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Abstract

We present a deterministic, log-space algorithm that solves st-connectivity in undirected graphs.
The previous bound on the space complexity of undirected st-connectivity was log4/3(·) obtained by
Armoni, Ta-Shma, Wigderson and Zhou [ATSWZ00]. As undirected st-connectivity is complete for the
class of problems solvable by symmetric, non-deterministic, log-space computations (the class SL), this
algorithm implies that SL = L (where L is the class of problems solvable by deterministic log-space
computations). Our algorithm also implies log-space constructible universal-traversal sequences for
graphs with restricted labelling and log-space constructible universal-exploration sequences for general
graphs.

1 Introduction

We resolve the space complexity of undirected st-connectivity (denoted USTCON), up to a constant factor,
by presenting a log-space (polynomial-time) algorithm for solving it. Given as input an undirected graph G
and two vertices s and t, the USTCON problem is to decide whether or not the two vertices are connected
by a path in G (our algorithm will also solve the corresponding search problem, of finding a path from s
to t if such a path exists). This fundamental combinatorial problem has received a lot of attention in the
last few decades and was studied in a large variety of computational models. It is a basic building block
for more complex graph algorithms and is complete for the class SL of problems solvable by symmetric,
non-deterministic, log-space computations [LP82] (see [AG96] for a recent study of SL and quite a few of
its complete problems).

The time complexity of USTCON is well understood as basic search algorithms, particularly breadth-
first search (BFS) and depth-first search (DFS), are capable of solving USTCON in linear time. In fact, these
algorithms apply to the more complex problem of st-connectivity in directed graphs (denoted STCON),
which is complete for NL (non-deterministic log-space computations). Unfortunately, the space required to
run these algorithms is linear as well. A much more space efficient algorithm is Savitch’s [Sav70], which
solves STCON in space log2(·) (and super-polynomial time).

Major progress in understanding the space complexity of USTCON was made by Aleliunas et. al. [AKL+79],
who gave a randomized log-space algorithm for the problem. Specifically, they showed that a random walk
(a path that selects a uniform edge at each step) starting from an arbitrary vertex of any connected undirected
graph will visit all the vertices of the graph in polynomial number of steps. Therefore, the algorithm can
perform a random walk starting from s and verify that it reaches t within the specified polynomial number of
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steps. Essentially all that the algorithm needs to remember is the name of the current vertex and a counter for
the number of steps already taken. With this result we get the following view of space complexity classes:
L ⊆ SL ⊆ RL ⊆ NL ⊆ L2 (where RL is the class of problems that can be decided by randomized log-
space algorithms with one-sided error and Lc is the class of problems that can be decided deterministically
in space logc(·)).

The existence of a randomized log-space algorithm for USTCON puts this problem in the context of
derandomization. Can this randomized algorithm be derandomized without substantial increase in space?
Furthermore, the study of the space complexity of USTCON has gained additional motivation as an impor-
tant test case for understanding the tradeoff between two central resources of computations, namely between
memory space and randomness. Particularly, a natural goal on the way to proving RL = L is to prove that
USTCON ∈ L, as USTCON is undoubtedly one of the most interesting problems in RL.

Following [AKL+79], most of the progress on the space complexity of USTCON indeed relied on
the tools of derandomization. In particular, this line of work greatly benefited from the development of
pseudorandom generators that fool space-bounded algorithms [AKS87, BNS89, Nis92b, INW94] and it
progressed concurrently with the study of the L vs. RL problem. Another very influential notion, introduced
by Stephen Cook in the late 70’s, is that of a universal-traversal sequence. Loosely, this is a fixed sequence
of directions that guides a deterministic walk through all of the vertices of any connected graph of the
appropriate size (see further discussion below).

While Nisan’s space-bounded generator [Nis92b], did not directly imply a more space efficient USTCON
algorithm it did imply quasi-polynomially-long, universal-traversal sequences, constructible in space log2(·).
These were extremely instrumental in the work of Nisan, Szemeredi and Wigderson [NSW89] who showed
that USTCON ∈ L3/2 – The first improvement over Savitch’s algorithm in terms of space (limited of course
to the case of undirected graphs). Using different methods, but still heavily relying on [Nis92b], Saks and
Zhou [SZ99] showed that every RL problem is also in L3/2 (their result in fact generalizes to randomized
algorithms with two-sided error). Relying on the techniques of both [NSW89] and [SZ99], Armoni, et.
al. [ATSWZ00] showed that USTCON ∈ L4/3. Their USTCON algorithm was the most space-efficient
one previous to this work. We note that the most space-efficient polynomial-time algorithm for USTCON
previously known was Nisan’s [Nis92a], which still required space log2(·).

Our approach

In retrospect, the essence of our algorithm is very natural: If you want to solve a connectivity problem
on your input graph, first improve its connectivity. In other words, transform your input graph (or rather,
each one of its connected components), into an expander.1 We will also insist on the final graph being
constant degree. Once the connected component of s is a constant-degree expander, then it is trivial to
decide if s and t are connected: Since expander graphs have logarithmic diameter, it is enough to enumerate
all logarithmically long paths starting with s and to see if one of these paths visits t. Since the degree is
constant, the number of such paths is polynomial and they can easily be enumerated in log space.

How can we turn an arbitrary graph into an expander? First, we note that every connected, non-bipartite,
graph can be thought of as an expander with very small (but non-negligible) expansion. Consider for exam-
ple an arbitrary connected graph with self-loops added to each one of its vertices. The number of neighbors
of every strict subset of the vertices is larger than its size by at least one. In this respect, the graph can be
thought of as expanding by a factor 1 + 1/N (where N is the total number of vertices in the graph). Now, a

1The exact definition of expander graphs is less important for now, and the following description could be understood by viewing
expanders as graphs with very strong connectivity properties. Still, for the knowledgable reader, the particular measure that seems
the most convenient to work with is the second eigenvalue (in absolute value) of the adjacency matrix of the graph (we will only
need to work with regular graphs). It may however be that other, more combinatorial, measures will also do [DRTV04].
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very natural operation that improves the expansion of the graph is powering. The kth power of G contains
an edge between two vertices v and w for every path of length k in G. Formally, it can be shown that by
taking some polynomial power of any connected non-bipartite graph (equivalently, by repeatedly squaring
the graph logarithmic number of times), it will indeed turn into an expander.

