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Abstract. In this paper, we characterize the logical corre-
spondence between conjunctive queries and concept descrip-
tions. We exhibit a necessary and sufficient condition for the
compilation of a conjunctive query into an equivalent ALE
concept description. We provide a necessary and sufficient
condition for the approximation of conjunctive queries by
maximally subsumed ALN concept descriptions.

1 Introduction

Conjunctive queries play a central role in database and in
knowledge representation. They correspond to the core rela-
tional database queries (i.e., SelectProjectJoin queries). They
are the basic elements of function-free Horn rule languages
that are a decidable subset of first order logic for which sev-
eral practically efficient inference procedures have been de-
veloped and used in many applications. Description logics are
another decidable subset which has been extensively studied.
They have been designed especially to model rich hierarchies
of classes of objects. In particular, they have been found very
useful for reasoning on ontologies [14] and for expressing web-
site semantics in the next generation ”semantic web” [5]. Horn
rules and descriptions logics are two orthogonal subsets of first
order logic: it is known [6] that neither of these languages
can express the other. Their combination has been studied in
Al-log [13] and in Carin [16]. In contrast, in this paper, we
focus on the logical overlapping existing between conjunctive
queries and concept descriptions. In our comparison, since de-
scription logics only deal with unary and binary relations, we
restrict the conjunctive queries that we consider to be made of
unary and binary atoms only. However, we extend the expres-
sive power of standard conjunctive queries by allowing unary
atoms C(U) such that C is a concept description.

The contribution of this paper is twofold. First, we exhibit a
necessary and sufficient condition for the compilation of a con-
junctive query that is unary (i.e., with a single distinguished
variable) into an equivalent concept description in ALE . Sec-
ond, we provide a necessary and sufficient condition for the
approximation of unary conjunctive queries by maximally sub-
sumed ALN concept descriptions.

Compiling or approximating conjunctive queries into con-
cept descriptions enable the transfer of complexity results and
algorithms between description logics from one side, and Horn
rules or relational database theory from the other side. Char-
acterizingALE descriptions that are equivalent to conjunctive
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queries for which checking containment is polynomial provides
a restriction of ALE for which subsumption is polynomial.
Approximating conjunctive queries by ALN descriptions for
which subsumption is polynomial provides an incomplete but
efficient procedure for checking containment of conjunctive
queries which is in general NP-complete.

The paper is organized as follows. In section 2, we present
within a uniform logical framework the basic notions on the
description logics and the conjunctive queries that we con-
sider. In section 3, we characterize precisely the conjunctive
queries that can be compiled (i.e., equivalently translated)
into concept descriptions. Section 4 is devoted to the approx-
imation of conjunctive queries by concept descriptions. Fi-
nally, in Section 5, we compare our work with related work
and we draw some conclusions.

2 Preliminaries

In this section, we introduce the syntax and logical seman-
tics of (i) the concept descriptions (Section 2.1), and (ii) the
conjunctive queries (Section 2.2) which we consider in this
paper. The resulting subsumption relation applies indiscrimi-
nately to concept descriptions and unary conjunctive queries.

2.1 Concept descriptions

In description logics, concept descriptions are inductively
defined, using a set of constructors, starting with a set Pc

of unary predicates and a set Pr of binary predicates. An
element of Pc is called an atomic concept and an element
of Pr is called a role. The set of constructors allowed for
building concept descriptions varies from one description
logic to another. The concept descriptions that we consider
in this paper are inductively defined using constructors of
the ALEN description logic as follows:
- any atomic concept A ∈ NP is a concept description,
- > is a concept description (called top or universal concept),
- ⊥ is a concept description (called bottom or empty concept),
- if A is an atomic concept, then ¬A is a concept description
(called atomic negation),
- if C and D are concept descriptions, then (C u D) is a
concept description (called conjunction of C and D),
- if C is a concept description and r is a role, then (∀r.C)
and (∃r.C) are concept descriptions (respectively called value
restriction and existential restriction), and
- if n is an integer and r is a role, then (≥ n r) and (≤ n r)
are concept descriptions (called number restrictions).



