
Vectorization for SIMD Architectures with Alignment
Constraints

Alexandre E. Eichenberger Peng Wu Kevin O’Brien

IBM T.J. Watson Research Center
Yorktown Heights, NY

{alexe,pengwu,caomhin}@us.ibm.com

ABSTRACT
When vectorizing for SIMD architectures that are commonly
employed by today’s multimedia extensions, one of the new
challenges that arise is the handling of memory alignment.
Prior research has focused primarily on vectorizing loops
where all memory references are properly aligned. An im-
portant aspect of this problem, namely, how to vectorize
misaligned memory references, still remains unaddressed.
This paper presents a compilation scheme that systemat-

ically vectorizes loops in the presence of misaligned mem-
ory references. The core of our technique is to automat-
ically reorganize data in registers to satisfy the alignment
requirement imposed by the hardware. To reduce the data
reorganization overhead, we propose several techniques to
minimize the number of data reorganization operations gen-
erated. During the code generation, our algorithm also ex-
ploits temporal reuse when aligning references that access
contiguous memory across loop iterations. Our code gener-
ation scheme guarantees to never load the same data associ-
ated with a single static access twice. Experimental results
indicate near peak speedup factors, e.g., 3.71 for 4 data per
vector and 6.06 for 8 data per vector, respectively, for a set
of loops where 75% or more of the static memory references
are misaligned.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors - compilers,
code generation, optimization

General Terms
Languages, Performance, Design, Algorithms

Keywords
SIMD, compiler, vectorization, simdization, multimedia ex-
tensions, alignment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’04, June 9–11, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-807-5/04/0006 ...$5.00.

1. INTRODUCTION
Multimedia extensions have become one of the most pop-

ular additions to general-purpose microprocessors. Exist-
ing multimedia extensions can be characterized as Single
Instruction Multiple Data (SIMD) units that support
packed fixed-length vectors. The traditional programming
model for multimedia extensions has been explicit vector
programming using either (in-line) assembly or intrinsic
functions embedded in a high-level programming language.
Explicit vector programming is time consuming and error-
prone. A promising alternative is to exploit vectorization
technology to automatically generate SIMD codes from pro-
grams written in standard high-level languages.
Although vectorization has been studied extensively for

traditional vector processors decades ago, vectorization for
SIMD architectures has raised new issues due to several fun-
damental differences between the two architectures [1]. To
distinguish between the two types of vectorization, we refer
to the latter as simdization. One such fundamental differ-
ence comes from the memory unit. The memory unit of a
typical SIMD processor bears more resemblance to that of a
wide scalar processor than to that of a traditional vector pro-
cessor. In AltiVec [2], for example, a load instruction loads
16-byte contiguous memory from 16-byte aligned memory,
ignoring the last 4 bits of the memory address in the instruc-
tion. The same applies to store instructions. In this paper,
architectures with alignment constraints refer to ma-
chines that support only loads and stores of register-length
aligned memory.
The alignment constraints of SIMD memory units present

a great challenge to automatic simdization. Consider the
code fragment in Figure 1 where integer arrays a, b, and
c are aligned1. Although this loop is easily vectorizable for

for (i = 0; i < 100; i++) {
a[i+3] = b[i+1] + c[i+2];

}
Figure 1: A loop with misaligned references.

traditional vector processors, it is non-trivial to simdize it for
SIMD architectures with alignment constraints. The most
commonly used policy today is to simdize a loop only if all
memory references in the loop are aligned. In the presence
of misaligned references, one common technique is to peel

1An aligned reference means that the desired data reside at
an address that is a multiple of the vector register size.

82



b0 b2 b3 b4 b5 b6 b7

b0 b1 b2 b3 b4 b5 b6 b7b0

b1 b8 b9 b10 b11 b12 b13 b14 b15

a) Layout of array b in memory

b) Loading one vector starting at b[1]

b0 b1 b2 b3 b4 b5 b6 b7b0 b8 b9 b10 b11

b0

b2 b3 b4b1

b2 b3 b4b1 b5 b6 b7 b8 b0b9 b10 b11 b12

...

c) Loading multiple vectors starting at b[1]

vshiftpair

vshiftpair vshiftpair vshiftpair

16−byte 
boundaries

vload b[0] vload b[4]

vload b[0] vload b[4] vload b[8]

Figure 2: Loading from misaligned addresses.

the loop until all memory references inside the loop become
aligned [3, 4]. The peeling amount can be determined either
at compile-time or at runtime. However, this approach will
not simdize the loop in Figure 1 since any peeling scheme
can only make at most one reference in the loop aligned.
In this paper, we propose a systematic approach to simdiz-

ing loops with misaligned stride-one memory references for
SIMD architectures with alignment constraints. This is
achieved by automatically generating data reorganization
instructions during the simdization to align data in registers.
Using the array reference b[i+1] as an example, Figure 2b
illustrates the basic mechanism to implement a misaligned
load on a typical SIMD unit with alignment constraints.
We use here instruction vload to load a vector from 16-
byte aligned memory and instruction vshiftpair to select
consecutive elements of two vector registers to an output
vector register. The misalignment handling can be further
improved, by reusing the vector loads across loop iterations
as shown in Figure 2c. Our algorithm is able to exploit
such reuse and guarantees that data associated with a sin-
gle static reference in the original loop will not be loaded
twice.
We adopt a systematic and non-intrusive approach to the

handling of misalignment in simdization. First, the loop is
simdized as if for a machine with no alignment constraints.
Second, data reorganization operations are inserted into the
simdized code to satisfy the actual alignment constraints.
The second step is our key contribution to alignment han-
dling and is the primary focus of this paper.
The second step occurs in following two phases which com-

municate via a data reorganization graph.

Data Reorganization Phase inserts data reordering op-
erations in the code produced by the previous step to
satisfy the actual alignment constraints. Optimizations
are applied to minimize the number of data reordering
operations generated. This phase is relatively architec-
ture independent and its output is a data reorganization
graph.

SIMD Code Generation Phase maps the simdized oper-
ations (including the data reordering operations inserted

by the previous phase) to SIMD instructions specific to
the target platform. This phase addresses issues such
as runtime alignments, unknown loop bounds, multiple
misalignments, and multiple statements.

Performance evaluation indicates that near peak speedup
can be achieved even in the presence of large numbers of
misaligned references in the loop. Comparing the dynamic
instruction count of simdized codes generated by our pro-
duction compiler to an ideal scalar instruction count, we
achieve the following speedups over a wide range of loop
benchmarks. With 4 integers packed in a vector register
and with on average 3/4 of the static memory references
misaligned, speedups of up to 3.71 and 2.69 are achieved
with and without static alignment information, respectively.
With 8 short integers packed in a vector register and with on
average 7/8 of the memory references misaligned, we achieve
speedups of up to 6.06 and 4.64 with and without static
alignment information, respectively.
In summary, this paper makes the following contribu-

tions:

• Introduces a new abstraction, the data reorganization
graph, to incorporate alignment constraints and to en-
able the systematic generation and optimization of data
reorganization operations during simdization.

• Proposes a robust algorithm to simdize misaligned loads
and stores including loops with multiple misaligned ref-
erences, runtime alignments, unknown loop bounds, and
multiple statements.

• Proposes an efficient code generation algorithm that ex-
ploits reuse on stride-one misaligned memory references
to minimize the number of vector loads and stores.

• Demonstrates near peak speedup even in the presence of
large numbers of misaligned memory references.

The rest of the paper is organized as follows. Section 2
gives an overview on SIMD architectures. We then describe
the data reorganization and code generation phases of the
simdization algorithm in Sections 3 and 4, respectively. Ex-
perimental results are presented in Section 5. Section 6 dis-
cusses the related work and we conclude in Section 7.

