can
vary, we do so by using a uniform distribution from 1 to 10
ticks. We simulate each of our four scenarios for 10,000
ticks and repeat the simulation 1,000 times, each with a dif-
ferent seed (so as to simulate a wide range of task mixes).
We obtain the following results from our study:0 Ideal system: As expected, our simulation results show

that DFS is work-conserving in an ideal system where
the set of tasks is fixed and quanta are synchronized
and of fixed length , which conforms to the theoretical

properties (Lemma 2) listed in Section 3.4.0 Asynchronous quanta: We add asynchrony to the sys-
tem by allowing each processor to independently in-
voke the scheduler when its current quantum ends;
the length of each quantum is fixed and so are the
number of tasks in the system. As shown in Fig-
ure 1(a), this causes the system to become non-work-
conserving. The non-work-conserving behavior is
most pronounced when the number of tasks in the sys-
tem is close to the number of processors; for such
cases, the fraction of the CPU cycles that are wasted
due to one or more processors being idle is as large
as 12%. The figure also shows that increasing the
number of runnable tasks causes an increase in the
number of eligible tasks in the system and thereby re-
duces the chances of the system becoming non-work-
conserving. Figure 1(b) plots a histogram of the num-
ber of processors that simultaneously remain idle when
the system is non-work-conserving. As shown in the
figure, multiple processors can simultaneously become
idle in the non-work-conserving state, which degrades
overall system utilization.

0 Variable length quanta: Next, we let the quantum
lengths vary but keep the number of tasks in the sys-
tem fixed. Again, our simulations show that the sys-
tem becomes non-work-conserving. The results ob-
tained for this scenario (asynchronous variable-length
quanta) are similar to that obtained in the previous sce-
nario (asynchronous fixed-length quanta). This indi-
cates that the asynchrony in scheduling is the primary
cause for non-work-conserving behavior and variable
length quanta does not substantially worsen this be-
havior. Since these results are similar to the previous
scenario, we omit them for reasons of space.0 Arrivals and departures: Our final scenario adds ar-
rivals and departures to the system. Again, we see that
the system becomes non-work-conserving especially
when the number of tasks is close to the number of
processors (see Figure 2). Interestingly, we find that
the average fraction of CPU cycles that are wasted de-
creases slightly as compared to the previous two sce-
narios (observe this by comparing Figures 2(a) and
1(a)). We hypothesize that this decrease is caused by
new arrivals, each of which introduces an additional
eligible task into the system, causing an idle proces-
sor (if one exists) to schedule this task. Without such
arrivals, the processor would have idled until an exist-
ing ineligible task became eligible. Departures, which
have the opposite effect, seem to have a smaller impact
on the non-work-conserving behavior. We hypothesize
that this diminished effect is because work-conserving
behavior is governed by the set of eligible tasks and
departures typically do not affect this set (a departure
affects the set of ineligible tasks, since that task would
have been likely to be classified as ineligible if it hadn’t
departed).

We conclude from our simulation study that DFS can
exhibit non-work-conserving behavior when employed in
a conventional multiprocessor operating system. Since the
fraction of CPU cycles that can be wasted can be as large as
10-12%, the DFS scheduler needs to be enhanced with an
additional policy that allocates idle processor bandwidth to
tasks that are runnable but ineligible (so as to improve sys-
tem utilization). In the rest of this section we show how to
combine DFS with an auxiliary work-conserving scheduler
to achieve this objective.

4.2. Combining DFS with Fair Airport Scheduling

We draw upon the concept of fair airport scheduling
to enhance DFS with an auxiliary policy to allocate idle
bandwidth to ineligible runnable tasks. The notion of fair
airport was proposed in the context of scheduling pack-
ets at a network router [8, 12]. A fair airport sched-
uler attempts to combine a potentially non-work-conserving
scheduling algorithm with an auxiliary scheduler to ensure