The logical semantics of concept descriptions is defined in
terms of interpretations. An interpretation I is a pair (∆I ,
.I) where ∆I is a non-empty set of individuals called the
domain of interpretation of I, and .I is an interpretation
function, which assigns a subset of ∆I to every concept
description. An interpretation function maps each atomic
concept A ∈ NP to a subset AI of ∆I and each role r ∈ NR

to a subset rI of ∆I ×∆I . The interpretation of an arbitrary
concept description is inductively defined as follows:
- >I = ∆I , ⊥I = ∅, (¬A)I = ∆I \ AI , (C u D)I = CI ∩ DI ,
- (∀r.C)I = {d ∈ ∆I | ∀e ∈ ∆I ((d, e) ∈ rI → e ∈ CI)},
- (∃r.C)I = {d ∈ ∆I | ∃e ∈ ∆I s.t (d, e) ∈ rI and e ∈ CI},
- (≥ n r)I= {d ∈ ∆I | #{e | (d, e) ∈ rI} ≥ n} and
- (≤ n r)I= {d ∈ ∆I | #{e | (d, e) ∈ rI} ≤ n}.
An interpretation I is a model of a concept description C iff
CI is not empty: C is then said to be satisfiable.

In this paper, we mention different sublanguages of ALEN :
• AL, in which concept descriptions are restricted to be top,
bottom, atomic negation, conjunction and value restriction.
• ALN , which enriches AL with number restrictions.
• ALE , which enriches AL with existential restriction.
• We introduce the new sublanguages of ALEN , denoted by
AL+E and ALN+E , limiting the interplay of the existential
restriction with the other constructors in the following way:

- If C is in AL (respectively ALN ) then C is in AL+E
(respectively ALN+E).

- If C is in AL+E (respectively ALN+E) then ∃r.C is in
AL+E (respectively ALN+E).

- If C1 and C2 are in AL+E (respectively ALN+E) then
C1 u C2 is in AL+E (respectively ALN+E).

2.2 Conjunctive queries

The conjunctive queries that we consider in this paper are
unary conjunctive queries over unary and binary atoms.
They can be purely relational or hybrid with description log-
ics. Given two sets Pc and Pr of unary and binary predi-
cates, a unary conjunctive query over Pc ∪ Pr, denoted by
q(X) : CJ (X, Ȳ ), defines a unary predicate q by a conjunc-
tion CJ (X, Ȳ ) of unary and binary atoms. X is called the
distinguished variable, and the variables of Ȳ are called the
existential variables of the query. CJ (X, Ȳ ) is the body of the
query. The unary conjuncts in CJ (X, Ȳ ) are atoms of the form
C(U) where U is the distinguished variable or an existential
variable, and C is a concept description over Pc ∪ Pr. The bi-
nary conjuncts in CJ (X, Ȳ ) are atoms of the form r(U1, U2)
where U1 and U2 are (distinguished or existential) variables
and r is a binary predicate of Pr.
For a given variable V , we call its unary scope in q, denoted
by UnaryScopeq(V ), the conjunction of unary atoms of the
form C(V ) appearing in the body of q. If there is no unary
atom of the form C(V ), the unary scope of V is set to >(V ).

If every unary conjunct C(U) of a conjunctive query is such
that C is an atomic concept (i.e., C ∈ Pc), this query is said
to be pure. If a conjunctive query has unary conjuncts C(U)
such that C is a concept description which is not atomic of a
description logic LD, then it is said to be hybrid with LD.

Example 1 q1 is a pure conjunctive query that defines flights
whose destination is an American city with a stop in an Eu-

ropean City:
q1(X) : Flight(X) ∧ Stop(X, Y1) ∧ EuropeanCity(Y1)

∧ Destination(X, Y2) ∧ AmericanCity(Y2).
q2 is an hybrid conjunctive query that defines flights with a
stop in an European City and atmost 2 stops:
q2(X) : (Flight u (≤ 2 Stop))(X) ∧ Stop(X, Y1) ∧ EuropeanCity(Y1).
Finally q3 is a pure conjunctive query that defines airlines
that share the service of an European city Y1 with an
American airline U :
q3(X) : Airline(X) ∧ Service(X, Y1) ∧ EuropeanCity(Y1)

∧ Airline(U) ∧ AmericanCompany(U) ∧ Service(U, Y1).

In the same way that an interpretation of atomic concepts
and roles determines the interpretation of complex concept
descriptions, the interpretation of the unary and binary pred-
icates appearing in the query definition uniquely determines
the interpretation of the query.

Definition 1 (Semantics of a conjunctive query) Let q
be a unary predicate defined by a conjunctive query q(X) :
CJ (X, Ȳ ). Given an interpretation I, the interpretation qI of
q in I is defined as follows: o ∈ qI iff there exists a map-
ping α from the query’s variables to the domain ∆I such
that: α(X) = o, α(U) ∈ CI for every unary atom C(U) in
CJ (X, Ȳ ), and α(U1, U2) ∈ rI for every binary atom r(U1, U2)
in CJ (X, Ȳ ).