2. BACKGROUND

2.1 SIMD Architectures
Multimedia extensions have been adopted by most ma-

jor computer manufactures such as MMX/SSE for Intel,
3DNow! for AMD, VMX/AltiVec for IBM/Motorola, and
VIS for SUN. Similar architectures can also be found in
graphics engines and game consoles such as NVDIA, ATI,
PS2, and XBOX, and some of the DSP processors.
These processing units can be characterized as SIMD pro-

cessors operating on packed fixed-length vectors. A typical
SIMD unit provides a set of vector registers that are usually
8- or 16-byte wide. It supports SIMD operations on 1, 2,
4, and possibly 8 byte data types. For example, a 2-byte
vector add on a 16-byte vector would add 8 distinct data in
a vector in parallel. In terms of memory units, most media
processing units mentioned before2 provide a load-store unit
similar to AltiVec’s as described in Section 1.

2SSE2 supports some limited form of misaligned memory
accesses which incurs additional overhead.

83



2.2 Generic Data Reorganization Operations
Most SIMD architectures support a rich set of operations

to reorder data in vector registers. These operations are
heavily used in our alignment handling. In order to present
a general-purpose simdization scheme, we introduce three
generic data reorganization operations. These generic oper-
ations can be easily mapped to instructions of specific plat-
forms. We will illustrate their implementations on existing
SIMD architectures using AltiVec as an example. In the rest
of the section, we use V to denote the vector length.

vsplat(x) replicates a scalar value x to form a full vector
by V/sizeof(x) times.
This operation is directly supported by most SIMD

architectures, e.g., vec splat on AltiVec.

vshiftpair(v1 , v2, �) selects bytes �, �+1, . . . , �+V −1 from a
double-length vector constructed by concatenating vec-
tors v1 and v2, where 0 ≤ � < V .
This operation can be implemented by permute op-

erations that combine two vectors through a permute
vector, e.g., vec perm on AltiVec. Each byte of the per-
mute vector specifies which byte of the two concatenated
input vectors is selected. The permute vector can be
constructed as vector literal (�, � + 1, . . . , � + V − 1) if
� is known at compile-time, or as the result of adding
vsplat((char)�) with vector literal (0, . . . , V − 1).

vsplice(v1 , v2, �) splices two vectors v1 and v2 at a splice
point specified by an integer value �. Specifically, it con-
catenates the first � bytes of v1 with the last (V − �)
bytes of v2 when 0 < � < V , copies v1 when � ≤ 0, and
copies v2 when � ≥ V .
This operation can be implemented by the select

operation available on most SIMD architectures, e.g.,
vec sel on AltiVec. For each bit of the output vector,
this operation selects the bit from one of the two input
vector registers based on a mask vector. The mask vec-
tor can be computed as the result of comparing vector
literal (0, 1, . . . , V − 1) against vsplat((char)�).

3. DATA REORGANIZATION PHASE
In this section, we first give an intuitive example of why

byte reordering operations are needed for alignment han-
dling in Section 3.1. We then introduce the concept of
stream and stream shift in Section 3.2 and the data reor-
ganization graph in Section 3.3. Graph optimizations to
minimize the amount of data reorganization are presented
in Section 3.4.
For the simplicity of the description, the code examples

used in this section assume that the vector length is 16 bytes,
the base address of an array is 16-byte aligned, and the
values are 32 bit integer values.

3.1 Constraints of a Valid Simdization
Consider our original example of a[i+3]=b[i+1]+c[i+2]

in Figure 1. Since there is no loop-carried dependence, the
loop can be easily simdized for machines with no align-
ment constraints. However, such simdized code is invalid
for SIMD units that support only aligned loads and stores.
Figure 3 illustrates the execution of the simdized loop on a
hardware with alignment constraints.
Consider the i=0 iteration of the simdized loop in Fig-

ure 3a, focusing on the values of expression a[3]=b[1]+c[2]

which are highlighted by white circles on gray background

b0 b1 b2 b3 b4 b5 b6 b7

b0 b1 b2 b3 b4 b5 b6 b7

.......

16−byte boundaries

offset = 4

c0 c1 c2 c3 c4 c5 c6 c7

c0 c1 c2 c3 c4 c5 c6 c7

offset = 8

vload b

vload c

offset = 12

a0 a1 a2 a3 a4 a5 a6 a7vstore a

a[i+3]

b[i+1]

c[i+2]

c) Memory and register streams for c[i+2]

b) Memory and register streams for b[i+1]

vadd
b3+
c3

b5+
c5

b6+
c6

b7+
c7

b4+
c4

b2+
c2

b1+
c1

b0+
c0

b0 b1 b2 b3Mem: b0 b1 b2 b3Reg:Legend:

d) Register and memory streams for a[i+3]

Values of focus (i=0):

...

...

...

16−byte boundaries

16−byte boundaries

a) Invalid SIMD Code

...

...

...

for(i=0;i<100;i+=4)

Figure 3: An invalid simdization on hardware with
alignment constraints.

in Figures 3b-d. The vload b[1] operation loads vector
b[0],...,b[3] with the desired b[1] value at byte-offset 4 in
its vector register, as shown in Figure 3b. Similarly, the
vload c[2] operation loads c[0],...,c[3] with c[2] at byte
offset 8, as depicted in Figure 3c. Adding these two vector
registers yields the values b[0]+c[0],...,b[3]+c[3], as illus-
trated in Figure 3d. This is clearly not the result specified
by the original b[i+1]+c[i+2] computation.
Based on these observations, we list the following con-

straints that a valid simdization must satisfy:

1. When performing a vector load, the 16-byte alignment
of the load address dictates the byte-offset of the data
in its destination vector register. For example, the
16-byte alignment of b[1] and c[2] in memory is 4
and 8 bytes, respectively, as is the byte offset in their
respective vector registers.

2. When computing vector operations (possibly exclud-
ing data reordering operations), the data involved in
the original operation must reside at the same byte-
offset in their respective vector registers.

3. When performing a vector store, the byte-offset of
the data in the vector register must match the mem-
ory alignment of the store address. For example,
b[1]+c[2], when being stored to a[3], must reside
at byte-offset 12 in its vector register to match the
memory alignment of a[3].

Thus, data reorganization for a valid simdization can be
summarized as reordering data in vector registers so that the
above specified constraints are satisfied. The formalization
of these constraints will be presented later in Section 3.3.

3.2 Streams and Stream Shifts
Given a stride-one memory reference in a loop, amemory

stream corresponds to all the contiguous locations in mem-
ory addressed by that memory reference over the lifetime
of the loop. For example, the gray boxes in the contiguous
band in Figure 4b depict the memory stream associated with

84



b1+
c2

b0 b1 b2 b3 b4 b5 b6 b7 b96 b97 b98 b99 b100 b103b102b101

b0 b1 b2 b3 b4 b5 b6 b7 b100 b103b102b101b96 b97 b98 b99

.......

.......

16−byte boundaries

offset = 4

.......

16−byte boundaries

c0 c1 c2 c3 c4 c5 c6 c7 c96 c97 c98 c99 c100 c101 c102 c103

.......c0 c1 c2 c3 c4 c5 c6 c7 c96 c97 c98 c99 c100 c101 c102 c103

offset = 8

b2 b3 b4 b5 b6 b7 b97 b98 b99.......b8 b100

offset = 0

.......c2 c3 c4 c5 c6 c7 c98 c99 c100 c101

offset = 0

c8 c9

vload b

vload c

b1

.......

offset = 0

b2+
c3

b3+
c4

b4+
c5

b5+
c6

b6+
c7

b7+
c8

b8+
c9

b97+
c98

b98+
c99

b99+
c100

b100+
c101

.......b2+
c3

b3+
c4

b4+
c5

b5+
c6

b98+
c99

b99+
c100

b100+
c101

b1+
c2

b97+
c98

offset = 12

b96+
c97

b94+
c95

b95+
c96

.......