rate regulator

 Guaranteed
service queue

‘ Auxiliary
service queue

GSQ scheduler

ASQ scheduler

FA Server

Figure 3. Fair Airport Scheduling Algorithm

work-conserving behavior at all times. Each packet (or task)
in a fair airport scheduler joins a rate regulator and an Auxil-
iary Service Queue (ASQ) (see Figure 3). The rate regulator
is responsible for determining when a packet is eligible to
be scheduled. Once eligible, the packet passes through the
regulator and joins the Guaranteed Service Queue (GSQ)
and is then serviced by the GSQ scheduler. If the guaran-
teed service queue becomes empty, the ASQ scheduler is
invoked to service packets in the ASQ (note that these are
packets that are currently ineligible). The combined sched-
uler always gives priority to the GSQ over the ASQ—the
GSQ scheduler gets to schedule packets so long as the GSQ
is non-empty and the ASQ scheduler is invoked only when
GSQ becomes empty. Different scheduling algorithms may
be employed for servicing packets in the guaranteed ser-
vice and auxiliary service queues. Depending on the exact
choice of the ASQ and GSQ schedulers, it is possible to
theoretically prove properties of the combined scheduling
algorithm (see [8, 12] for examples).

The concept of fair airport scheduling can also be em-
ployed to schedule tasks in a multiprocessor system. Our
instantiation of fair airport, referred to as DFS-FA, employs
DFS as the GSQ scheduler. The rate regulator for each task
is simply its eligibility criterion (Eq 6); the rate regulator
then ensures that a task joins the guaranteed service queue
only once in each period. The ASQ scheduler is used to ser-
vice tasks if the GSQ becomes empty. By servicing tasks
that are runnable but ineligible, the ASQ scheduler ensures
that the combined scheduler is work-conserving at all times.

Any work-conserving scheduling algorithm can be used
to instantiate the ASQ scheduler. We choose a scheduler
that services ASQ tasks in the increasing order of start tags
(i.e., when the GSQ becomes empty, the task with the small-
est start tag in the ASQ is scheduled for execution). There
are a number of reasons for choosing this scheduling policy.
The first reason is the simplicity of implementation, where
we can simply reuse the data structures for DFS to imple-
ment the Fair Airport policy (see section 6 for details). Sec-
ondly, note that, scheduling tasks in order of start tags is
equivalent to using Start time fair queueing [11], a schedul-
ing algorithm that has known fairness and delay properties
for uniprocessors. Thus, choosing this scheduling policy
has the potential of providing predictable performance guar-

antees in the ASQ.
As a final caveat, we note that servicing ASQ tasks in

order of start tags allows residual bandwidth to be allocated
to tasks in proportion to their shares (i.e., enables fair redis-
tribution of residual bandwidth). Criteria other than fairness
can also be used to redistribute residual bandwidth. For in-
stance, a priority-based scheduler can be used to service the
ASQ so as to give priority to certain tasks when allocating
idle bandwidth. A detailed study of such policies is beyond
the scope of this paper.

5. Accounting for Processor Affinities in DFS

Another practical consideration that arises when imple-
menting a CPU scheduler for a multiprocessor system is that
of processor affinities. Each processor in a multiprocessor
system employs one or more levels of cache. These caches
store recently accessed data and instructions for each task.
Scheduling a task on the same processor enables it to benefit
from the data cached from the previous scheduling instance
(and also eliminates the need to flush the cache on a con-
text switch to maintain consistency). In contrast, scheduling
a task on a different processor can increase the number of
cache misses and degrade performance. Studies have shown
that a scheduler that takes processor affinities into account
while making scheduling decisions can improve cache ef-
fectiveness and the overall system performance [18].

Observe that the basic DFS algorithm uses internally
generated deadlines (Eq 7) to make scheduling decisions
and ignores processor affinities. This limitation can be over-
come by using one of two different approaches. The first
approach partitions the set of tasks among the � processors
such that each processor is load balanced and employs a
local run queue for each processor. Each processor runs
the DFS scheduler on its local run queue. Binding a task
to a processor in this manner allows the processor to ex-
ploit cache locality. However, if all tasks were permanently
bound to individual processors, then the load across pro-
cessors would most likely be unbalanced over time (due to
blocking/termination events). Consequently, periodic repar-
titioning of tasks among processors is necessary to main-
tain a balanced load. Another limitation of the approach is
that P-fairness guarantees can be provided only on a per-
processor basis (instead of a system-wide basis), since in-
dividual processors neither coordinate with each other nor
have a balanced load.