The following definition of subsumption and equivalence ap-
plies to unary predicates defined by conjunctive queries or
concept descriptions.

Definition 2 (Subsumption and equivalence) Let q1

and q2 be concept descriptions or unary predicates defined by
conjunctive queries.
- q1 is subsumed by q2 (denoted q1 � q2) iff for every
interpretation I, qI

1 ⊆ qI
2.

- q1 is equivalent to q2 (denoted q1 ≡ q2) iff for every
interpretation I, qI

1 = qI
2.

Example 2 Consider again the query q1 of Example 1.
- It is equivalent to:
Flight u (∃Stop.EuropeanCity) u(∃Destination.AmericanCity).
- It subsumes (without being equivalent to):

Flight u (≥ 1 Stop) u (∀Stop.EuropeanCity)
u (≥ 1 Destination) u (∀Destination.AmericanCity).

3 Translation between conjunctive queries
and concept descriptions

We start by introducing the notions of binding graph and re-
striction for conjunctive queries, which play a central role in
the logical correspondence between conjunctive queries and
concept descriptions. We also introduce the notions of tree,
forest, dag and connected queries.

Definition 3 (Predecessors and successors) Let q(X) :
CJ (X, Ȳ ) be a conjunctive query. Let U1 and U2 be two vari-
ables of X ∪ Ȳ .
- U1 is a r-predecessor of U2 and U2 is a r-successor of U1 iff
the binary atom r(U1, U2) is a conjunct of CJ (X, Ȳ ).
- U1 is a predecessor of U2 (respectively U1 is a successor
of U2) iff there exists a binary predicate r such that U1 is a
r-predecessor of U2 (respectively U1 is a r-successor of U2).



The binding graph accounts for the connection existing be-
tween variables within a conjunctive query.

Definition 4 (Binding graph of a conjunctive query)
Let q(X) : CJ (X, Ȳ ) be a conjunctive query. Its binding
graph (denoted by G(q)) is a directed graph defined as follows:
- the nodes of G(q) are the variables of q and
- there exists an edge labelled by r from U1 to U2 in G(q) iff
U1 is a r-predecessor of U2 in q.

The restriction of a query results from equating some vari-
ables of the query.

Definition 5 (Restriction of a conjunctive query)
Let q be a conjunctive query defined by q(X) : CJ (X, Ȳ ).
A restriction of q is a conjunctive query q′ defined by
q′(X) : σ.CJ (X, Ȳ ) where σ is a mapping equating some ex-
istential variables of q with some (distinguished or existential)
variables of q.

Example 3 Consider the following conjunctive query:
q′3(X) : Airline(X) ∧ Service(X, Y1) ∧ EuropeanCity(Y1)

∧ AmericanCompany(X)

q′3 is a restriction of the query q3 in Example 1, which is
obtained by equating U with X.

The next proposition results directly from Definition 5.

Proposition 1 Let q and q′ be two conjunctive queries. If q′

is a restriction of q, then q′ is subsumed by q.

Definition 6 (Tree, forest, dag and connected queries)
Let q(X) : CJ (X, Ȳ ) be a conjunctive query. It is a tree
query iff its binding graph is a tree rooted in X. It is a forest
query iff its binding graph is a forest where a tree is rooted
in X. It is a dag query iff its binding graph is acyclic. It is a
connected query iff its binding graph is connected.

In Example 1, q1 and q2 are tree queries while q3 is not.

In Section 3.1, we exhibit a one-to-one correspondence be-
tween tree queries and concept descriptions, which is exploited
to transfer a polynomial subsumption algorithm from tree
queries to AL+E concept descriptions. In Section 3.2, we show
that unary conjunctive queries having an equivalent restric-
tion which is a tree query are exactly the conjunctive queries
that can be equivalently compiled into concept descriptions.

3.1 Tree queries and concept descriptions

Before defining the translation of a tree query into a concept
description and the expansion of a concept description into a
tree query, we start by introducing useful notations.

Notation: For every existential variable Y of a tree query q,
we denote by rY and VY respectively the single binary pred-
icate r and the single (existential or distinguished) variable
V such that r(V, Y ) is an atom of q. Given a (distinguished
or existential) variable V of a tree query q, we denote by
subtreeq(V ) the conjunction of the atoms in the body of q
inductively defined as follows:
- if V has no successor: subtreeq(V ) = UnaryScopeq(V ),
- if V has V1, . . . , Vn as successors: subtreeq(V ) =
. UnaryScopeq(V ) ∧

∧n
i=1 [rVi(V, Vi) ∧ subtreeq(Vi)] . .