16−byte boundaries

a0 a1 a2 a3 a4 a5 a6 a7 a96 a97 a98 a99 a100 a101 a102 a103vstore a

a[i+3]

b[i+1]

c[i+2]

for(i=0; i<100; i+=4)

c) Memory and register streams for c[i+2]

b) Memory and register streams for b[i+1]

vadd

b0 b1 b2 b3Mem:

b0 b1 b2 b3Reg:

a) Valid SIMD Code*

Legend:

d) Register and memory streams for a[i+3]

Values of focus (i=0):

vshiftstream(4,0)

vshiftstream(8,0)

vshiftstream(0,12)

* boundary conditions 
   excluded

Figure 4: A valid simdization for hardwares with alignment constraints.

b[i+1] in the i=0 to 99 loop, spanning the values from b[1]

to b[100]. Similarly in Figure 4c, the memory stream asso-
ciated with c[i+2] spans the values from c[2] to c[101].
Similarly, a register stream corresponds to all the con-

secutive registers produced by a single vector operation over
the lifetime of a loop. Note that, as a memory stream is read
from memory by vector loads in discrete chunks of 16 bytes,
extra values may be introduced at the beginning and the
end of a register stream. For example, in Figure 4b, the
first value in the register stream is not b[1] but b[0].
To distinguish the desired values from the extra values

in a register stream, we introduce the concept of a stream
offset, defined as the byte-offset of the first desired value of
a register stream. Namely, stream offset is the byte-offset
of the data associated with the i=0 computation. Stream
offset values are by definition nonnegative and smaller than
the vector length.
In Section 3.1, we establish that a simdization is valid

when all of the data processed by an original operation re-
side at the same byte-offset in their respective vector regis-
ters. To that effect, we introduce a new data reorganization
operator, vshiftstream(c1 , c2), which shifts all values of a
register stream among consecutive registers of that stream.
Essentially, it takes an input register stream whose offset is
c1 and generates a register stream of the same values but
with a stream offset of c2.
For example, vshiftstream(4,0) in Figure 4a shifts the

register stream associated with vload b[i+1] to the left by
4 bytes, as shown in Figure 4b, eliminating the extra initial
value b[0] from the register stream. The same operator can
also be used to shift values to the right, as shown in Fig-

ure 4d, where vshiftstream(0,12) shifts right the register
stream of b[i+1]+c[i+2] by 12 bytes. The resulting register
stream has an offset of 12, which matches the alignment of
the memory stream generated by reference a[i+3].

3.3 Data Reorganization Graph
A data reorganization graph is an expression tree aug-

mented with data reordering operations. Figure 4a is an
example of such a graph. Each node in the graph is associ-
ated with a stream offset property. Since the stream offset
property is key to our definition of a valid data reorganiza-
tion graph, we describe below how to compute the stream
offset for each type of data reorganization graph nodes.
The rest of the section uses the following notations: V

for the vector length, i for the loop counter, O and Ox for
the stream offset associated with the current node in con-
sideration and any other node x, respectively. For an offset
known at compile times, Ox is a compile time constant that
is directly used by our algorithms; otherwise, for runtime
offsets, Ox is a register value that is computed at runtime
by anding memory addresses with literal V − 1.
vload(addr(i)) This node loads a vector from a stride-one

memory reference addr(i). This operation produces a
register stream whose stream offset is defined by the
alignment of addr(i), i.e.,

O ← addr(i = 0) mod V (1)

vstore(addr(i), src) This node stores a vector stream pro-
duced by node src to a stride-one reference addr(i). This
node does not have a stream offset. However, in order
for the store to be valid, the stream offset of node src

85



b0 b1 b2 b3 b4 b5 b6 b7 b96 b97 b98 b99 b100 b103b102b101

b0 b1 b2 b3 b4 b5 b6 b7 b100 b103b102b101b96 b97 b98 b99

.......

.......

16−byte boundaries

offset = 4

.......

16−byte boundaries

c0 c1 c2 c3 c4 c5 c6 c7 c96 c97 c98 c99 c100 c101 c102 c103

.......c0 c1 c2 c3 c4 c5 c6 c7 c96 c97 c98 c99 c100 c101 c102 c103

offset = 8

b2 b3 b4 b5 .......

.......c3 c4 c5 c6

vload b

vload c

.......b2+
c3

b3+
c4

b4+
c5

b5+
c6

b98+
c99

b99+
c100

b100+
c101

b1+
c2

b97+
c98

offset = 12

b96+
c97

b94+
c95

b95+
c96

.......

16−byte boundaries

a0 a1 a2 a3 a4 a5 a6 a7 a96 a97 a98 a99 a100 a101 a102 a103vstore a

a[i+3]

b[i+1]

c[i+2]

for(i=0; i<100; i+=4)

c) Memory and register streams for c[i+2]

b) Memory and register streams for b[i+1]a) Valid SIMD Code*

b1

offset = 12

b0

b100b97 b98b96b95b94 b99

c100 c101c2

offset = 12

c99c98c97c96c95

vadd

d) Register and memory streams for a[i+3]

b0 b1 b2 b3Mem:

b0 b1 b2 b3Reg:

Legend:

Values of focus (i=0):

vshiftstream(4,12)

vshiftstream(8,12)

* boundary conditions 
   excluded

Figure 5: Illustration of the eager-shift policy for the example in Figure 4.

must satisfy the following condition:

Osrc = addr(i = 0) mod V (C.2)

vop(src1, . . . , srcn) This node represents a regular vector
operation that takes as input register streams associated
with nodes src1, . . . , srcn and produces one output reg-
ister stream. In order for the computation to be valid,
input register streams must have matching stream off-
sets, i.e.,

Osrc1 = Osrc2 = . . . = Osrcn (C.3)

The stream offset of this node is defined by the uniform
stream offset of its input nodes, i.e.,

O ← Osrc1 (4)

vshiftstream(src,Osrc, c) This node shifts the register
stream associated with the input node src and stream
offset Osrc to a register stream with a stream offset c.
This is a data reorganization node which can change the
offset of a register stream. By the definition of the op-
eration, the stream offset of this node is:

O ← c (5)

where 0 ≤ c < V and must be a loop invariant.

vsplat(x) This node replicates a loop invariant x to produce
a register stream with concatenated values of x. The
stream offset of this node is “undefined” and is associ-
ated with the symbol �, as the same value is replicated
in all register slots,i.e.,

O ← � (6)

Note that � can be any defined value in (C.2) and (C.3).
Essentially, (C.2) and (C.3) specify the constraints that

must be satisfied to produce a valid data reorganization

graph. They are the formalization of the second and the
third constraints described in Section 3.1.

3.4 Generating a Data Reorganization Graph
A valid data reorganization graph require the stream off-

set of each node in the graph satisfy Constraints (C.2) and
(C.3). In the presence of misalignments, this property is
only achievable by judicious placement of data reordering
nodes such as vshiftstream to the original expression tree.
We investigate several policies to place vshiftstream-nodes
to generate a valid data reorganization graph.

Zero-Shift Policy
The main idea behind this policy is to (1) shift each mis-
aligned register stream to a stream offset of 0 immediately
after it is loaded from memory, and (2) to shift each register
stream to the alignment of the store address just before it
is stored to memory. More specifically,

• For each vload-node x, insert vshiftstream(x,Ox, 0)
between x and its output nodes.

• For each vstore-node x of vstore(addr(i), src), insert
vshiftstream(src,Osrc, c) between nodes src and x
where c is equal to addr(i = 0) mod V .