A second approach to account for processor affinities is
to employ a single global run queue and use a more sophis-
ticated metric for making scheduling decisions. Recall that
the basic DFS algorithm stamps each eligible task with a
deadline (Eq 7). Rather than using deadlines to schedule
tasks, we define a new metric referred to as goodness. The
goodness of a task is a function of its deadline and its affin-
ity for a processor. In the simplest case, the goodness � can

be defined as � ��� ��� � � (8)

where � denotes the deadline of the task, � is a positive
constant and

�
represents its affinity for a processor (

�
is

0 for the processor that it ran on last and 1 for all other
processors). Thus � represents the penalty for scheduling a
task on a different processor. The scheduler then picks the
task with the minimum goodness value.

Assuming that the basic DFS algorithm maintains a list
of eligible tasks sorted on their deadlines, the scheduling al-
gorithm would then need to compute the goodness of each
task in this list before picking the task with the minimum
goodness (since the goodness is a processor dependent met-
ric, it is not possible to compute the goodness for each task
a priori). This approach makes scheduling decisions linear
in the number of eligible tasks, which can be expensive in
systems with a large number of tasks. Scheduling decisions
can be made more efficient (constant time) by defining a
window � that limits the number of tasks that must be ex-
amined for their goodness before picking a task. The win-
dow represents a tradeoff between fairness guarantees and
processor affinities. A small window favors fairness (by
picking the tasks with short deadlines and better approxi-
mating P-fairness) but can reduce the chances of finding a
task that was previously scheduled on a processor. In the
extreme case, � � � reduces the scheduler to a pure DFS
scheduler. In contrast, a large window can increases the
chances of finding a task with an affinity for the processor
but can increase unfairness. Thus, � is a tunable parameter
that allows us to balance three conflicting tradeoffs: fair-
ness, scheduling efficiency, and processor affinities.

We performed simulation experiments to determine the
effectiveness of using goodness to account for processor
affinities. We explored the parameter space by varying the
number of processors from 2 to 32, the number of tasks
from 1 to 100, and the window size from 1 to 32. For each
combination of these parameters, we computed the percent-
age of time the scheduler is successfully able to pick a task
with an affinity for the processor and also the resulting un-
fairness in the allocation. Figure 4 shows our results for
some combinations of these parameters (we omit other re-
sults due to space constraints). The figure shows that in-
creasing � improves the effectiveness of the algorithm in
picking a task with processor affinity (examining a larger
number of tasks increases the chances of picking the “right”
task). As a rule of thumb, we recommend that the window
size be set to number of processors (� � �) to balance the
tradeoffs of scheduling efficiency and processor affinity. We
conducted some experiments which showed that this rule of
thumb does not greatly increase unfairness — e.g., using
this rule on a 4-processor system, tasks remain within one
quantum of their due share for 83% of the time. These re-
sults indicate that using goodness can be an effective tech-
nique to handle processor affinities in small to medium mul-
tiprocessor systems (� ��� processors).

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35

%
 o

f t
im

es
 ta

sk
 c

ho
se

n
w

ith
ou

t a
ffi

ni
ty

Window size

Asynchronous quanta, no arrivals/departures (4 CPUs)

num_tasks=40
num_tasks=60
num_tasks=80

num_tasks=100

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35

%
 o

f t
im

es
 ta

sk
 c

ho
se

n
w

ith
ou

t a
ffi

ni
ty

Window size

Asynchronous quanta, no arrivals/departures (16 CPUs)

num_tasks=40
num_tasks=60
num_tasks=80

num_tasks=100

(a) 4-CPU system (b) 16-CPU system

Figure 4. Effect of Window size on Processor Affinity

Eligible Queue

DFS

Ineligible Queue

CPU

CPU

p

.

.

.