Definition 7 (Translation of a tree query into ALEN )
Let q(X) : CJ (X, Ȳ ) be a tree query. The translation of
q in ALEN , denoted Compil(q), is the concept description
inductively defined as follows:
- if CJ (X, Ȳ ) =

∧k
i=1 Ci(X) (X has no successor) then:

Compil(q) =
dk

i=1 Ci ;

- if CJ (X, Ȳ ) =
∧k

i=1 Ci(X)∧
∧n

j=1 rYj (X, Yj)∧subtreeq(Yj),
where Y1, . . . , Yn are the successors of X, then:

Compil(q) =
dk

i=1 Ci u
dn

j=1(∃rYj .Compil(subtreeq(Yj))).

Example 4 Consider the tree query q1 in Example 1.
Compil(q1) =
(Flightu (∃Stop.EuropeanCity)u (∃Destination.AmericanCity)).

Definition 8 (Expansion of a concept description)
The expansion rooted in a variable X of an ALEN concept
description C, denoted by Expand(C, X), is the conjunction
of atoms inductively defined as follows:
- If C has the form of an atomic concept, a value restriction
or a number restriction: Expand(C, X) = C(X).
- If C = C1 u C2: Expand(C, X) = Expand(C1, X) ∧
Expand(C2, X).
- If C = (∃r.D): Expand(C, X) = r(X, Y ) ∧ Expand(D, Y ),
where Y is a fresh variable.

The next proposition is straightforward. It establishes the
equivalence between a tree query and its translation on one
hand, and a concept description and its expansion (which is
a tree query) on the other hand.

Proposition 2 Let q(X) : CJ (X, Ȳ ) be a tree query and
q′(X) : Expand(Compil(q), X) be the tree query defined by the
expansion of its compilation: Compil(q) ≡ q ≡ q′. Let C be
an ALEN concept description and q(X):Expand(q, X) be the
tree query defined by its expansion: C ≡ q ≡ Compil(q).

Theorem 1 is based on an extension of the homomophism
theorem for relational conjunctive queries [9]. It is a direct
adaptation of the extension of the homomophism theorem for
conceptual graphs [18, 10] pointed in [3] for establishing the
correspondence between conceptual graphs and description
logics. The result comes from the combination of two known
results [15, 12] : (i) checking whether there exists a homomor-
phism from a tree onto a graph, and (ii) checking subsumption
of two AL concept descriptions can be done in polynomial
time. It is important to note that for guaranteeing in our
setting the equivalence between checking query subsumption
and checking the existence of an homomorphism between the
corresponding binding graphs, we need to saturate the con-
junctive queries, hybrid with AL, by applying exhaustively
the rule: r(U, V ) ∧ (∀r.C)(U) → r(U, V ) ∧ (∀r.C)(U) ∧ C(V ).
The important point is that the size of the saturated queries
remains polynomial in the size of the original queries.

Theorem 1 Let q be a tree query and q′ be any conjunctive
query over AL descriptions. Checking whether q′ is subsumed
by q can be done in polynomial time.

The next corollary is a direct consequence of Theorem 1 and
Proposition 2, exploiting the fact that any concept descrip-
tion of AL+E can be expanded in polynomial time into an
equivalent tree query over AL descriptions.

Corollary 1 AL+E is a sublanguage of ALE for which sub-
sumption is polynomial.



3.2 Conjunctive queries compilable into
concept descriptions

It has been stated in Proposition 2 that being a tree query is
a sufficient condition for a conjunctive query to be compiled
into an equivalent concept description. Theorem 2 establishes
a necessary condition for a conjunctive query to subsume an
ALEN concept description. Based on that theorem, Theo-
rem 3 then establishes a necessary condition for a conjunc-
tive query to be equivalent to a concept description of ALE
or ALN . As a consequence of Proposition 2 and Theorem 3,
Corollary 2 establishes a necessary and sufficient condition for
a conjunctive query to be compiled into an equivalent ALE
concept description.

Theorem 2 Let C be a satisfiable ALEN concept descrip-
tion, and q a conjunctive query:
If C � q, then q or one of its restriction is a forest query.