The down side of powering is of course that it increases the degree of the graph. Taking a polynomial
or any non-constant power is prohibited if we want to maintain constant degree. Fortunately, there exist
operations that can counter this problem. Consider for example, the replacement product of a D-regular
graph G with a d-regular graph H on D vertices (with d � D). This can be loosely defined as follows:
Each vertex v of G is replaced with a “copy” Hv of H . Each of the D vertices of Hv is connected to its
neighbors in Hv but also to one vertex in Hw, where (v, w) is one of the D edges going out of v in G. The
degree in the product graph is d + 1 (which is smaller than D). Therefore, this operation can transform a
graph G into a new graph (the product of G and H) of smaller degree. It turns out that if H is a “good
enough” expander, the expansion of the resulting graph is “not worse by much” than the expansion of G.
Formal statements to this affect were proven by Reingold, Vadhan and Wigderson [RVW01] for both the
replacement product and the zig-zag product, introduced there. Independently, Martin and Randall [MR00],
building on previous work of Madras and Randall [MR96], proved a decomposition theorem for Markov
chains that also implies that the replacement product preserves expansion.

Given the discussion above, we are ready to informally describe our USTCON algorithm. First, turn
the input graph into a constant-degree, regular graph with each connected component being non-bipartite
(this step is very easy). Then, the main transformation turns each connected component of the graph, in
logarithmic number of phases, into an expander. Each phase starts by raising the current graph to some
constant power and then reducing the degree back via a replacement or a zig-zag product with a constant-
size expander. We argue that each phase enhances the expansion at least as well as squaring the graph would,
and without the disadvantage of increasing the degree. Finally, all that is left is to solve USTCON on the
resulting graph (which is easy as the diameter of each connected component is only logarithmic).

To conclude that USTCON ∈ L, we need to argue that all of the above can be done in logarithmic
space, which easily reduces to showing that the main transformation can be carried out in logarithmic space.
For that, consider the graph Gi obtained after i phases of the transformation. We note that a step on Gi (i.e.,
evaluating the jth neighbor of some vertex v in Gi) is composed of a constant number of operations that are
either a step on the graph Gi−1 from the previous phase or an operation that only requires a constant amount
of memory. As the memory for each of these operations can be freed after it is performed, the memory for
carrying out a step on Gi is only larger by an additive constant than the memory for carrying out a step on
Gi−1. This implies that the entire transformation is indeed log space.

Universal traversal sequences While universal-traversal sequences were introduced as a way for proving
USTCON ∈ L, these are interesting combinatorial objects in their own right. A universal-traversal sequence
for D-regular graphs on N -vertices, is a sequence of edge labels in {1, . . . , D} such that for every such
graph, for every labelling of its edges, and for every start vertex, the deterministic walk defined by these
labels (where in the ith step we take the edge labeled by the ith element of the sequence), visits all of
the vertices of the graph. Aleliunas et. al. [AKL+79] showed that polynomial-length universal-traversal
sequence exists, and in fact almost every sequence of the appropriate length will do. We are interested in
obtaining a polynomially-long, universal-traversal sequence that is constructible in logartihmic space (even
less explicit sequences may still be interesting). This is again a derandomization problem. Namely, can we
derandomize the probabilistic construction of universal-traversal sequences?

Explicit constructions of polynomially-long universal-traversal sequences are only known for extremely
limited classes of graphs. Even for expander graphs, such sequences are only known when the edges are
“consistently labelled” [HW93] (this means that the labels of all of the edges that lead to any particular

3



vertex are distinct). It is therefore not very surprising that our algorithm on its own does not imply full
fledged universal-traversal sequences. Still, our algorithm can be shown to imply a very local, and quite
oblivious, deterministic procedure for exploring a maze. We can think of our algorithm as maintaining a
single pebble, that is placed on the edges of the graph. The pebble is moved either from one side of the
edge to another, or between different edges that are adjacent to the same vertex (say to the next or to the
previous edge). As with universal-traversal sequences, the fixed sequence of instructions is good for every
graph, for every labelling of its edges, and for any starting point on the graph. The only difference from
universal-traversal sequences is that the pebble here is placed on the edges rather than on the vertices of the
graph. In more established terms, our algorithm implies a polynomially-long, universal-traversal sequence
that is constructible in logartihmic space under some restrictions on the labelling. These restrictions were
relaxed in a subsequent work [DRTV04] to be identical to those of [HW93]. Finally, we get polynomially-
long, universal-exploration sequences for general graphs. In universal-exploration sequences, introduced
by Koucky [Kou01], the elements of the sequence are not interpreted as absolute edge-labels but rather as
offsets from the previous edge that was traversed. For more details see Section 5.

More on previous work

Graph connectivity problems and space-bounded derandomization are the focus of a vast and diverse body
of research. The scope of this paper only allows for an extremely partial discussion of this area. Some
very beautiful and influential research (as many of the papers mentioned above) is only briefly touched
upon, other areas will not be discussed at all (examples include, time-space tradeoffs for deterministic and
randomized connectivity algorithms, restricted constructions of universal traversal sequences, and analysis
of connectivity in many other computational models). Insightful, though somewhat outdated, surveys on
these topics were given by Wigderson [Wig92] and by Saks [Sak96]. Useful discussion and pointers were
also given by Koucky [Kou03]. We continue here by mentioning a few of the most related previous results
(most of which are subsumed by the results of this paper). A more technical comparison with some previous
work appears in Section 6.

Following Aleliunas et. al. [AKL+79], Borodin et. al. [BCD+89] gave a zero-error, randomized, log-
space algorithm for USTCON. An upper bound of different nature on SL was given by Karchmer and
Wigderson [KW93], who showed SL ⊆ ⊕L.

Nisan and Ta-Shma [NTS95] showed that SL is closed under complement, thus collapsing the “sym-
metric log-space hierarchies” of both Reif [Rei84] and Ben Asher et. al. [YBAS95], and putting some very
interesting problems into SL (we refer again to [AG96] for a list of SL-complete problems).

A research direction initiated by Ajtai et. al. [AKS87], and continued with Nisan and Zuckerman [NZ96]
is to fully derandomize (i.e., to put in L) log n-space computations that use fewer than n random bits
(poly log n bits in the case of [NZ96]). Raz and Reingold [RR99] showed how to derandomize 2

√
log n

bits for subclasses of RL. One of their main applications can be viewed as derandomizing 2
√

log n bits for
SL. It is interesting to note (and personally gratifying to the author) that the techniques of [RR99] played a
major roll in the definition of the zig-zag product and with this work found their way back to the study of
space-bounded derandomization.

Goldreich and Wigderson [GW02] gave an algorithm that on all but a tiny fraction of the graphs, evalu-
ates USTCON correctly (and on the rest of the graphs outputs an error message).