Primary
Scheduler

Auxiliary
Scheduler

Sorted by
deadlines

Start tags

If idle
CPUs

CPU

2

 1

Sorted by

Figure 5. DFS-FA Scheduler

In what follows we discuss the implementation of DFS
in the Linux kernel.

6. Implementation Considerations

We have implemented the basic DFS algorithm as well
as the two enhancements discussed in Sections 4 and 5 into
the Linux kernel (source code for our implementation is
available from our web site). Our DFS scheduler, imple-
mented in version 2.2.14 of the kernel, replaces the standard
time-sharing scheduler in Linux. Our implementation al-
lows each task to specify a share

� � . Tasks can dynamically
change or query their shares using two new system calls,
setshare and getshare. Their interface is very sim-
ilar to the Linux system calls setpriority and get-
priority that are used to assign priorities to tasks in the
standard time-sharing scheduler.

Our implementation of DFS maintains two run queues—
one for eligible tasks and the other for ineligible tasks (see
Figure 5). The former queue consists of tasks sorted in
deadline order; DFS services these tasks using EDF. The
latter queue consists of tasks sorted on their start tags, since
this is the order in which tasks become eligible. Once eligi-
ble, a task is removed from the ineligible queue and inserted
into the eligible queue.

The actual scheduler works as follows. Whenever a
task’s quantum expires or it blocks for I/O or departs, the
Linux kernel invokes the DFS scheduler. The scheduler first
updates the start tag and finish tag of the task relinquishing
the CPU. Next, it recomputes the virtual time based on the
start tags of all the runnable tasks. Based on this virtual
time, it determines if any ineligible tasks have become el-
igible, and if so, moves them from the ineligible queue to
the eligible queue in deadline order. If the task relinquish-
ing the CPU is still eligible, it is reinserted into the eligible
queue, else it is marked ineligible and inserted into the inel-
igible queue in order of start tags. The scheduler then picks
the task at the head of the eligible queue and schedules it
for execution.

The two enhancements proposed to the DFS algorithm
are implemented as follows:0 Fair airport: The fair airport enhancement can be im-

plemented by simply using the eligible queue as the
GSQ and the ineligible queue as the ASQ. If the el-
igible queue becomes empty, the scheduler picks the
task at the head of the ineligible queue and schedules
it for execution. Thus, the enhancement can be im-
plemented with no additional overheads and results in
work-conserving behavior.0 Processor affinities: We consider the approach that
employs a single global run queue and the goodness
metric to account for processor affinities (and do not
consider the approach that employs a local run queue
for each processor). We assume that the window size
� is specified at boot time. At each scheduling in-
stance, the DFS scheduler can them compute the good-
ness of the first � tasks in the eligible queue and
schedule the task with the minimum goodness (see
Eq 8). By choosing an appropriate value of � in
Eq 8, the scheduler can be biased appropriately to-
wards picking tasks with processor affinities (larger
values of � increase the bias towards tasks with an
affinity for a processor).

7. Experimental Evaluation

In this section, we describe the results of our preliminary
experimental evaluation. We conducted experiments to (i)
demonstrate proportionate allocation property of DFS-FA,
(ii) show the performance isolation provided by it to appli-
cations, and (iii) measure the scheduling overheads imposed
by it. Where appropriate, we use the Linux time-sharing
scheduler as a baseline for comparison.

For our experiments, we used a 500 MHz Pentium III-
based dual-processor PC with 128 MB RAM, 13GB SCSI
disk and a 100 Mb/s 3-Com ethernet card (model 3c595).
The PC ran the default installation of RedHat Linux 6.2.
We used Linux kernel version 2.2.14 for our experiments,
which employed either the time-sharing or the DFS-FA
scheduler depending on the experiment. The system was
lightly loaded during our experiments.

The workload for our experiments consisted of a mix
of sample applications and benchmarks. These include :
(i) mpeg play, the Berkeley software MPEG1 decoder, (ii)
mpg123, an audio MPEG and MP3 player, (iii) dhrystone,
a compute-intensive benchmark for measuring integer per-
formance, (iv) gcc, the GNU C compiler, (v) RT task, a
program that emulates a real-time task, and (vi) lmbench, a
benchmark that measures various aspects of operating sys-
tem performance. Next, we describe the results of our ex-
perimental evaluation.