• For each loop invariant node x used as a register stream,
insert vsplat(x) between x and its output node.

The simdization example in Figure 4 uses the zero-shift
policy. This policy is the least optimized in terms of the
number of data reorganization operations since it inserts
one vshiftstream for each misaligned memory stream.

Eager-Shift Policy
This policy shifts each misaligned load stream directly to
the alignment of the store, rather than to 0 as the zero-shift
policy does. Specifically, for each vload-node x in the graph,

86



vload b vload c

a[i+3]

vadd

b[i+1] c[i+1]

vstore a

vload b vload c

a[i+3]

b[i+1]

vstore a

c[i+2]

d[i+1]

vload dvmult

vadd

a) Graph illustrating Lazy−Shift b) Graph illustrating Dominant−Shift 

vshiftstream(4,12)

vshiftstream(8,4)

vshiftstream(4,12)

for(i=0; i<100; i++)
  a[i+3] = b[i+1] * c[i+2] + d[i+1]

for(i=0; i<100; i++)
  a[i+3] = b[i+1] + c[i+1]

Figure 6: Lazy-shift and dominant-shift policies.

the policy inserts a vshiftstream(x,Ox, c) between x and
its output nodes, where c is the alignment of the store.
Due to code generation issues investigated in Section 4.2,

this policy requires alignments of loads and stores to be
known at compile-time. Figure 5 illustrates the eager-shift
placement policy, lowering the total number of stream shift
operations from 3 to 2.

Lazy-Shift Policy
This policy is based on the eager-shift policy but is im-
proved further by delaying stream shifts as long as Con-
straints (C.2) and (C.3) are satisfied.
Consider the example a[i+3]=b[i+1]+c[i+1] in Fig-

ure 6a. Zero-shift policy would insert 3 vshiftstream oper-
ations. Eager-shift would require 2, one for each misaligned
load. This policy, however, exploits the fact that b[i+1]

and c[i+1] are relatively aligned, thus satisfying (C.3) and
can be safely operated on as is. Only the result of the add
needs to be shifted so as to match the alignment of the store,
as shown in Figure 6a.

Dominant-Shift Policy
This policy further reduces the number of stream shifts by
shifting register streams to the most dominant stream offset
in the graph. This policy is most effective if applied after
the lazy-shift policy. For example, in Figure 6b, the domi-
nant offset is stream offset 4. Shifting stream to this offset
decreases the number of vshiftstream operations from 4
(for the zero-shift policy) to 2.

4. SIMD CODE GENERATION
This section presents the code generation algorithm. We

start with an algorithm that simdizes a single-statement
loop with compile-time alignments and loop bounds. We
then augment the algorithm to handle multiple-statement
loops, runtime alignments, and unknown loop bounds.

4.1 Assumptions and Notations
In our algorithm, we assume the loop to be simdized is an

innermost loop that satisfies the following conditions:

• All memory references are either loop invariant or stride-
one array references.

• The base address of an array is naturally aligned to the
data length of its array elements.

• The loop counter can only appear in the address com-
putation of stride-one references.

• All memory references access data of the same length.
There is no conversion between data of different lengths.

The rest of the paper uses the following notations: V
for the vector length, D for the uniform data length of all
memory references in the loop, and Ox for the stream offset
of a graph node x. We also denote the blocking factor of
the simdized loop as B, which is computed as the number
of data per vector, i.e.,

B = V/D. (7)

4.2 Single-Statement Algorithm
This algorithm simdizes a single-statement loop where

memory alignments and loop bounds are known at compile-
time. We assume that the loop is normalized and has a loop
counter i and an upper bound ub.
The input to the algorithm is the data reorganization

graph of the single statement in the loop. The algorithm
traverses the graph in postorder starting from the store-
node and recursively processes each child before itself. The
code generation algorithm relies on native vector operations
of the target machine plus an implementation of the generic
data reordering operations presented in Section 2.2, namely,
vsplat, vshiftpair, and vsplice. In addition, we use the
following helper functions:

Runtime(c) determines whether c is a compile-time or run-
time value.

Substitute(n, x ← y) traverses the tree starting at node n
and replaces all occurrences of x by y.

GenStoreStmt(addr, expr, ptr) generates a store statement
of expression expr to address addr at the insertion point
specified by ptr. If addr is given as a string, e.g., ’t’, it
represents the address of a local variable named ’t’.

Simdizing an Expression
The following tasks are performed when processing nodes
in the data reorganization graph of an expression, including
all but the final store node in the graph. Store nodes are
special cases that are presented in the next subsection. The
detailed algorithm is given in Figure 7.

vload(addr(i)) When processing this node, we emit a
vload vector operation of address addr(i) without fur-
ther simdizing the load’s inputs.

vop(src1, . . . , srcn) When processing this node, we first gen-
erate SIMD codes to compute every source value, which
is then used by a SIMD version of the vop operation.

vsplat(x) When processing this node, we first generate tra-
ditional code to compute the x value, which is then used
by a vsplat vector operation.

vshiftstream(src,Osrc, c) When processing this node, the
algorithm first determines whether the register stream
associated with src is shifted left (e.g., Figure 4b) or
shifted right (e.g., Figure 4d).
When shifting a register stream left, i.e., Osrc > c,

data from the next register of the src register stream is
shifted into the current register of the stream. Con-
sider the vshiftstream(b[i+ 1], 4, 0) in Figure 4b.
Data b[4] from the second register of the stream is
shifted into the first register of the stream to produce
(b[1],b[2],b[3],b[4]) as the first register of the out-
put register stream.

87



GenSimdExpr(n)
1 if n ≡ vload(addr(i)) return vload(addr(i))
2 if n ≡ vsplat(x) return vsplat(GenExpr(x))
3 if n ≡ vshiftstream(src,Osrc, c)
4 return GenSimdShiftStream(src, Osrc, c)
5 if n ≡ vop(src1, . . . , srcn)
6 for (k = 1..n) vregk←GenSimdExpr(srck)
7 return vop(vreg1, . . . , vregn)

GenSimdShiftStream(n, from, to)
8 shift← (from− to) mod V
9 if (from > to | Runtime(to)) /* shift left */
10 curr ← GenSimdExpr(n)
11 next← GenSimdExpr(Substitute(n, i← i+B))
12 return vshiftpair(curr, next, shift)
13 else if (from < to | Runtime(from)) /* shift right */
14 curr ← GenSimdExpr(n)
15 prev← GenSimdExpr(Substitute(n, i← i−B))
16 return vshiftpair(prev, curr, shift)

Figure 7: SIMD code generation for expressions.

Since all memory streams are based on stride-one
memory references, the next register in a register stream
corresponds to the vector produced by the next simdized
iteration. Thus, it can be computed by replacing i with
(i+B) in the simdized node.
When shifting a stream right, i.e., Osrc < c, the re-

sulting vector register is similarly obtained by combining
the previous and the current vector registers of the src
register stream.

Simdizing a Statement
When simdizing a vstore(addr(i)), extra precaution must
be taken for the first and last few iterations of the original
loop. Consider, for example, the store a[i+3] = ... origi-
nally illustrated in Figure 4d. Since a[i+3] has an offset of
12 bytes, only 4 bytes of the newly computed data should be
stored during the first iteration of the simdized loop. Sim-
ilarly, only 12 bytes of the newly computed data should be
stored in the last iteration of the simdized loop.

b2+
c3

b3+
c4

b4+
c5

b5+
c6

b98+
c99

b99+
c100

b100+
c101

b1+
c2

16−byte boundaries

a0 a1 a2 a103

vsplice

b1+
c2

b2+
c3

b3+
c4

b4+
c5

b5+
c6

b98+
c99

b99+
c100

b100+
c101

a0 a2 a3

vsplice

a103a101a100

...