Based on rather relaxed computational hardness assumptions, Klivans and van Melkebeek [KvM02]
proved both that RL = L and that efficiently constructible, polynomial length, universal traversal sequences
exist.
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2 Preliminaries

This section discusses various aspects of graphs: their representation, eigenvalue expansion, graph powering,
and two graph products (the replacement product and the zig-zag product). The definitions and notation used
here are borrowed directly from [RVW01].

2.1 Graphs representations

There are several standard representations of graphs. Fortunately, there exist log-space transformations
between natural representations. Thus, the space complexity of USTCON is to a large extent independent
of the representation of the input graph.

When discussing the eigenvalue expansion of a graph, we will consider its adjacency matrix. That is,
the matrix whose (nonnegative, integral) entry (u, v) equals to the number of edges that go from vertex u
to vertex v. Note that this representation allows graphs with self loops and parallel edges (and indeed such
graphs may be generated by our algorithm). A graph is undirected iff its adjacency matrix is symmetric
(implying that for every edge from u to v there is an edge from v to u). It is D-regular if the sum of entries
in each row (and column) is D (so exactly D edges are incident to every vertex).

Let G be a D-regular undirected graph on N vertices. When considering a walk on G, we would like to
assume that the edges leaving each vertex of G are labeled from 1 to D in some arbitrary, but fixed, way. We
can then talk about the i’th edge incident to a vertex v, and similarly about the i’th neighbor of v. A central
insight of [RVW01] is that when taking a step on a graph from vertex v to vertex w, it may be useful to keep
track of the edge traversed to get to w (rather than just remembering that we are now at w). This gave rise to
a new representation of graphs through the following permutation on pairs of vertex name and edge label:

Definition 2.1 For a D-regular undirected graph G, the rotation map RotG : [N ] × [D] → [N ] × [D] is
defined as follows: RotG(v, i) = (w, j) if the i’th edge incident to v leads to w, and this edge is the j’th
edge incident to w.

Rotation maps will indeed be the representation of choice for this work. Specifically, the first step of our
algorithm will be to transform the input graph into a regular one specified by its rotation map (in particular,
this step will give labels to the edges of the graph).

2.2 Eigenvalue expansion and st-connectivity for expanders

Expanders are sparse graphs which are nevertheless highly connected. The strong connectivity properties
of expanders make them very desirable in our context. Specifically, since the diameter of expander graphs
is only logarithmically long, there is a trivial log-space algorithm for finding paths between vertices in
constant-degree expanders. The particular formalization of expanders used in this paper is the (algebraic)
characterization based on the spectral gap of their adjacency matrix. Namely, the gap between the first and
second eigenvalues of the (normalized) adjacency matrix.

The normalized adjacency matrix M of a D-regular undirected graph G, is the adjacency matrix of G
divided by D. In terms of the rotation map, we have:

Mu,v =
1

D
·
∣

∣{(i, j) ∈ [D]2 : RotG(u, i) = (v, j)}
∣

∣ .

M is simply the transition probability matrix of a random walk on G. By the D-regularity of G, the all-1’s
vector 1N = (1, 1, . . . , 1) ∈ R

N is an eigenvector of M of eigenvalue 1. It turns out that all the other
eigenvalues of M have absolute value at most 1. We denote by λ(G), the second largest eigenvalue (in
absolute value) of G’s normalized adjacency matrix. We refer to a D-regular undirected graph G on N
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vertices such that λ(G) ≤ λ as an (N, D, λ)-graph. It is well-known that the second largest eigenvalue of
G is a good measure of G’s expansion properties. In particular, it was shown by Tanner [Tan84] and Alon
and Milman [AM85] that second-eigenvalue expansion implies (and is in fact equivalent [Alo86]) to the
standard notion of vertex expansion. In particular, for every λ < 1 there exists ε > 0 such that for every
(N, D, λ)-graph G and for any set S of at most half the vertices in G, at least (1 + ε) · |S| vertices of G are
connected by an edge to some vertex in S. This immediately implies that G has a logarithmic diameter:

Proposition 2.2 Let λ < 1 be some constant. Then for every (N, D, λ)-graph G and any two vertices s
and t in G, there exists a path of length O(log N) that connects s to t.

Proof: By the vertex expansion of G, for some ` = O(log N) both s and t have more than N/2 vertices of
distance at most ` from them in G. Therefore, there exists a vertex v that is of distance at most ` from both
s and t.

We can therefore conclude that st-connectivity in constant-degree expanders can be solved in log-space:

Proposition 2.3 Let λ < 1 be some constant. Then there exists a space O(log D · log N) algorithmA such
that when a D-regular undirected graph G on N vertices is given to A as input, the following hold:

1. If s and t are in the same connected component and this component is an (N ′, D, λ)-graph then A
outputs ‘connected’.

2. If A outputs ‘connected’ then s and t are indeed in the same connected component.

Proof: The algorithmA simply enumerates all D` paths of length ` = O(log N) from s. (Where the lead-
ing constant in the big-O notation depends on λ as in Proposition 2.2.) The algorithmA outputs ‘connected’
if and only if at least one of these paths encounters t.

Following any particular path from s of length ` requires space O(log N), (when given as input the
sequence of ` edge labels in [D] = {1, 2, . . .D} traversed by this path). Enumerating all these D` paths
requires space O(log D · log N). By Proposition 2.2, in case (1), s and t are of distance at most ` of each
other and A will indeed find a path from s to t and will output ‘connected’. On the other hand, A never
outputs ‘connected’ unless it finds a path from s to t, implying (2).

Using the Probabilistic Method, Pinsker [Pin73] showed that most 3-regular graphs are expanders (in
the sense of vertex expansion), and this result was extended to eigenvalue bounds in [Alo86, BS87, FKS89,
Fri91]. Various explicit families of constant-degree expanders, some with optimal tradeoff between degree
and expansion, were given in literature (cf. [Mar73, GG81, JM87, AM85, AGM87, LPS88, Mar88, Mor94,
RVW01]). Our algorithm will employ a single constant size expander with rather weak parameters. This
expander can be obtained by exhaustive search or by any of the explicit constructions mentioned above.
In fact, one can use simpler explicit constructions than the ones given above, as we can afford a rather
large degree (with respect to the number of vertices), rather than a constant degree. An example of a simpler
construction that would suffice is the one given by Alon and Roichman [AR94], (see also related discussions
in [RVW01] regarding their “base graph”).

Proposition 2.4 There exists some constant De and a ((De)16, De, 1/2)-graph.

