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Abstract: We address a problem of network design with minimum cost, and uniform all-to-all
demands between the vertices. We deal with the case of concave increasing link cost function
f depending of the capacity over directed arcs. We obtain lower bounds for this problem. In
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Coûts concaves optimaux dans le contexte SDH

Résumé : Nous traitons d'un problème de conception de réseau à coût minimal, avec une
demande tous-vers-tous uniforme entre les sommets. Nous traitons du cas des fonctions de coût
concaves et croissantes sur les arcs dépendant de la capacité. Nous obtenons des bornes inférieures
pour ce problème. Dans le cas générique f : x 7! x�, où � 2 [0; 1], nous mettons en évidence des
familles qui atteignent une 1.12 approximation assymptotique du réseau optimal.

Mots-clés : Conception de réseaux, SDH ,optimisation.
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1 Introduction

The following study was motivated by a question asked by France Telecom operational services
concerning the cost in SDH loop networks. In such networks, the tra�c requests (or demands)
are routed using a set of containers of �xed capacity, where each container connects two nodes of
the network. A demand can be ful�lled by several containers forming a path between its endpoint
nodes. The establishment cost of the containers is a function of its capacity, and we aim at
minimizing the total cost of the containers.

The set of these containers can be considered as a virtual (or logical) network in which the
communications are achieved. In this paper, we study the design of optimal SDH loop networks
given a concave increasing link cost function and a All-to-All unitary set of requests. When a
container of a given capacity is established in a SDH loop, the same capacity is reserved on the
remaining part of the loop, so we do not consider the problem of cumulating the containers'
capacities passing through a given link. We model the set of containers by a directed graph where
the capacity of each arc corresponds to the capacity of the associate container. Then we only have
to �nd which graph (associated with capacities) can achieve a multi-�ow of one unit between each
pair of nodes.

Our optimization model associates to each capacity a concave cost. In the particular case
where the cost is given by f : x 7! x�, where � 2 [0; 1], we identify assymptotically the cost of the
optimal network when the number n of nodes grows - that is, up to a multiplicative constant less
than 1.12 - by some simple families of graphs. Those families are simply summarized as follows:

� = 0:
The family of rings of n nodes achieves the optimal cost.

�(k) < � < �(k � 1), for k 2 IN; k � 2:
The family of stars of (k + 1)-rings achieves a fair assymptotical approximation ratio (at
worst, 1:12). The value of � is given by:

�(k) =
ln((k + 1)2=(k2 + 2k))

ln((k + 1)=k)
:

�(1) < � < 1:
The family of stars gives a solution with an assymptotical cost equivalent to the optimal
solution for � > 0:585 and gives a fair approximation otherwise.

� = 1:
The family of cliques of n nodes achieves the optimal cost.

Two interesting phenomenas occur. On the one hand, when � tends to 0, the assymptotically
best family tends to have larger and larger rings and �nally reaches the shape of the ring, that
is optimal when � = 0. On the other hand, when � tends to 1, the shape of the assymptotically
optimal solution suddenly changes from the star to the clique. Along with this change, the cost
falls abruptly by a factor of 2 at the point � = 1 (see Figure 1).

2 Related problems

The problem of minimizing the cost of a multicommodity network �ow problem with link cost
functions is a classical one. If the cost functions are convex, LP relaxation can be applied and
many problems have been resolved, see [4] for a survey. In [3], authors study the case where the
cost functions are discontinuous step increasing and, using large scale LP relaxations, describe an
algorithm able to give a lower bound of the optimal cost. Often, the network supporting the �ow
is given and the goal is to �nd the routing and the capacities of the links to achieve the �ow,
see for example [1, 5]. We study a problem where the communications have to be routed on a
virtual network supported by the physical one. Then each virtual link between two nodes can be
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4 Choplin, Galtier & Pérennes

α=0 α=1

......

Ring star of 4−rings Star of 3−rings Star (of 2−rings) Clique

α=0.415α=0.290
Figure 1: Quasi-optimal families.

interesting for us and so the support for this virtual network is dense and classical approaches used
when the support network is the physical one (which is often sparse) are not e�cient. This problem
can also be viewed as �nding the physical network which can achieve all requests minimizing its
global cost, see [2] for a polyhedral approach.