..

..

*** *

a1 a102ProSplice = offset = 12

number of bytes = ub *D

EpiSplice = (offset+ub*D) mod V

Figure 8: Special cases for prologue and epilogue.

In general, such partial vector stores can only occur in
the first and/or the last iterations of a simdized loop. To
handle such cases without impact on the steady state per-
formance of a loop, we peel the first and the last iteration
of a simdized loop into, respectively a prologue and epilogue
that are customized to handle partial stores. As illustrated
in Figure 8, on SIMD units without dedicated hardware sup-

GenSimdStmt-Prologue(addr(i), src)
1 splicePoint← addr(0) mod V
2 new← GenSimdExpr(src)
3 old← vload(addr(0))
4 spliced← vsplice(old, new, splicePoint)
5 GenStoreStmt(addr(0), spliced, ′in prologue′)

GenSimdStmt-Steady(addr(i), src)
6 new← GenSimdExpr(src)
7 GenStoreStmt(addr(i), new, ′in loop′)

GenSimdStmt-Epilogue(addr(i), src, ub)
8 splicePoint← (addr(0) + ub ∗D) mod V
9 new← GenSimdExpr(src)
10 old← vload(addr(i))
11 spliced← vsplice(new, old, splicePoint)
12 GenStoreStmt(addr(i), spliced, ′in epilogue′)

Figure 9: SIMD code generation of statements for
the prologue, the steady-state, and the epilogue.

port, partial stores are implemented by loading the original
value prior to the store, splicing it with the newly computed
value, then storing the spliced value back into memory using
vsplice operation. The algorithm to handle the prologue,
steady-state, and epilogue is given in Figure 9.
For the prologue, the newly computed values are spliced

into the original value prior to the store from byte ProS-
plice to V − 1. ProSplice is precisely the alignment associ-
ated with the store memory stream, i.e.,

ProSplice = addr(i = 0) mod V. (8)

For the epilogue, the newly computed values are spliced
into the original value prior to the store from byte 0 to
EpiSplice−1, where EpiSplice corresponds to the offset of
the first byte after the end of the store memory stream.
Since store memory stream is ubD bytes long, EpiSplice is
computed as,

EpiSplice = (addr(i = 0) + ubD) mod V. (9)

Simdizing a Loop
There is more to simdizing a single statement loop than gen-
erating codes for the prologue, steady-state, and epilogue.
We must also specify the bounds and the step of the steady-
state loop. These steps are detailed below.

• The step of the steady-state loop is set to be the blocking
factor B.

• The lower bound of the steady-state loop is set to be the
number of original loop iterations being peeled into the
prologue, i.e.,

LB = �V − ProSplice
D


. (10)

• The upper bound of the steady-state loop is set to be
the original upper bound minus the number of original
loop iterations being peeled into the epilogue, i.e.,

UB = ub − �EpiSplice
D


. (11)

88



4.3 Multiple-Statement Algorithm
Most handling in the SIMD code generation is performed

on a per statement basis. Thus, the algorithm in Section 4.2
can naturally handle each statement of a multiple-statement
loop. The only exceptions are the loop bound computations
in Equations (10) and (11) which clearly need to be com-
puted on a per loop basis. The bounds are thus refined
below in the context of multiple-statement loops.
Since Equation (10) computes the lower bound using the

alignment of the store, it is not applicable to loops with
statements of distinct store alignments. The key observa-
tion to address this issue is that we do not need to compute
the “precise” lower bound for each statement, as long as each
memory operation loads and stores the right data. This is
based on our assumption that the loop counter only ap-
pears in address computation. Recall that vector memory
instructions implicitly truncate the address as they access
only aligned data. For example, on AltiVec, loads from ad-
dresses 0x1000, 0x1001, or 0x100E each load the same 16
bytes of data starting at 0x1000.
Exploiting the truncation effect of address computation,

we set the lower bound to be the blocking-factor, i.e.,

LB = B. (12)

Equation (12) guarantees that the store associated with each
statement in the first iteration of the steady-state loop cor-
responds to the first full vector store of its corresponding
stream.
The upper bound specifies the highest iteration in the

steady-state loop by which every store in the loop is guar-
anteed to be a full vector store. For an n-statement loop, we
compute the upper bound of the steady-state loop by sub-
tracting the largest EpiSplice over all statements from the
original upper bound, i.e.,

UB = ub− �maxk=1..n EpiSplicek

D

. (13)

Furthermore, we need to compute the number of bytes
that must be stored in the epilogue, referred to as EpiLeft-
Over. This value is computed on a per statement ba-
sis as the total number of bytes in the memory stream,
ubD, minus the number of bytes processed in the prologue,
V −ProSplice, and the steady-state loop, �(UB−LB)/B� V
combined. After simplification using (12), we have

EpiLeftOver = ubD + ProSplice − �UB
B
�V. (14)

For some combinations of ProSplice and ub, EpiLeftOver can
be greater than V but is necessarily smaller than 2V . The
epilogue code generation thus has to generate a full vector
store followed by a partial one with an epilogue splice point
of (EpiLeftOver− V ).
4.4 Runtime Alignments and Upper Bounds
The algorithm that handles vshiftstream in Figure 7

generates different code sequences depending on whether a
stream is shifted left or right. For runtime alignments, we
must introduce vshiftstream in such a way that the shift
direction can be determined at compile-time in spite of run-
time alignments. The zero-shift policy exhibits this property
as all misaligned loads are shifted left (to offset 0) and all
misaligned stores are shifted right (from offset 0). Therefore
we can still use the algorithm in Figure 7 to handle runtime
alignment as long as zero-shift policy is applied.

GenSimdStmtSP-Steady(addr(i), src)
1 new← GenSimdExprSP(src)
2 GenStoreStmt(addr(i), new, ′in loop′)

GenSimdExprSP(n)
3 if n ≡ vload(addr(i)) return vload(addr(i))
4 if n ≡ vsplat(x) return vsplat(GenExpr(x))
5 if n ≡ vshiftstream(src,Osrc, to)
6 return GenSimdShiftStreamSP(src, Osrc, to)
7 if n ≡ vop(src1, . . . , srcn)
8 for (k = 1..n) vregk ← GenSimdExprSP(srck)
9 return vop(vreg1, . . . , vregn)

GenSimdShiftStreamSP(n, from, to)
10 shift← (from− to) mod V
11 if (from > to | Runtime(to)) /* shift left */
12 first← GenSimdExpr(n)
13 second← GenSimdExprSP(Substitute(n, i← i+B))
14 else if (from < to | Runtime(from)) /* shift right */
15 first← GenSimdExpr(Substitute(n, i← i−B))
16 second← GenSimdExprSP(n)
17 GenStoreStmt( ′old′, first, ′in prologue′)
18 GenStoreStmt( ′new′, second, ′in loop′)
19 GenStoreStmt( ′old′, vload( ′new′), ′bottom of loop′)
20 return vshiftpair(vload( ′old′), second, shift)

Figure 10: Software pipelined SIMD code genera-
tion for expressions.

For the lower bound, we can safely use Equation (12) as
it solely depends on the blocking factor.
However, we need to refine the upper bound formula (13)

as maxk=1..n EpiSplicek is expensive to compute at runtime.
This can be achieved by finding a suitable upper bound to
replace the max term. Recall our assumption that each array
is naturally aligned to its data element length. Thus, addr(i)
can be represented as mD for some integer m. Equation (9)
then becomes (mD+ ubD) mod V and can be further sim-
plified to ((m + ub) mod B)D. According to the definition
of mod, the largest value for EpiSplice is thus (B − 1)D.
Replacing the max term in (13) by (B− 1)D, we get this

new upper bound:

UB = ub −B + 1. (15)

Accordingly, (14) can be simplified to

EpiLeftOver = ProSplice + (ub mod B)D. (16)

Using (16), one can easily prove EpiLeftOver < 2V .
Since the prologue always peels one simdized iteration and

the epilogue stores at most 2 full vectors, i.e., two simdized
iterations, the simdization is guaranteed to be valid if the
original trip count is greater than 3B. When the trip count
is unknown, the simdized codes must be guarded by a test
of ub > 3B.