Finally, a key fact for our algorithm is that every connected, non-bipartite graph has a spectral gap
which is at least inverse polynomial in the size of the graph (recall that a graph is non-bipartite if there is no
partition of the vertices such that all the edges go between the two sides of the partition).

Lemma 2.5 ([AS00]) For every D-regular, connected, non-bipartite graph G on [N ] it holds that λ(G) ≤
1− 1/DN2.

6



2.3 Powering

Our main transformation will take a graph and transform each one of its connected components (that in itself
will be a connected, non-bipartite graph), into a constant degree expander. If we ignore the requirement that
the graph remains constant degree, a simple way of amplifying the (inverse polynomial) spectral gap of a
graph is by powering.

Definition 2.6 Let G be a D-regular multigraph on [N ] given by rotation map RotG. The t’th power of G is
the Dt-regular graph Gt whose rotation map is given by RotGt(v0, (a1, a2, . . . , at)) = (vt, (bt, bt−1, . . . , b1)),
where these values are computed via the rule (vi, bi) = RotG(vi−1, ai).

Proposition 2.7 If G is an (N, D, λ)-graph, then Gt is an (N, Dt, λt)-graph.

Proof: The normalized adjacency matrix of Gt is the t’th power of the normalized adjacency matrix of G,
so all the eigenvalues also get raised to the t’th power.

2.4 Two graph products

While taking a power of a graph reduces its second eigenvalue, it also increases its degree. As we are
interested in producing constant-degree graphs, we need a complementing operation that reduces the degree
of a graph without harming its expansion by too much. We now discuss two graph products that are capable
of doing exactly that.

The first is the very natural product, known as the replacement product. Assume that G is a D-regular
graph on [N ] and H is a d-regular graph on [D] (where d is significantly smaller than D). Very intuitively,
the replacement product of the two graphs is defined as follows: Each vertex v of G is replaced with a
“copy” Hv of H . Each of the D vertices of Hv is connected to its neighbors in Hv but also to one vertex
in Hw, where (v, w) is one of the D edges going out of v in G. The degree in the product graph is d + 1
(which is smaller than D).2 A second, slightly more evolved, product introduced by Reingold, Vadhan and
Wigderson [RVW01], is the zig-zag graph product. Here too we replace each vertex v of G with a “copy”
Hv of H . However, the edges of the zig-zag product of G and H correspond to a subset of the paths of
length three in the replacement product of these graphs3 (see formal definition below). The degree of the
product graph here is d2 (which should still be thought of as significantly smaller that D).

It is immediate from their definition, that both products can transform a graph G to a new graph (the
product of G and H) of smaller degree. As discussed in the introduction, it was previously shown [RVW01,
MR00] that if H is a “good enough” expander, then the expansion of the resulting graph is “not worse by
much” than the expansion of G (see formal statement below for the zig-zag product). Either one of these
products can be used in our USTCON algorithm (with some variation in the parameters). We find it more
convenient to work with the zig-zag product (even though it is a bit more involved), hence we proceed by
formally defining it.

Definition 2.8 ([RVW01]) If G is a D-regular graph on [N ] with rotation map RotG and H is a d-regular
graph on [D] with rotation map RotH , then their zig-zag product G©z H is defined to be the d2-regular
graph on [N ]× [D] whose rotation map RotG©z H is as follows (see Figure 1 for an illustration):

2Sometimes it is better to consider the balanced replacement product, where every edge in G is taken d times in parallel. The
degree of the product graph in this case is 2d instead of d + 1.

3Those length three paths that are composed of a “short edge” (an edge inside one of the copies H v), a “long edge” (one that
corresponds to an edge of G), and finally one additional “short edge”.
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Figure 1: On the left – an edge of the zig-zag product is composed of three steps: a “short step” (in Hv), a
“big step” (between Hv and Hw which corresponds to an edge of G between v and w), and a final “small
step” (in Hw). The values i, i′, j and j′ are labels of edges of H (going out of the H vertices a, a′, b′ and b
respectively). On the right – the projection of these steps on the graph G (which corresponds to the middle
step specified by (w, b′) = RotG(v, a′)).

RotG©z H((v, a), (i, j)):

1. Let (a′, i′) = RotH(a, i).

2. Let (w, b′) = RotG(v, a′).

3. Let (b, j′) = RotH(b′, j).

4. Output ((w, b), (j ′, i′)).

In [RVW01], λ(G©z H) was bounded as a function of λ(G) and λ(H). The interesting case there was
when both λ(G) and λ(H) were small constants (and in fact, λ(G) is significantly smaller than λ(H)). In
our context, λ(H) will indeed be a small constant but G may have an extremely small spectral gap (recall
that the spectral gap of G is 1 − λ(G)). In this case, we want the spectral gap of G©z H to be roughly
the same as that of G (i.e., smaller by at most a constant factor). It turns out that the stronger bound on
λ(G©z H), given in [RVW01] implies a useful bound also in this case. We note that a simpler proof for the
sort of bound on the zig-zag product we need is given in [DRTV04] (in a more general setting than the one
considered in [RVW01]).

Theorem 2.9 ([RVW01]) If G is an (N, D, λ)-graph and H is a (D, d, α)-graph, then G©z H is a (N ·
D, d2, f(λ, α))-graph, where

f(λ, α) =
1

2
(1− α2)λ +

1

2

√

(1− α2)2λ2 + 4α2.

As a simple corollary, we have that the spectral gap of G©z H is smaller than that of G by a factor that
only depends on λ(H).
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Corollary 2.10 If G is an (N, D, λ)-graph and H is a (D, d, α)-graph, then

1− λ(G©z H) ≥
1

2
(1− α2) · (1− λ).

Proof: Since λ ≤ 1 we have that

1

2

√

(1− α2)2λ2 + 4α2 ≤
1

2

√

(1− α2)2 + 4α2 =
1

2
(1 + α2) = 1−

1

2
(1− α2).

Therefore, f(λ, α) from Theorem 2.9 satisfies f(λ, α) ≤ 1− 1
2(1− α2)(1− λ).

3 Transforming graphs into expanders

This section gives a log-space transformation that essentially turns each one of the connected components
of a graph into an expander. This is the main part of our USTCON algorithm.

Definition 3.1 (Main Transformation) On input G and H , where G is a D16-regular graph on [N ] and H
is a D-regular graph on [D16], both given by their rotation maps, the transformation T outputs the rotation
map of a graph G` defined as follows:

• Set ` to be the smallest integer such that (1− 1/DN 2)2
`

< 1/2.

• Set G0 to equal G, and for i > 0 define Gi recursively by the rule:

Gi = (Gi−1©z H)8.