7.1. Proportionate Allocation and Application Iso-
lation

We first demonstrate that DFS-FA allocates processor
bandwidth to applications in proportion to their shares, and
in doing so, it also isolates each of them from other misbe-
having or overloaded applications. To show these proper-
ties, we conducted two experiments with a number of dhry-
stone applications. In the first experiment, we ran two dhry-
stone applications with relative shares of 1:1, 1:2, 1:3, 1:4,
1:5, 1:6, 1:7 and 1:8 in the presence of 20 background dhry-
stone applications. As can be seen from figure 6(a), the two
applications receive processor bandwidth in proportion to
the specified shares.

In the second experiment, we ran a dhrystone application
in the presence of increasing number of background dhrys-
tone tasks. The processor share assigned to the foreground
task was always equal to the sum of the shares of the back-
ground jobs. Figure 6(b) plots the processor bandwidth re-
ceived by the foreground task with increasing background
load. For comparison, the same experiment was also per-
formed with the default Linux time-sharing scheduler. As
can be seen from the figure, with DFS-FA, the processor
share received by the foreground application remains sta-
ble irrespective of the background load, in effect isolating
the application from load in the system . Not surprisingly,
the time-share scheduler is unable to provide such isolation.

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10

A
vg

. R
es

po
ns

e
tim

e
(m

s)

Number of RT tasks

Real-time tasks with background jobs

Figure 7. Performance of DFS when schedul-
ing a mix of real-time applications.

These experiments demonstrate that while DFS-FA is no
longer strictly P-fair, it nevertheless achieves proportionate
allocation. In addition, it also manages to isolate applica-
tions from each other.

7.2. Impact on Real-Time and Multimedia Applica-
tions

In the previous subsection, we demonstrated the desir-
able properties of DFS-FA using a synthetic, computation-
intensive benchmark. Here, we demonstrate how DFS-FA
can benefit real-time and multimedia applications. To do
so, we first ran an experiment with a mix of RT tasks, each
of which emulates a real-time task. Each task receives pe-
riodic requests and performs some computations that need
to finish before the next request arrives; thus, the deadline
to service each request is set to the end of the period. Each
real-time task requests CPU bandwidth as � � (� � where � is
the computation time per request, and � is the inter-request
arrival time. In the experiment, we ran one RT task with
fixed computation and inter-arrival time, and measured its
response time with increasing number of background real-
time tasks. As can can be seen from figure 7, the response
time is independent of the other tasks running in the sys-
tem. Thus, DFS-FA can support predictable allocation for
real-time tasks.

In the second experiment, we ran the streaming audio
application (an MP3 player) in the presence of a large num-
ber of background compilation jobs. This scenario is typ-
ical on a desktop, where a user could be working (in this
case, compiling a large application) while listening to audio
music. Figure 8(a) demonstrates that the performance of
the streaming audio application remains stable even in the
presence of increasing background jobs. We repeated this
experiment with streaming video; a software decoder was
employed to decode and display a 1.5 Mb/s MPEG-1 file in
the presence of other best-effort compilation jobs. Figure
8(b) shows that the frame rate of the mpeg decoder remains

0

100000

200000

300000

400000

500000

600000

700000

1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8

N
um

be
r

of
 lo

op
s

pe
r

se
c

Weight assignment

Processor share received by dhrystones

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 lo

op
s

pe
r

se
c

(x
10

00
)

Number of background tasks

Processor share received by a dhrystone task

DFS
Time sharing

(a) Proportionate Allocation (b) Application Isolation

Figure 6. Proportionate Allocation and Application Isolation with DFS-FA

0

20

40

60

80

100

0 2 4 6 8 10

T
im

e
fo

r
pl

ay
in

g
au

di
o

fil
e

(s
ec

)

Number of simultaneous compilations

MP3 player with background compilations

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10

M
P

E
G

 F
ra

m
e

ra
te

 (
fr

am
es

/s
ec

)

Number of simultaneous compilations

MPEG decoding with background compilations

(a) Streaming Audio (b) Streaming Video

Figure 8. Performance of multimedia applications.

stable with increasing background load, but less so than the
audio application. We hypothesize that the observed fluc-
tuations in the frame rate are due to increased interference
at the disk. The data rate of a video file is significantly
larger than that of an audio file, and the increased I/O load
due to the compilation jobs interfere with the reading of the
MPEG-1 file from disk. Overall, these experiments demon-
strate that DFS-FA can support real-time and multimedia
applications.