4.5 Software Pipelined Algorithm
We can further improve the standard algorithm in Sec-

tion 4.2 by eliminating the redundant computation intro-
duced during stream shift handling. Recall that, in Figure 9,
GenSIMDShiftStream combines the values of two consecutive
loop iterations, either the current and next iterations for left
shifts or the current and previous iterations for right shifts.

89



For conciseness, we describe here and in Figure 10 the values
associated with the smaller iteration count as first and the
one with the larger iteration count as second.
The key idea is to software pipeline the computation of the

first and second values. Instead of computing both values
associated with the first and second iterations in the loop, we
only compute the values associated with the second iteration
and preserve them to the next iteration, since this iteration’s
second values will become next iteration’s first values.
As shown in Figure 10, the software pipelined code gen-

eration scheme involves the following 3 steps.

1. We precompute first in a non software pipelined fash-
ion (lines 12 and 15) using the standard algorithm
GenSimdExpr. We then generate a statement to store
the values of first to register old (line 17), inserted to
the prologue of the loop.

2. We compute second in a software pipelined fashion
(lines 13 and 16). And store second to register new

(line 18). Since this expression is in the loop, we re-
cursively use software pipelined GenSimdExprSP.

3. We generate a statement to copy register new to regis-
ter old (line 19) at the bottom of the loop.

Note that the steady-state loop involves only the compu-
tation of second (line 2) and the copy operation between
new and old (line 19). In other words, we have replaced
the computation of first in the steady-state loop by a copy
operation. Note that the copy operation can be easily re-
moved by unrolling the loop twice and forward propagating
the copy operation.

5. EVALUATION
In this section, we present a detailed evaluation of the

simdization algorithm. We compare the actual throughput
achieved on SIMD units to the bounds derived from code
analysis.

5.1 Target Machine Description
The target machine contains generic 16-byte wide SIMD

units that are representative of most SIMD architectures
currently available. The load-store unit supports 16-byte
aligned loads and stores only. Data reorganization is sup-
ported by a permute operation that selects arbitrary bytes
from two vector registers, similar to the byte permutation
operation described in Section 2.2.

5.2 Compiler Infrastructure
Our implementation is based on IBM’s xl compiler infras-

tructure, which supports multiple languages including C,
C++, and Fortran, and generates highly optimized codes.
The simdization algorithm is implemented in the Toronto
Portable Optimizer (TPO), the component that performs
aggressive dependence analysis and high-level loop transfor-
mations. The simdization phase occurs after several loop
transformations such as loop interchange and loop distri-
bution that enhance simdization by removing loop-carried
dependences along innermost loops. It is followed by other
loop transformations that can significantly improve the qual-
ity of the simdized codes, notably loop unrolling that re-
moves needless copy operations and a special form of com-
mon subexpression elimination, referred to as Predictive

Commoning (PC) [5], which exploits the reuse among con-
secutive loop iterations. The back-end code generator (TO-
BEY) has been extended to target a PowerPC-based pro-
cessor with SIMD vector units. It performs various target-
specific optimizations including instruction scheduling and
register allocation.

5.3 Evaluation Methodology
To better evaluate our simdization scheme, experiments

were conducted on a set of synthesized loops. These loops
heavily stress our heuristics as they exhibit a high ratio of
misaligned data references versus computations. The loop
benchmarks are synthesized based on a set of parameters,
s, the number of statements, l, the number of load refer-
ences per statement, and, n, the iteration count. Since all
arithmetic operations are essentially the same for alignment
handling, we use add as the sole arithmetic operation in the
synthesized loops. The alignment of each memory reference
is randomly selected, with a possible bias b (0 ≤ b ≤ 1)
toward a single, randomly selected alignment. Each mem-
ory reference within a single statement accesses a distinct
array, but different statements can contain accesses to the
same array. The amount of array reuse r (0 ≤ r ≤ 1, from
no reuse to full reuse) among multiple statements is also
parameterized.
The metric being used is operations per datum (OPD),

namely the number of operations needed to compute a single
data element. We believe that this metric is more micro-
architecture independent than wall time or clock cycles, as
it does not depend on the cycle time, instruction latency, and
issue width of a particular architecture instantiation. OPD
also provides a very intuitive feel for the peek speedup that
can be achieved with simdization, e.g. a factor of 4 when 4
integers are packed in a single 16-byte vector register.
We compare the compiler generated code measurement to

a lower bound (LB) of operations per datum. The lower
bound is computed based on parameters 〈l, s, n, b, r〉. It ac-
counts for the following factors. It includes each distinct
16-byte aligned load and store in the loop3. The bound also
accounts for a minimum number of data reorganizations per
statement. This is based on the observation that for a state-
ment with accesses of n distinct alignments, a minimum of
n − 1 vshiftpair operations are required. Note that for
the shift-zero policy, the number of vshiftpair operations
is fully deterministic, namely one for each of the m mis-
aligned memory streams. For that policy only, LB reflects
m instead of n− 1. The bound also includes the data com-
putations in the loop, but explicitly ignores all architecture-
and compiler-dependent factors such as address computa-
tion, constant generation, and loop overhead.
When reporting measurements for the compiler-generated

codes, the operations per datum metric includes all over-
head present in the execution of the real code, including a
single function call and return, address computation, and
loop overhead.

5.4 Coverage Analysis
We first evaluate the robustness of our implementation.

More than a thousand loops were generated with varying
〈l, s, n, b, r〉 parameters. In particular, we tested up-to eight
3For example, loading a[i] and a[i+1] anywhere in the loop
counts as one when both loads are known at the compile time
to map to the same 16-byte aligned memory location

90



3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

LA
ZY-p

c

DOM
-s

p

LA
ZY-s

p

EAGER-p
c

EAGER-s
p

ZERO-p
c

ZERO-s
p

DOM
-p

c
LA

ZY

EAGER
DOM

ZERO
SEQ

O
p

er
at

io
n

 / 
d

at
a

Lower Bound + Actual Shift + Compiler Overhead

Lower Bound + Actual Shift Overhead

Lower bound

10.182 12.000

Figure 11: Operations per datum for loops with six
loads and one store.

loads per statement, four statements per loop, and a loop
trip count in the range of [997, 1000] (for 4-element vectors).
The loop count (n), alignment bias (b), the reuse ratio (r)
were all randomly selected. Our compiler simdized all the
loops. The generated binaries were simulated on a cycle-
accurate simulator, and the results were verified.

5.5 Evaluation of Optimization Combinations
This set of experiments evaluates the combinations of shift

placement policies and code generation optimizations. Each
benchmark used in the experiments consists of 50 distinct
loops with identical 〈l, s, n, b, r〉 characteristics. The results
are reported as the harmonic means over all 50 loops. Four
shift placement policies are considered, i.e., the zero-shift
(ZERO), eager-shift (EAGER), lazy-shift (LAZY), and
dominant-shift (DOM) policies. The zero-shift policy, al-
though least optimized, is necessary when the alignments are
not known at compile-time. Thus measurement of this pol-
icy highlights the potential performance degradation due to
the lack of compile-time alignment information. Zero-shift
policy is also the policy used by prior work [6, 7].
Each shift placement policy can be combined with the

following (mostly) orthogonal code generation optimiza-
tions.