Denote by Ti(G, H) the graph Gi, and T (G, H) = G`

Note that by the basic properties of powering and the zig-zag product, it follows inductively that each Gi

is a D16-regular graph over [N ] × ([D16])i. In particular, the zig-zag product of Gi and H is well defined.
In addition, if D is a constant, then ` = O(log N) and G` has poly(N) vertices. Our first lemma shows that
T is capable of turning an input graph G into an expander G` (as long as H is in itself an expander).

Lemma 3.2 Let G and H be the inputs of T as in Definition 3.1. If λ(H) ≤ 1/2 and G is connected and
non-bipartite then λ(T (G, H)) ≤ 1/2.

Proof: Since G = G0 is connected and non-bipartite we have by Lemma 2.5 that λ(G0) ≤ 1 −
1/DN2. By the choice of ` it is therefore enough to prove that for every i > 0, it holds that λ(Gi) ≤
max{λ(Gi−1)

2, 1/2}. Denote λ = λ(Gi−1). Since λ(H) ≤ 1/2, we have by Corollary 2.10 that λ(Gi−1©z
H) ≤ 1 − 3/8(1 − λ) < 1 − 1/3(1 − λ). By the definition of Gi and by Proposition 2.7 we have that
λ(Gi) < [1 − 1/3(1 − λ)]8. We now consider two cases. First, if λ < 1/2 then λ(Gi) < (5/6)8 < 1/2.
Otherwise, elementary calculation shows that [1− 1/3(1−λ)]4 ≤ λ and therefore λ(Gi) < λ2. The lemma
follows.

As we are working our way to solving st-connectivity, rather than solving connectivity (the problem of
deciding if the input graph is connected or not), our transformation should be meaningful even for graphs
that are not connected (as even in this case the two input vertices s and t may still be in the same connected
component). For that, we will argue that T operates separately on each connected component of G. The
reason is that T is composed of two operations (the zig-zag product and powering), that also operate sepa-
rately on each connected component. We will need some additional notation: For any graph G and subset of
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its vertices S, denote by G|S the subgraph of G induced by S (i.e., the graph on S which contains all of the
edges in G between vertices in S). A set S is a connected component of G if G|S is connected and the set
S is disconnected from the rest of G (i.e., there are no edges in G between vertices in S and vertices outside
of S).

Lemma 3.3 Let G and H be the inputs of T as in Definition 3.1. If S ⊆ [N ] is a connected component of
G then

T (G|S , H) = T (G, H)|S×([D16])` .

Proof: We will only rely on S being disconnected from the rest of G, and will prove inductively that
Ti(G|S , H) = Ti(G, H)|S×([D16])i . Note that for i > 0 this directly implies that S×([D16])i is disconnected
from the rest of Ti(G, H) (since both Ti(G|S , H) and Ti(G, H) are D16-regular, and thus all of the D16

edges incident to a vertex in S × ([D16])i reside inside Ti(G, H)|S×([D16])i). The base case i = 0 is trivial,
and here too S × ([D16])i = S is disconnected from the rest of Ti(G, H) = G, by assumption.

Assume by induction that Ti(G|S , H) = Ti(G, H)|S×([D16])i . Set Gi = Ti(G, H) and Si = S×([D16])i

(and recall that Si is disconnected from the rest of Gi). Then, by the definition of the zig-zag product,
Si× [D16] is disconnected from the rest of Gi©z H and the edges incident to Si× [D16] in Gi©z H are exactly
as in Gi|Si×[D16]©z H . By the definition of powering we now have that Si × [D16] is disconnected from the
rest of (Gi©z H)8 and the edges incident to Si × [D16] in (Gi©z H)8 are exactly as in (Gi|Si×[D16]©z H)8.
This proves the induction hypothesis for i + 1 and completes the proof.

Finally, we need to argue that T is a log-space transformation (when D is a constant). The reason is that
the evaluation of the rotation map RotGi+1

of each graph Gi+1 in the definition of T requires just a constant
additional amount of memory over the evaluation of RotGi

. Simply, the evaluation of RotGi+1
is composed

of a constant number of operations, where each operation is either an evaluation of RotGi
or it requires

constant amount of memory (and the same memory can be used for each one of these operations). So the
additional memory needed for evaluating RotGi+1

is essentially a constant size counter (keeping track of
which operation we are currently performing).

Lemma 3.4 For every constant D the transformation T of Definition 3.1 can be computed in space O(log N)
on inputs G and H , where G is a D16-regular graph on [N ] and H is a D-regular graph on [D16].

Proof: We describe an algorithm A that on inputs G and H computes the rotation map RotG`
of G` =

T (G, H). Namely, given G and H (written on the read-only input tape), it enumerates all values (v̄, ā) in
the domain of RotG`

and outputs [(v̄, ā), RotG`
(v̄, ā)]. Recall that a value (v̄, ā) in the domain of RotG`

consists of v̄ ∈ [N ]× ([D16])` which is the name of a G` vertex, and ā ∈ [D16], which is the label of a G`

edge. Since ` = O(log N) and D is a constant, the length of each value (v̄, ā) is O(log N) and therefore
enumerating all of these values can be done in space O(log N). It remains to show that for any particular
value (v̄, ā), evaluating RotG`

(v̄, ā) can also be done in the required space.
The algorithm A will first allocate the following variables: v which will take value in [N ] (specifying

a vertex of G), and ` + 1 variables a0, a1 . . . a` each taking value in [D16] (and each specifying a vertex
name of H; In addition, a0 may specify an edge label of G). It is sometimes convenient to view each one
of a1 . . . , a` as specifying a sequence of 16 edge labels of H . In this case we denote ai = ki,1 . . . ki,16.
Now, A will copy the value (v̄, ā) into the above mentioned variables: v̄ into v, a0, . . . , a`−1 and ā into a`.
Throughout the execution of A, the values of these variables will slowly evolve such that when A finishes
(for this particular (v̄, ā)), the same variables will contain the desired output RotG`

(v̄, ā) (which is of the
same range as the input (v̄, ā)).
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We describe the operation of A in a recursive manner that closely follows the definition of T . Particu-
larly, at each level of the recursion, A will evaluate RotGi

for some i on the appropriate prefix v, a0, . . . , ai

of the variables defined above. For the base case i = 0, RotG0
= RotG is written on the input tape, and

can therefore be evaluated in space O(log N) by simply searching the input tape for the desired entry. For
larger i, the evaluation of RotGi

is as follows:

For j = 1 to 16

• Set ai−1, ki,j ← RotH(ai−1, ki,j).