An alternative problem to our that also need to be mentioned is the Ring Loading Problem
[6]. The essential di�erence lies on the close (but not equivalent) norms SDH/Sonet. Both of
them rely on optical rings where each link is made by a pair of �bers connecting the two endpoints
both ways. The Sonet that turns to be in force essentially in North America, uses the pairs in the
nominal mode both ways, dealing with the faults in a best e�ort fashion. On the other side, the
SDH norm uses the pair just one way in the nominal mode, the other being used only to prevent
failures. In case one of the links falls, all the reverse �bers of the remaining links are used to create
an arti�cial replacement link.

3 The SDH-loop model

In this paper, we want to determine a logical SDH network of minimum cost given a set of
requests to achieve. As an important part of the cost of a link is its deployment, we consider that
the cost of a logical link follows a concave increasing function of its capacity which depends on
the material. In SDH loops, when a logical link with a given rate is established from a node u
to a node v, the logical space assigned to it is reserved throughout all the loop. Then, for each
established connection, the whole physical network is charged with the given rate. According to
this consideration, we can forget the loop topology and only consider the logical one.

The logical network is represented by the complete directed graph with n vertices Kn and a
capacity function c : A! IR+ on the arcs of Kn. V (Kn) will denote the set of vertices of Kn and
A(Kn) its set of arcs.

The cost function C : IR+ ! IR+ of the capacity of an arc is assumed to have the following
properties :

� C is concave, increasing,

� C(0) = 0 and C(1) = 1

� C(n) = o(n).

The cost of a network is then simply
P

a2A(Kn)
C(c(a)).

De�nition 1 A network (Kn; c) is said to be feasible for a set of rated requests R if there exists
a multi-commodity �ow which can achieve the requests according to the capacity function c. A
network (Kn; c) is said to be optimal for C and R if its cost

P
a2A(Kn)

C(c(a)) is minimal over
all capacity functions which make it feasible for R.

INRIA



Optimal concave costs in the SDH context 5

In this context, our concern is to determine the cheapest topology that can carry a given tra�c.
We can focus on two di�erent cases:

� the capacities can take any positive value,

� the capacities are constrained to be in a determined �xed set, such as f1; 4; 16; 64g.

We concentrate on the �rst case, and we identify the asymptotical optimal costs for an All-
to-All set of requests where all rates are equal to 1. Under this assumptions, a feasible network
will be called a n-Gossip network. We will almost always identify any Gossip network with the
capacity allocation de�ned on its arcs.
Notation : Given C, the optimal cost of a n-Gossip network will be denoted by KC(n).

4 Lower bounds and cheap topologies in the continuous case

In the continuous case, it is bene�cial to set the capacities of the arcs at their load (the amount of
�ow passing through an arc) in an optimal network. Therefore the capacity c(a) of an arc a will
also represent its load in the current con�guration. The case where C(c) = �c+� (with �; � �xed
reals) is the classical one where the cost is a linear function with the capacity. In the case � = 0,
the optimal solution is the request graph (see G4 in �gure 4).

De�nition 2 (Degree) We call degree of a vertex the number of arcs with non zero capacity
leaving it.

Notation : We denote for a vertex x 2 V (Kn); c
+(x) =

P
a=(x;y)2A(Kn)

c(a).

Lemma 3 (Obvious bounds) nC(n� 1) � KC(n) � 2nC(n� 1)

Proof. Lower bound: each vertex has to send a total �ow of n � 1, which requires at least
a set of arcs starting from that vertex with cumulated capacity of n � 1 i.e. c+(x) � n � 1 for
all vertex x. As the cost function is concave, the cost of these arcs is at least C(n � 1). Upper
bound: it comes from the example of the star network, where a central vertex receives and sends
the requests to all the others (see Figure 2 for the example with n = 5). �

D

4

BA

4

C

4
4

E

44
4

4

routing of requests from D
arc of Kn of non−zero capacityc

Figure 2: The star network.