Software Pipelining (SP) where we directly generate
software-pipelined codes to exploit the reuse between
consecutive misaligned loads.

Predictive Commoning (PC) where we rely on the more
general TPO optimization to exploit the reuse between
consecutive misaligned loads.

Memory Normalization (MemNorm) where addresses
used in vector memory operations are normalized to
their lower 16-byte aligned memory locations to facili-
tate traditional redundancy elimination optimization.

Common Offset Reassociation (OffsetReassoc) where
the associativity and commutativity of the computation
are used to group computations with identical offsets
to make the lazy-shift and dominant-shift policies more
successful.

For conciseness, not all 64 (4 policies times 16 code-gen
optimization combinations) results are reported here. Since

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

LA
ZY-p

c

DOM
-s

p

LA
ZY-s

p

EAGER-p
c

EAGER-s
p

DOM
-p

c
LA

ZY

EAGER
DOM

ZERO-p
c

ZERO-s
p

ZERO
SEQ

O
p

er
at

io
n

 / 
d

at
a

Lower Bound + Actual Shift + Compiler Overhead

Lower Bound + Actual Shift Overhead

Lower bound

10.182 12.000

Figure 12: Operations per datum for loops with six
loads and one store with OffsetReasoc.

MemNorm is always beneficial by approximately 0.5% across
the board, schemes without it are removed from the fig-
ures. Furthermore, using predictive commoning in addition
to software pipelining does not bring any additional bene-
fit, thus this combination is also removed from the figures.
However, we report data with and without OffsetReassoc
separately.
For each data point, we report operation per datum that

is broken down into 3 components. The bottom compo-
nent is the lower bound LB, as defined in Section 5.3. The
middle component corresponds to the data reorganization
overhead actually introduced by the shift policies over the
lower bound. Recall that there is no such overhead for the
zero-shift policy because the fully deterministic number of
vshiftpair operations is fully accounted by LB. The sum
of the 3 components is the total cost, as measured by our
cycle accurate simulator for the entire program. Thus the
top component corresponds to the compiler overhead not
accounted for by the previous two components.
We first consider loops with a single integer statement

including 6 distinct loads with randomly selected offsets with
a bias of 30% (i.e., among the 6 loads, on average 1.8 loads
have an identical, randomly pre-selected offset).
Figure 11 shows the resulting operation per datum metric

for all significant code generation schemes with OffsetReas-
soc turned off. When static alignment information is avail-
able, our schemes can achieve an opd as low as 4.022 com-
pared to 12 for non-simdized codes4 (SEQ bar). In general,
schemes that introduce redundant operations (i.e. without
either PC or SP) perform poorly, with opd ranging from
5.372 to 10.182. Our best schemes also exhibit more than
one operation less per datum compared to VAST’s approach
(ZERO-sp)[7]. Our best schemes perform well with respect
to the naive5 3.000 bound and the more realistic 3.587 opd
bound based on LB.
Further analysis indicates that dominant-shift introduces

fewer shifts than lazy-shift or eager-shift, as seen by the con-
tribution of the middle component of each bar. However, the
compiler overheads are currently larger for dominant-shift,
as seen by the top component of each bar, as it introduces

4The original loop has 6 loads, 5 adds, and 1 store.
512 vector operations of 4 integers yields 12/4=3 opd.

91



Align at compile time Align at runtime time
Loop Best Speedup Best Speedup
Descr. Policy Actual LB Policy Actual LB

S1*L2 LAZY-pc 2.72 3.17 ZERO-pc 2.15 2.36
S1*L4 LAZY-pc 3.02 3.27 ZERO-pc 2.35 2.51
S1*L6 LAZY-pc 3.14 3.35 ZERO-pc 2.42 2.54
S2*L4 DOM-sp 3.42 3.64 ZERO-sp 2.47 2.68
S4*L4 LAZY-sp 3.47 3.64 ZERO-sp 2.43 2.69
S4*L8 DOM-sp 3.71 3.93 ZERO-sp 2.17 2.78

Table 1: Speedup factors of simdized versus scalar
codes (4 ints per registers, peek speedup is 4).

more redundancy and may generate codes that are more
difficult to optimize.
When alignment information is not available at compile

time, we must revert to the zero-shift policy, which achieves
a 4.963 opd compared to the lower bound of 4.750 opd.
Figure 12 presents the measurements in the same setting

as in Figure 11, but with OffsetReassoc turned on6. This
enables lazy-shift and dominant-shift to have on average no
shift overhead over LB, thus resulting in lower overall op-
erations per datum: 3.823, 3.963, and 3.963 for the top 3
schemes compared to 4.022, 4.13, and 4.164 in Figure 11,
respectively.

5.6 Efficiency Analysis
This set of experiments investigates the general speedups

that can be achieved by our simdization scheme. The mea-
surements are conducted in a wider range of loops, ranging
from 1 statement with 2 loads to 4 statements with 8 loads
each, all accessing integer arrays. The speedup factors7 of
the simdization are summarized in Table 1. Each row cor-
responds to the harmonic means over a 50 loop benchmark
whose characteristics are summarized in the first column
(reuse and bias set to 30%). For each benchmark, we report
the speedup factors of the best performing simdization pol-
icy for both the compile-time and runtime alignments. For
reference, we also indicate an upper-bound speedup factor
based on LB.
The general trend in Table 1 is that we achieve higher

speedup factors as the loops become more complex, e.g.
reaching a speedup factor of 3.71 for a loop with 4 state-
ments with 8 loads each. This is due in part to exploiting
more more data locality for the same code size, because each
simdized loop iteration covers 4 times more data than origi-
nal loop iteration and each 16 byte data quantity should be
loaded only once using predictive commoning and software
pipelining. This is also due in part to the loop overhead
becoming smaller for larger loops.
The second general trend in Table 1 is that the lazy-

shift policy combined with predictive commoning and the
dominant-shift policy with software pipelining are the high-
est performing policies.
Table 2 indicates the speedup when simdizing loops with

short int arithmetic, where 8 shorts are packed in a vector

6Since the loops contains only add operations, our results
with OffsetReassoc may be more optimistic than those of
real loops where different operations may be involved in an
expression which may not be reassociated.
7Speedup factor corresponds to the total number of instruc-
tions over all loops of the scalar code divided by these of the
simdized code.

Align at compile time Align at runtime time
Loop Best Speedup Best Speedup
Descr. Policy Actual LB Policy Actual LB

S1*L2 LAZY-pc 5.10 5.85 ZERO-pc 4.22 4.63
S1*L4 LAZY-pc 5.49 6.12 ZERO-pc 4.65 4.97
S1*L6 LAZY-pc 5.67 6.25 ZERO-pc 4.83 5.09
S2*L4 DOM-sp 6.06 6.94 ZERO-sp 4.81 5.45
S4*L4 DOM-sp 6.06 6.91 ZERO-sp 4.64 5.43
S4*L8 DOM-sp 6.05 7.32 ZERO-sp 3.88 5.67

Table 2: Speedup factors of simdized versus scalar
code (8 short ints per registers, peek speedup is 8).

register instead of the 4 ints. Simdization achieves a speedup
factor of up to 6.06, compared to a peek speedup of 8 and a
more realistic upper bound speedup of 7.32.