Sketch of proof: The full proof is given in [1]. It is based on
the completion calculus and reuses known results from [16].
In particular, since C � q is equivalent to C(X) |= q(X) then
for any clash free completion S of C(X):
- there exists a mapping α from the variables appearing in
q into the variables of S such that α(X) = X, if r(U1, U2)
is in q then r(α(U1), α(U2)) ∈ S and if C(U) is in q then
S |= C(α(U)), and
- the binding graph of S is a tree rooted in X.
First, we show that the binding graph of q is a dag: if it had
a cycle, then the binding graph of any completion S would
have a cycle too. This would contradict that the graph of S
is a tree. Then, we show that X cannot have a predecessor
in q since X would have a predecessor in the binding graph
of S. This would contradict that the graph of S is a tree
rooted in X. At this point, it is easy to see that if every
(existential) node has atmost one predecessor, then q is a
forest query. In the case where an existential node has more
than one predecessor, the roles labelling the corresponding
incoming edges are necessarily the same. It can then be proved
by induction that iteratively equating the predecessors of such
nodes defines a restriction of q which is a forest query. 2

Theorem 3 Let C be a satisfiable ALE or ALN concept de-
scription, and q a conjunctive query: if C ≡ q, then q or one
of its equivalent restriction is a tree query.

Sketch of proof: The full proof is given in [1]. It is based on
the above proof, and on the fact that a unique completion is
produced by the standard completion calculus in ALE and by
the non standard completion calculus in ALN introduced in
[4]. Since C ≡ q is equivalent to C(X) ≡ q(X), there exists
two mappings α1 and α2 from the clash free completion SC

of C(X) to the clash free completion Sq of CJ (X, Ȳ ) for the
former and from the clash free completion Sq of CJ (X, Ȳ ) to
the clash free completion SC of C(X) for the latter, both of
these mappings being defined as α is, in the above sketch of
proof. According to Theorem 2, q or one of its restriction is
a forest query. If q is a forest query, it is easy to see that the
binding graph of SC is mapped to a subgraph of the bind-
ing graph of Sq which is a tree rooted in X. We then prove,
using the completion calculus dedicated to Carin [16], that
equating each node v, which does not belong to that tree, to

α1(α2(v)) defines an equivalent restriction of q which is a tree
query. If q is not a forest query, according to Theorem 2, there
exists a restriction of q which is a forest query and subsumes
C. Performing the same reasoning as above, we show that this
restriction has an equivalent restriction which is a tree query.
2

Corollary 2 Let q be a (pure or hybrid with ALE) conjunc-
tive query: q is equivalent to an ALE concept description iff
q or one of its equivalent restriction is a tree query.

Example 5 Consider the following dag query:
q5(X) : Flight(X) ∧ Destination(X, Y1) ∧ AmericanCity(Y1)

∧Stop(X, Y2) ∧ Flight(Y3) ∧ Stop(Y3, Y2).
Its equivalent restriction q′5 obtained by equating Y3 with X
is the following tree query:

q′5(X) : Flight(X) ∧ Destination(X, Y1) ∧ AmericanCity(Y1)
∧Stop(X, Y2).

It is equivalent to the ALE concept description:
Flight u (∃Destination.AmericanCity) u (∃Stop.>).

As for the conjunctive queries that can be equivalently com-
piled into ALN concept descriptions, they are very limited.
In particular, each binary atom in the body of those queries
must be of the form r(X, Y ) where Y is an existential variable
not appearing elsewhere in the body of the query. This results
from Theorem 3 and Proposition 2, and from the fact (shown
in [1]) that a satisfiable ALN concept description cannot be
equivalent to a description of the form

dp
i=1(∃ri.Ci) except if

every Ci is equivalent to >.
In the next section, we characterize the conjunctive queries

that can be approximated in ALN , i.e., for which we can find
a maximally subsumed ALN concept description.

4 Approximation of conjunctive queries in
ALN

We start by defining the (weak and strong) approximation of
ALEN concept descriptions by ALN concept descriptions.

Definition 9 (Approximation of concept descriptions)
Let D be an ALEN concept description. Its weak approx-
imation and strong approximation in ALN , respectively
denoted Approx↑(D) and Approx↓(D), are inductively defined
as follows:
- if D = >, D = ⊥, D = A, D = ¬A, D = (≥ n r) or
D = (≤ n r), then: Approx↑(D) = Approx↓(D) = D ;
- if D = (D1 u D2) then:

Approx↑(D) = Approx↑(D1) u Approx↑(D2)
Approx↓(D) = Approx↓(D1) u Approx↓(D2) ;

- if D = (∀r.D1) then:
Approx↑(D) = (∀r.Approx↑(D1))
Approx↓(D) = (∀r.Approx↓(D1)) ;

- if D = (∃r.D1) then:
Approx↑(D) = (≥ 1 r) u (∀r.Approx↑(D1))
Approx↓(D) = (≥ 1 r).