7.3. Scheduling Overheads

In this section, we describe the scheduling overheads
imposed by the DFS-FA scheduler on the kernel. We
used lmbench, a publicly available operating system bench-
mark, to measure these overheads. Lmbench was run on a
lightly loaded system running the time-sharing scheduler,
and again on a system running the DFS-FA algorithm. We
ran the benchmark multiple times in each case to reduce
experimental error. Table 1 summarizes the results we ob-
tained. We report only those lmbench statistics that are rel-
evant to the CPU scheduler. As can be seen from Table 1,

the overhead of creating tasks (measured using fork and
exec system calls) is comparable in both cases. However,
the context switch overhead increases by about 3-5 � s. This
overhead is insignificant compared to the quantum duration
used by the Linux kernel, which is several orders of mag-
nitude larger (typical quantum durations range from tens
to hundreds of milliseconds; the default quantum duration
used by the Linux kernel is 200ms).

Table 1. Lmbench Results
Test Linux DFS

syscall overhead 0.7 � s 0.7 � s
fork() 400 � s 400 � s
exec() 2 ms 2 ms

Context switch (2 proc/ 0KB) 1 � s 5 � s
Context switch (8 proc/ 16KB) 15 � s 20 � s
Context switch (16 proc/ 64KB) 178 � s 181 � s

8. Concluding Remarks

In this paper, we presented Deadline Fair Schedul-
ing (DFS), a proportionate-fair CPU scheduling algorithm
for multiprocessor servers. A particular focus of our
work was to investigate practical issues in instantiating
proportionate-fair schedulers in general-purpose operating
systems. Our simulation results showed that characteris-
tics of general-purpose operating systems such as the asyn-
chrony in scheduling multiple processors, frequent arrivals
and departures of tasks, and variable quantum durations can
cause P-fair schedulers to become non-work-conserving.
To overcome these limitations, we enhanced DFS using
the Fair Airport Scheduling framework to ensure work-
conserving behavior at all times. We then proposed tech-
niques to account for processor affinities while scheduling
tasks in multiprocessor environments. Our resulting sched-
uler trades strict fairness guarantees for more practical con-
siderations. We implemented the resulting scheduler, re-
ferred to as DFS-FA, in the Linux kernel and demonstrated
its performance on real workloads. Our experimental results
showed that DFS-FA can achieve proportionate allocation,
performance isolation and work-conserving behavior at the
expense of a small increase in the scheduling overhead.
We conclude that combining a proportionate-fair scheduler
such as DFS with considerations such as work-conserving
behavior and processor affinities is a practical approach for
scheduling tasks in multiprocessor operating systems.

9. Acknowledgements

We would like to thank Krithi Ramamritham and San-
joy Baruah for their valuable comments and discussions on
earlier drafts of this paper. We would also like to thank the
anonymous reviewers whose insightful comments and sug-
gestions helped us improve the paper.

References

[1] J. Anderson and A. Srinivasan. A New Look at Pfair Prior-
ities. Technical report, Dept of Computer Science, Univ. of
North Carolina, 1999.

[2] G. Banga, P. Druschel, and J. Mogul. Resource Contain-
ers: A New Facility for Resource Management in Server
Systems. In Proceedings of the third Symposium on Oper-
ating System Design and Implementation (OSDI’99), New
Orleans, pages 45–58, February 1999.

[3] M. Barabanov and V. Yodaiken. Introducing Real-Time
Linux. Linux Journal, 34, February 1997.