• If j is odd, recursively set v, a0 . . . ai−1 ← RotGi−1
((v, a0 . . . ai−2), ai−1).

• If j = 16, reverse the order of the individual labels in ai: Set ki,1, . . . , ki,16 ← ki,16, . . . , ki,1.

The correctness of A immediately follows from the definition of T and from the operations of which it
consists (powering and the zig-zag product). We therefore concentrate on the space complexity of A. Note
that each node of the recursion tree performs a constant number of operations and makes a constant number
of recursive calls. In addition the depth of the recursion is ` + 1 = O(log N). Therefore, maintaining the
recursion can be done in space O(log N). Furthermore, each one of the basic operations (evaluating RotG,
evaluating RotH , and reversing the order of labels in the last step) can be performed in space O(log N).
Finally, the only memory that needs to be kept after a basic operation is performed, is the memory holding
the variables v, a0, . . . , a` (that are shared by all of these operations), and the memory for maintaining the
recursion. We therefore conclude that the space complexity of A is O(log N) which completes the proof.

4 A log-space algorithm for USTCON

This section puts together the tools developed above into a deterministic log-space algorithm that decides
undirected st-connectivity. As will be discussed in Section 5, the algorithm can also output a path from s to
t if such a path exists.

Theorem 4.1 USTCON ∈ L

As undirected USTCON is complete for SL [LP82], Theorem 4.1 can be rephrased as follows.

Theorem 4.2 SL = L

Proof: [of Theorem 4.1] We give an algorithm A that gets as input a graph G over the set of vertices [N ],
and two vertices s and t in [N ]. For concreteness, we assume that the graph is given via the adjacency matrix
representation. A will answer ‘connected’ if and only if there exists a path in G between s and t (i.e., s and
t are in the same connected component). Furthermore, G will use space which is logarithmic in its input
size.

The algorithm A will need to evaluate the rotation map of a ((De)16, De, 1/2)-graph H , where De is
some constant. By Proposition 2.4, there exists such a graph and therefore A can obtain it by exhaustive
search using constant amount of memory (a more efficient alternative is of course to obtain H by any of the
explicit constructions of expanders mentioned in Section 2.2).

Let T be the transformation given by Definition 3.1. We would like to apply T to G and H in order to
obtain a graph where each connected component is an expander. For such graphs, st-connectivity can be
solved in logarithmic space by Proposition 2.3. However, we will first need to preprocess G in order to get a
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new graph Greg such that (Greg, H) is a correct input to T . In particular, we need Greg to be a D16
e -regular

graph given by its rotation map. There are various ways of transforming G to Greg. The one given here was
selected for its simplicity even though it is not the most efficient one possible (in terms of the size of Greg).
Essentially, we replace every vertex of G with a cycle of length N and each of the vertices (v, w), where
there is an edge between v and w in G, is also connected to (w, v) (the rest of the edges are self loops). The
rotation map RotGreg : ([N ]× [N ])× [D16

e ] 7→ ([N ]× [N ])× [D16
e ] of Greg is formally defined as follows:

• RotGreg((v, w), 1) = ((v, w′), 2), where w′ = w + 1 if w < N and w′ = 1 otherwise.

• RotGreg((v, w), 2) = ((v, w′), 1), where w′ = w − 1 if w > 1 and w′ = N otherwise.

• In case there is an edge between v and w in G then RotGreg((v, w), 3) = ((w, v), 3). Otherwise,

RotGreg((v, w), 3) = ((v, w), 3).

• For i > 3, RotGreg((v, w), i) = ((v, w), i).

The transformation from G (given by its adjacency matrix) to Greg (given by its rotation map) is clearly
computable in logarithmic space. Furthermore, Greg is D16

e -regular by definition and all its connected com-
ponents are non-bipartite (as every vertex in Greg has self loops). Finally, for every connected component
S ⊆ [N ] of G we have that S × [N ] is a connected component in Greg. To see that, we first note that for
every vertex v ∈ [N ] the set of vertices v × [N ] is in the same connected component of Greg (as this set
is connected by a cycle). Furthermore, there is an edge in Greg between some vertex in v × [N ] and some
vertex in w × [N ] if and only if v and w are connected by an edge in G (the only possible edge that can
connect these subsets is an edge between (v, w) and (w, v) which only exists in Greg if there is an edge
between v and w in G).

Now define Gexp = T (Greg, H), and ` = O(log N) is the corresponding value as in Definition 3.1.
Let S be the connected component of G, such that s ∈ S. By the arguments above, S × [N ] is a connected
component of Greg, and Greg|S×[N ] is non-bipartite. By Lemma 3.3, S×[N ]×([D16])` is a connected com-
ponent of Gexp (as both Gexp and Gexp|S×[N ]×([D16])` are D16

e -regular). By Lemma 3.2 and Lemma 3.3,
we have that λ(Gexp|S×[N ]×([D16])`) ≤ 1/2.

Let A′ be the the algorithm guaranteed by Proposition 2.3 (which decides undirected st-connectivity
correctly in graphs where the connected component of the starting vertex is an expanders). The algorithm
A will now invoke A′, on the graph Gexp and the vertices s′ = (s, 1`+1) and t′ = (t, 1`+1). If A′ outputs
that s′ and t′ are connected in Gexp then A will output that s and t are connected in G. Otherwise, A will
output that s and t are not connected.

The algorithm A is log-space since it is composed of a constant number of log-space procedures: (1)
The transformation from G to Greg. (2) The transformation from Greg to Gexp, which is log-space by
Lemma 3.4. (3) The algorithm A′ which is log-space by Proposition 2.3. Correctness of A is argued as
follows. First, s′ and t′ are connected in Gexp if and only if s and t are connected in G (since S × [N ] ×
([D16])` is a connected component of Gexp, where S is the connected component of G that contains s).
The correctness of A now follows since Proposition 2.3 implies that A′ will output ‘connected’ if and only
if s′ and t′ are indeed connected in Gexp (as λ(Gexp|S×[N ]×([D16])`) ≤ 1/2).

5 Universal traversal and exploration sequences

In this section, we look closer into our USTCON algorithm and conclude that it also solves the correspond-
ing search problem (i.e., finding the path from s to t if such a path exist). In addition, it implies efficiently-
constructible universal-traversal sequences for graphs with restricted labelling, and universal exploration
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sequences for general graphs. The sort of restriction we pose on the labelling of graphs is a strengthening
of the “consistent labelling” used in [HW93]. In a subsequent work [DRTV04], our restriction is relaxed to
that of [HW93].