6. RELATED WORK
There has been a recent spike of interest in compiler tech-

niques to automatically extract SIMD parallelism from pro-
grams [4, 6, 8, 9, 10]. This upsurge was driven by the
increasing prevalence of SIMD architectures in multimedia
processors. Two principal techniques have been used, the
traditional loop-based vectorization pioneered for vector su-
percomputers [11, 12] and the unroll-and-pack approach first
proposed by Larsen and Amarasinghe [9]. Our simdization
scheme falls into the first category among with others [4, 10,
13, 14].
The most extensive discussion of alignment considera-

tions is in [3]. However, [3] is concerned with the detection
of memory alignments and with techniques to increase the
number of aligned references in a loop, whereas our work fo-
cuses on generating optimized SIMD codes in the presence of
misaligned references. The two approaches are complemen-
tary. The use of loop peeling to align accesses was discussed
in [3, 4]. The loop peeling scheme is equivalent to the eager-
shift policy with the restriction that all memory references
in the loop must have the same misalignment. Even under
this condition, our scheme has the advantage of generating
simdized prologue and epilogue, which is the by-product of
peeling from the simdized loop.
Direct code generation for misaligned references have been

discussed by several prior works. [6] described the vectoriza-
tion of misaligned loads and stores using the VIS instruction
set. Their scheme is equivalent to our zero-shift placement
policy plus the non software pipelined code generation algo-
rithm. It is not clear whether multiple statements, runtime
alignments, and unknown loop bounds can be handled. In
[4], Bik et al. described a specific code sequence of aligned
loads and shuffle to load memory references that cross cache
line boundaries, which is implemented in Intel’s compiler for
SSE2. However, their method is not discussed in the context
of general misalignment handling. Furthermore, neither [6]
nor [4] exploit the reuse when aligning a stream of contiguous
memory. As shown in our evaluation in Figure 11, without
exploiting the reuse, there can be a performance slowdown
of more than a factor of 2.
The most extensive alignment handling was implemented

in the VAST compiler [7]. Like our scheme, VAST is able
to simdize loops with multiple misaligned references, un-
known loop bounds, and runtime alignments, and exploit the
reuse when aligning a steam of contiguous memory. How-
ever, there is no public information available regarding their

92



alignment handling scheme. We can only conjecture, from
the simdized codes produced by the compiler, that VAST’s
scheme is equivalent to our zero-shift policy combined with
software pipelining. Therefore, our scheme has the advan-
tage of the other three additional placement policies.
An interesting simdization scheme using indirect register

accesses is discussed in [10]. However, their method is spe-
cific to the eLite processor that supports gather and scat-
ter within a special register file, which is not applicable to
typical MME processors. In [15], register packing and shift-
ing instructions were used to exploit temporal and spatial
reuse in vector registers. Their definition of replicate and
shift-and-load is very similar to our vsplat and vshiftpair

operations. However, their work does not address alignment
handling.
In earlier work on compiling for distributed memory sys-

tems, [16] describes the Alignment-Distribution Graph that
has some features in common with our data reorganization
graph, notably the existence of nodes to specify transforma-
tion of data related to alignment or placement in memory.

7. CONCLUSION
This paper proposes a compilation scheme to vectorize

misaligned references for SIMD architectures that support
only aligned loads and stores. In our framework, a loop is
first simdized as if the memory unit imposes no alignment
constraints. The compiler then inserts data reorganization
operations to satisfy the actual alignment requirement of
the hardware. Finally, the code generation algorithm gen-
erates SIMD codes based on the data reorganization graph,
addressing realistic issues such as runtime alignments, un-
known loop bounds, residue iteration counts, and multiple
statements with arbitrary alignment combinations.
Beyond generating a valid simdization, we investigate

methods to further improve the quality of the generated
codes. We propose four stream-shift placement policies to
minimize the number of data reorganization generated by
the alignment handling. And our code generation algorithm
exploits the reuse when aligning a stream of contiguous
memory using software pipelining techniques.
We demonstrate near peak speedup for a set of loops

where 75% of the static memory references in the loops are
misaligned. Comparing the dynamic instruction count of
simdized codes to an idealistic scalar instruction count, we
achieve speedup factors of up to 3.71 and 6.06 for vectors
packed with 4 and 8 data, respectively.
Many further issues need to be investigated to match the

wide range of situations that are only handled at present by
experienced assembly programmers. Examples of such is-
sues are alignment handling of loops with non-unit stride ac-
cesses, accesses to scalar variables including induction vari-
ables occurring in non-address computation, non-naturally
aligned arrays, and data conversions that require packing
and unpacking capability. While these issues were not ad-
dressed by this paper, we believe that our approach based
on data reorganization graphs provides a solid foundation
to solving these problems in the future.

8. REFERENCES
[1] Gang Ren, Peng Wu, and David Padua. A Preliminary

Study on the Vectorization of Multimedia Applications
for Multimedia Extensions. In 16th International Work-

shop of Languages and Compilers for Parallel Comput-
ing, October 2003.

[2] Motorola Corporation. AltiVec Technology Program-
ming Interface Manual, June 1999.

[3] Samuel Larsen, Emmett Witchel, and Saman Amaras-
inghe. Increasing and Detecting Memory Address Con-
gruence. In Proceedings of 11th International Confer-
ence on Parallel Architectures and Compilation Tech-
niques, September 2002.

[4] Aart Bik, Milind Girkar, Paul M. Grey, and Xinmin
Tian. Automatic Intra-Register Vectorization for the
Intel Architecture. International Journal of Parallel
Programming, (2):65–98, April 2002.

[5] Kevin O’Brien. Predictive Commoning: A Method of
Optimizing Loops Containing References to Consecu-
tive Array Elements. In IBM Interdivisional Technical
Liason, 1990.

[6] Gerald Cheong and Monica S. Lam. An Optimizer for
Multimedia Instruction Sets. In Second SUIF Compiler
Workshop, August 1997.

[7] Crescent Bay Software. VAST-F/AltiVec: Auto-
matic Fortran Vectorizer for PowerPC Vector Unit.
http://www.psrv.com/vast altivec.html, 2004.

[8] Andreas Krall and Sylvain Lelait. Compilation Tech-
niques for Multimedia Processors. International Jour-
nal of Parallel Programming, (4):347–361, August 2000.

[9] Samuel Larsen and Saman Amarasinghe. Exploiting
Superword Level Parallelism with Multimedia Instruc-
tion Sets. In Proceedings of the SIGPLAN Conference
on Programming Language Design and Implementation,
pages 145–156, June 2000.

[10] Dorit Naishlos, Marina Biberstein, Shay Ben-David,
and Ayal Zaks. Vectorizing for a SIMdD DSP Archi-
tecture. In Proceedings of International Conference on
Compilers, Architectures, and Synthesis for Embedded
Systems, pages 2–11, October 2003.

[11] John Randal Allen and Ken Kennedy. Automatic
Translation of Fortran Programs to Vector Form. ACM
Transactions on Programming Languages and Systems,
(4):491–542, October 1987.

[12] Hans Zima and Barbara Chapman. Supercompilers for
Parallel and Vector Computers. ACM Press, 1990.

[13] N. Sreraman and R. Govindarajan. A Vectorizing Com-
piler for Multimedia Extensions. International Journal
of Parallel Programming, 28(4):363–400, August 2000.

[14] Corinna G. Lee and Mark G. Stoodley. Simple Vector
Microprocessors for Multimedia Applications. In Pro-
ceedings of International Symposium on Microarchitec-
ture, pages 25–36, 1998.

[15] Jaewook Shin, Jacqueline Chame, and Mary W. Hall.
Compiler-Controlled Caching in Superword Register
Files for Multimedia Extension Architectures. In Pro-
ceedings of International Conference on Parallel Archi-
tectures and Compilation Techniques, September 2002.

[16] Siddhartha Chatterjee, John R. Gilbert, Robert
Schreiber, and Thomas J. Sheffler. Modeling Data-
Parallel Programs with the Alignment-Distribution
Graph. Journal of Programming Languages, 2(3):227–
258, 1994.

93