Proposition 3 results trivially from the semantics of the
different constructors used in ALEN . Theorem 4 states that
the weak approximation is in fact the greatest lower bound
for ALN+E concept descriptions.



Proposition 3 Approx↑(D) � D � Approx↓(D) for every D
in ALEN .

Theorem 4 Let D be an ALN+E concept description and C
an ALN concept description s.t C � D: C � Approx↑(D).

The full proof is given in [1]. It shows that if an ALN concept
description C is subsumed by

dp
i=1(∃ri.Ci) then it is neces-

sarily subsumed by
dp

i=1(≥ 1 ri) u (∀ri.Ci). It exploits that
the canonical interpretation of each clash-free completion of
C(X) is a model of every (∃ri.Ci)(X), and must have been
produced by one of the completion rules for ALN .

We now define the approximation of tree queries by ALN
concept descriptions. Corollary 3 results from Proposition 3
and Theorem 4.

Definition 10 (Approximation of tree queries in ALN )
Let q be a tree query:

Approx↑(q) = Approx↑(Compil(q))
Approx↓(q) = Approx↓(Compil(q))

Corollary 3 Let q be a tree query: Approx↑(q) � q �
Approx↓(q)
If q is hybrid with ALN and C is an ALN concept such that
C � q then: C � Approx↑(q).

Corollary 4 provides a necessary and sufficient condition for
a conjunctive query to subsume an ALN concept description.
It results from Theorem 2, Corollary 3 and Proposition 1.

Corollary 4 Let q be a conjunctive query: q subsumes a sat-
isfiable ALN concept description iff q or one of its restriction
is a forest query.

A particular case concerns the connected queries q (possibly
hybrid with ALN ): q subsumes a satisfiable ALN concept
description iff q or one of its restriction is a tree query ; the
greatest lower bound in ALN is then the weak approximation
of the corresponding tree query.

For q and q′ being ALEN concept descriptions or conjunc-
tive queries compilable intoALEN concept descriptions, their
approximations can be used to improve the efficiency of check-
ing whether q is subsumed q′ as follows:
(1) If Approx↓(q) � Approx↑(q

′), the answer is ”yes”.
(2) Otherwise if Approx↑(q) � Approx↓(q

′), the answer is ”no”.
That procedure takes only polynomial time since checking
subsumption in ALN is polynomial. In case no answer is ob-
tained, the procedure could return ”don’t know” or it could
call an (exponential in the worst case) algorithm checking
subsumption for ALEN .
If q′ is (compilable into) an ALN+E concept description,
based on Theorem 4, the previous step (2) can be replaced
by:
(2)′ Otherwise if Approx↑(q) � Approx↑(q

′) the answer is ”no”.

5 Conclusion and perspectives

This paper is the first work on the approximation of conjunc-
tive queries by concept descriptions. It has been motivated by
the problem of rewriting conjunctive queries using views in an
information integration setting. In particular, Theorem 4 has
been the key ([1]) to prove the completeness of an algorithm

computing the maximal rewritings of conjunctive queries (hy-
brid with ALN ) using ALN views.

Existing work related to approximation in the first-order
case has dealt with either approximating concept descriptions
by simpler concept descriptions ([8, 2, 7]), or with approxi-
mating sets of clauses by tractable sets of clauses ([17, 11]).
In [8], concept descriptions of ALE (respectively of ALC) are
approximated by sequences of simpler concept descriptions
of the same description logic, i.e., ALE (respectively ALC).
In [2], lower approximations of concept descriptions are de-
fined w.r.t a given description logic and a terminology. The
problem addressed in [7] is the computation for ALC concept
descriptions of their upper approximation in ALE .

As for the compilation preserving equivalence, in [3], an
equivalent translation is provided from the ELIRO1 descrip-
tion logics into a subclass of rooted simple conceptual graphs.
However, they do not provide a necessary condition for a
rooted simple conceptual graph (i.e., a unary conjunctive
query) to be equivalently compilable into a concept descrip-
tion, as we do in Theorem 3.

This current work can be pursued in several directions. We
plan to investigate the study of minimal upper bounds for
conjunctive queries. We also plan to extend the current work
by considering unions of conjunctive queries and their approx-
imation in ALC.
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