We start by analyzing T , the main transformation of the algorithm, given by Definition 3.1. We show
that every edge in T (G, H) translates to a path in G between the appropriate vertices, and that this path
is log-space constructible (as this path is indeed computed during the log-space evaluation of T ). Looking
ahead to the universal-traversal sequences, we note that if we restrict the labelling of G, then the labels of
edges, traversed along this path, are independent of G.

Definition 5.1 Let π be a permutation over [D] and RotG the rotation map of a D-regular graph G. Then
RotG is π-consistent if for every v, i, w and j such that RotG(v, i) = (w, j), it holds that j = π(i). In such
a case we may also say that the labelling of G is π-consistent.

An example of a π-consistent labelling is symmetric labelling where π is simply the identity. Namely,
every edge is labelled in the same way from both its end points. However, other kinds of π-consistent
labellings come up naturally. An example for that is the labelling of Greg in the proof of Theorem 4.1. We
can now state the appropriate technical lemma regarding the transformation T .

Lemma 5.2 Let D be some constant. Let G be a D16-regular graph on [N ] and let H be a D-regular graph
on [D16], both given by their rotation maps. Let G` = T (G, H), where T and ` are given by Definition 3.1.

There exists a log-space algorithm such that given RotG, RotH and (v̄, ā) in the domain of RotG`
, it

outputs a sequence of labels in [D16] with the following property: If the first element of v̄ is a vertex u ∈ [N ]
and the the first element of RotG`

(v̄, ā) is a vertex w ∈ [N ], then the walk on G from u using the labels that
the algorithm outputs leads to w.

Furthermore, for every fixed permutation π on [D16], if the labelling of G is π-consistent, the log-space
algorithm can evaluate the sequence of labels without access to RotG.

Proof: Consider the log-space algorithm A in the proof of Theorem 3.4, as it evaluates RotG`
(v̄, ā). We

revise it a bit, to define an algorithm A′ as claimed by the lemma. Consider in particular the two variables v
and a0 used byA. To begin with, v will be initialized to the value u (the first element of v̄). At the end, v will
contain the value w. Throughout the run ofA, the variable v is only updated by the rule v, a0 ← RotG(v, a0)
(used at the bottom of the recursion). Therefore, all thatA′ needs to do is to output the value of a0 just before
each time A updates v.

Regarding the second part of the lemma. We note that the value of a0 is only influenced by RotG,
through the evaluations v, a0 ← RotG(v, a0). If G is π-consistent, then A′ can completely ignore the
variable v and the rotation map of G. To simulate A, it is sufficient that whenever A evaluates v, a0 ←
RotG(v, a0), then A′ will evaluate a0 ← π(a0).

Using Lemma 5.2, it is not hard to obtain the algorithm that finds paths in undirected graphs.

Theorem 5.3 There exists a log-space algorithm that gets as input a graph G over the set of vertices [N ],
and two vertices s and t in [N ], and outputs a path from s to t if such a path exists (otherwise it outputs ‘not
connected’).

Proof: Consider the algorithm A from the proof of Theorem 4.1. We revise it to an algorithm A′ as
required by the theorem. First, we note that it is enough for A′ to output a path from (s, 1) to (t, 1) in Greg
if such a path exists, as it is easy to transform (in log-space) such a path to a path from s to t in G (and the
existence of the two paths is equivalent).
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Next we note that A enumerates all logarithmically-long paths from s′ = (s, 1`+1) in Gexp. If it does
not find a path that visits t′ = (t, 1`+1), it concludes that s and t are not connected in G. Therefore, in such
a case, A′ can output ‘not connected’. Otherwise A found a short path from s′ to t′. Apply the algorithm
guaranteed by Lemma 5.2 on each edge on the path from s′ to t′. Each time the algorithm outputs a sequence
of edge-labels in Greg. Let ~a be the concatenation of these sequences. It follows from Lemma 5.2 that the
path in Greg starting from (s, 1) and following the edges according to the labels in ~a leads to (t, 1). The
theorem now follows.

To give our result regarding universal-traversal sequences, we need some notation. Let ~a = {a1, ..., am}
be a sequence of values in [D] (these are interpreted as edge labels). ~a is an (N, D)-universal traversal
sequence, if for every connected D-regular, labelled graph G on N vertices, and every start vertex s ∈ [N ],
the walk that starts at s and follows the edges labelled a1, ..., am, visits every vertex in the graph. For a
permutation π over [D], we say that ~a is an (N, D) π-universal traversal sequence, if the above property
holds for every connected D-regular graph on N vertices, that has a π-consistent labelling, (rather than for
all such graphs).

Theorem 5.4 There exists a log-space algorithm that takes as input 1N and a permutation π over [D] and
outputs an (N, D) π-universal traversal sequence.

Proof: First we argue that it is enough to construct an (N ·D, D16
e ) π′-universal sequence for the following

simple permutation: π′(1) = 2, π′(2) = 1 and for every i > 2 π′(i) = i. Furthermore, all we need is that the
sequence will traverse non-bipartite graphs. Consider a (connected) D-regular graph G on N vertices that
has a π-consistent labelling. This graph can be transformed into a D16

e -regular (connected and non-bipartite)
graph G′ on N ·D vertices that has a π′-consistent labelling. Each vertex v ∈ N is transformed into a cycle
over D vertices (v, 1), . . . , (v, D), the edges of the cycle are labelled 1 and 2 (just as in the definition of
Greg in the proof of Theorem 4.1). The edge labelled 3 going out of (v, i) will lead to RotG(v, i) (and will
be labelled 3 from that end as well). All other edges are self loops.

Assume that a sequence of labels a1, ..., am, visits every vertex of G′ starting from every vertex (v, 1)
(this is even less general than what we obtain). We can translate this (in log space) into a sequence of labels
b1, . . . , bm′ that traverses G from every vertex v. To do that, we simulate the walk on G′ from an arbitrary
vertex (v, 1). As v is unknown and our simulation does not rely on G, it will only know at each point the
value b such that the walk at this point visits some vertex (w, b) of G′ (where w is unknown). First b is set
to 1. Then, during the simulation, labels ai > 3 can be ignored (as they are self loops). Given labels 1 and
2, b can easily be updated (these are edges on the cycle). Finally, when encountering ai = 3 the walk moves
from a vertex (w, b) to a vertex (w′, π(b)) (as the labelling of G is π-consistent), and so it is easy to update
the value of b (given access to π). The projection of the walk on G is exactly the edges labelled 3 that are
taken by the walk on G′. Therefore, to transform the sequence of ai’s to the sequence of bi’s we can simply
output (throughout the simulation) the current value of b, whenever we encounter a label ai = 3.