[4] S. Baruah, J. Gehrke, and C. G. Plaxton. Fast Scheduling of
Periodic Tasks on Multiple Resources. In Proceedings of the
Ninth International Parallel Processing Symposium, pages
280–288, April 1996.

[5] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel.
Proportionate Progress: A Notion of Fairness in Resource
Allocation. Algorithmica, 15:600–625, 1996.

[6] A. Chandra, M. Adler, P. Goyal, and P. Shenoy. Surplus
Fair Scheduling: A Proportional-Share CPU Scheduling Al-
gorithm for Symmetric Multiprocessors. In Proceedings of
the Fourth Symposium on Operating System Design and Im-
plementation (OSDI 2000), San Diego, CA, October 2000.

[7] A. Chandra, M. Adler, and P. Shenoy. Deadline Fair Schedul-
ing: Bridging the Theory and Practice of Proportionate Fair
Scheduling in Multiprocessor Systems. Technical Report
TR00-38, Department of Computer Science, University of
Massachusetts at Amherst, December 2000.

[8] R. Cruz. Service Burstiness and Dynamic Burstiness Mea-
sures: A Framework. Journal of High Speed Networks,
2:105–127, 1992.

[9] A. Demers, S. Keshav, and S. Shenker. Analysis and Simu-
lation of a Fair Queueing Algorithm. In Proceedings of ACM
SIGCOMM, pages 1–12, September 1989.

[10] K. Duda and D. Cheriton. Borrowed Virtual Time (BVT)
Scheduling: Supporting Lantency-sensitive Threads in a
General-Purpose Scheduler. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP’99), Ki-
awah Island Resort, SC, pages 261–276, December 1999.

[11] P. Goyal, X. Guo, and H. Vin. A Hierarchical CPU Scheduler
for Multimedia Operating Systems. In Proceedings of Oper-
ating System Design and Implementation (OSDI’96), Seattle,
pages 107–122, October 1996.

[12] P. Goyal and H. M. Vin. Fair Airport Scheduling Algorithms.
In Proceedings of the Seventh International Workshop on
Network and Operating System Support for Digital Audio
and Video (NOSSDAV’97), St. Loius, MO, pages 273–281,
May 1997.

[13] M. B. Jones and J. Regehr. CPU Reservations and Time Con-
straints: Implementation Experience on Windows NT. In
Proceedings of the Third Windows NT Symposium, Seattle,
WA, July 1999.

[14] M. Moir and S. Ramamurthy. Pfair Scheduling of Fixed and
Migrating Periodic Tasks on Multiple Resources. In Pro-
ceedings of the 20th Annual IEEE Real-Time Systems Sym-
posium, Phoenix, AZ, December 1999.

[15] A. Parekh. A Generalized Processor Sharing Approach to
Flow Control in Integrated Services Networks. PhD the-
sis, Department of Electrical Engineering and Computer Sci-
ence, MIT, 1992.

[16] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and D. Niehaus. A
Firm Real-Time System Implementation using Commercial
Off-the-Shelf Hardware and Free Software. In Proceedings
of the IEEE Real-Time Technology and Applications Sympo-
sium, June 1998.

[17] J. Stankovic, K. Ramamritham, D. Niehaus, M. Humphrey,
and G. Wallace. The Spring System: Integrated Support for
Complex Real-Time Systems. Real-Time Systems Journal,
16(2), May 1999.

[18] R. Vaswani and J. Zahorjan. The Implications of Cache
Affinity on Processor Scheduling for Multiprogrammed
Shared Memory Multiprocessors. In Proceedings of the 13th
ACM Symposium on Operating Systems Principles, pages
26–40, October 1991.

[19] C. Waldspurger and W. Weihl. Stride Scheduling: Deter-
ministic Proportional-share Resource Management. Techni-
cal Report TM-528, MIT, Laboratory for Computer Science,
June 1995.

[20] R. West and K. Schwan. Dynamic Window-Constrained
Scheduling for Multimedia Applications. In IEEE Interna-
tional Conference on Multimedia Computing and Systems,
Florence, Italy, 1999.