Now we consider a D16
e -regular (connected and non-bipartite) graph G′ on N · D vertices that has a

π′-consistent labelling. Let H be a ((De)16, De, 1/2)-graph. Finally let G` = T (G, H), where T and
` are given by Definition 3.1. By Lemma 3.2, λ(G`) ≤ 1/2 and therefore its diameter is logarithmic.
Therefore, for every two vertices v and u of G′ one of the polynomially many sequences of labels (of the
appropriate logarithmic length) will visit (u, 1`), starting at (v, 1`). Let B be the set of all these sequences of
labels. Lemma 5.2 gives a way to translate in log-space each one of the sequences in B into a corresponding
sequence of edge-labels of G′. Let B′ be the set of translated sequences. By Lemma 5.2 and the above
argument, for every two vertices v and u of G′ one of the sequences in B ′ will lead a walk in G′ that starts
in v through the vertex u. We should also note that given a sequence ~a = a1, . . . , am that leads from a
vertex v to a vertex u, we have that the sequence π′−1(am), . . . , π′−1(a1) leads from u to v (this operation
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simply reverses the walk). We refer to this latter sequence as the reverse of ~a. Finally, we can define a
sequence that traverses all of the vertices of G′ regardless of the starting vertex. Simply, we concatenate for
each sequences in B′ its reversed sequence and concatenate all of these sequences one after the other. By
the arguments above, for every vertex v, the sequence we obtain will visit v after every pair of a sequence
and its reversed sequence. Furthermore, for every vertex u, one of these sequences will lead to u. As the
log-space construction of this sequence ignores the graph G′ (and only relies on π′), we obtained the desired
(N ·D, D16

e ) π′-universal sequence for non-bipartite graphs. The lemma follows.

In an (N, D)-universal exploration sequence, the sequence of labels is interpreted as offsets rather than
absolute labels. This means that if we entered a vertex v on an edge labelled a (from v’s view point), and
we are reading the label b, then we will leave v on the edge labelled a + b (or a + b − D if a + b > D).
In fact this notion can apply to graphs that are not-regular and in this case we let D be a bound on the
largest degree (it then makes sense to allow negative elements in the sequence). Universal-exploration
sequences have more flexibility than universal-traversal sequences. For example, it is not clear how to
transform a universal-traversal sequence for degree-3 graphs to one for higher-degree graphs. This is easy
for universal-exploration sequences (and seems desirable as USTCON can easily be reduced to USTCON
for regular-graphs of any degree larger than 2). Koucky [Kou03] showed how to transform a universal-
traversal sequence to a universal-exploration sequence. His transformation (which is essentially the same as
the one from G to G′ in the proof of Theorem 5.4), only needs the universal-sequence to work for graphs
with π-consistent labelling for some simple permutation π. We can therefore conclude from Theorem 5.4 a
log-space construction for general universal-exploration sequences.

Corollary 5.5 There exists a log-space algorithm that takes as input (1N , 1D) and produces an (N, D)-
universal exploration.

6 Discussion and further research

We start by comparing the techniques of this paper with some previous ones, with the goal of shading some
light on the source of our improvements. We continue by discussing some open problems and the results of
a subsequent work.

Comparison with previous techniques The USTCON algorithms of [Sav70, NSW89, ATSWZ00] also
operate by transforming, in phases, the input graph into a more accommodating one. In each one of these
algorithms, each phase “charges” logarithmic amount to the space complexity of the algorithm. The im-
provement in the space complexity is directly correlated to reducing the number of phases needed for the
transformation. With this approach, the only way to obtain a log-space algorithm is to reduce the number of
phases to a constant. We deviate from this direction, as we use a logarithmic number of phases (just as in
Savitch’s algorithm), to gradually improve the connectivity of the input graph. The space efficiency of our
algorithm stems from each transformation being significantly less costly in space.

The parameter being improved by [NSW89, ATSWZ00], is the size of the graph (each transformation
shrinks the graph by collapsing it to a “representative” subset of the vertices). In contrast, our transformation
will in fact expand the graph by a polynomial factor (as each phase, enlarges our graph by a constant factor).
The parameter Savitch’s transformation improves is the diameter of the graph, which is much closer to the
parameter we improve (the expansion). In fact, each phase of Savitch’s algorithm can be described very
similarly to our algorithm. Each one of these phases consists of squaring the graph and then removing
parallel edges (which may reduce the degree). One crucial difference is that our transformation manages to
preserve constant degree of the graph (rather than linear degree in Savitch’s algorithm). In addition, even
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though we eventually only need the diameter of the graph to be small, our analysis relies on bounding the
expansion of intermediate graphs – a stronger notion of connectivity than the diameter.

It also seems instructive to compare with the combinatorial construction of expander graphs of [RVW01].
There, an arbitrarily large expander graphs was constructed, starting with a constant size expander. This
small expander is made larger and larger, while its degree is kept constant via the zig-zag or the replacement
product. Our main transformation shows how to turn any connected graph (which is already large) into an
expander. This means that the above mentioned products need to be applied when one of the graphs is an
extremely weak expander (whereas in [RVW01] both graphs were fairly good expanders). Very fortunately,
both products work quite well in this unusual setting of parameters.

Further Research There are many open problems and new research directions brought up by this work,
we discuss just a few of those. A very natural question is whether the techniques of this paper can be
used towards a proof of RL = L. While progress in the context of RL does not seem immediate (as the
case of symmetric computations does seem easier), we feel that it is still quite plausible. We also feel
that this paper should give an opportunity to reevaluate the common conjecture that Savitch’s algorithm
is optimal for STCON. While this conjecture may very well be correct, we feel that there is not enough
evidence supporting it. Another open problem is to come up with full-fledged, efficiently-constructible,
universal-traversal sequences. Interestingly, it seems that this problem shares some of the obstacles that one
encounters when trying to generalize the USTCON algorithm to solving RL. Finally, we have made no
attempt to optimize our algorithm in terms of running time (or the constant in the space complexity). Major
improvements in efficiency can come about by better analysis of the zig-zag and replacement products.
These may also determine which one of these products yields a more efficient algorithm.

In a subsequent work, Dinur, Reingold, Trevisan and Vadhan [DRTV04], make some initial progress on
extending our techniques to dealing with directed graphs. In particular, they give a new complete problem for
RL that seems more amendable to our techniques. They give universal traversal sequences to directed graphs
that are bi-regular with consistent labelling, and show how to find a path from s to t given good estimates on
the state probabilities under the stationary distribution of the walk starting with s (and conditioned on these
probabilities being non-negligible).
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