In the lower bound of Lemma 3, we just take into account the �rst arc of each path starting
from a vertex. But if each vertex has a high degree, it will be not e�cient as the cost function is
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6 Choplin, Galtier & Pérennes

concave, then the number of vertices with high degree has to be small and then some additional
capacity will be required. First we remark that, in an optimal n-Gossip network, there exist O(n)
vertices that inform O(n) vertices along dipaths of length at least 2.

Lemma 4 There exist a network of optimal cost with integral �ow over all the arcs.

Proof. Suppose, for instance, in an optimal network of capacity c, two distinct dipaths P1
and P2 are both used to carry a �ow of at least " > 0 between a source and a destination. Let
�(Pi) (for i = 1; 2), be the function that equals 1 on the arcs of Pi and 0 otherwise, and consider
c0 = c + "�(P1) � "�(P2) and c00 = c + "�(P2) � "�(P1). Both c0 and c00 are n-Gossip networks
and optimal since C is concave. �

Notation : N� denotes the number of vertices with degree at most �.

Lemma 5 Let �(n) =
p

2nC(n), then in any optimal n-Gossip network, if N�(n) is the number
of vertices of degree at most �(n), we have N�(n) � n��(n).

Proof. n�N� vertices of degree at least �+1 induce a cost of at least (n�N�)(�+1)C(1) =
(n�N�)(�+1) (as Lemma 4 show that the �ow is integral). As Lemma 3 gives KC(n) � 2nC(n),
we have (n�N�)� � 2nC(n), so if �(n) =

p
2nC(n) then N�(n) � n��(n). �

Remark : As C(n) = o(n) (by de�nition), in an optimal Gossip, �(n) = o(n) and soN�(n) = n+
o(n).

To improve the lower bound, the argument will be to split the paths into two parts, an initial
part which consists in the �rst arc of each path and induces a capacity function c0, and the
remaining part which consists in the other arcs of the paths and induces a capacity function c1.
The initial part (c0) is such that for any x, c+0 (x) � n� 1, while the remaining part allows almost
to perform a Gossip, indeed c1 informally allows each vertex to inform all the others starting from
some subset of V whose size is at most its degree. In order to capture those two properties we
de�ne Quasi-Gossip networks.

4.1 Quasi-Gossip

In order to derive a lower bound we study a relaxed network, that we call Quasi-Gossip. Informally
a Quasi-Gossip network is the superposition of two capacity functions c0 and c1, c0 is such that
every vertex have an outgoing capacity of n � 1 and c1 allows to perform some (large) set of
broadcast-like operations. We will see later that Quasi-Gossip networks cost more than Gossip
networks. First we de�ne a t-Broadcast:

De�nition 6 (t-Broadcast) A (Kn; c) network is called a t-Broadcast network if the capacity
function c allows to perform a �ow with a set of t distinct sinks, each sink receiving one unit of
�ow, and a set of sources distinct from the sinks.

Remark : Note that, in a t-Broadcast, the capacity c can alternatively be seen as a �ow from an
hypothetical unique sender vertex to the sinks by using the set of sources as intermediary vertices.

De�nition 7 (Quasi-Gossip) A (Kn; c) network is called a (n; s; t)-Quasi-Gossip if there exists
c0 and c1 such that

- c = c0 + c1

- c+0 (x) � n� 1 for any x.

INRIA



Optimal concave costs in the SDH context 7

- c1 =
Ps

i=1 c1;i where c1;i is the capacity function of a t-Broadcast. (ie: c1 can be decomposed
in s t-Broadcast.)

Notation : We denote QGC(n; s; t) the minimum cost of a (n; s; t)-Quasi-Gossip network for the
cost function C.

Lemma 8 The cost of an optimal n-Gossip network is at least QGC(n;N�; n� 1��).

KC(n) � QGC(n;N�; n� 1��)

Proof. In a n-Gossip network, all N� vertices x of degree less than � induce a tx-broadcast
with tx � n� 1��. Let the c1;x be the needed capacity for each tx-broadcast and c0 the needed
capacity for the �ow sent through their neighbors which has to be c+0 (x) � n� 1 for all x. Then
the cost of a n-Gossip network is more than QGC(n;N�; n� 1��). �

4.2 Cost of a Quasi-Gossip

De�nition 9 We say that a directed Graph is a forest if it is acyclic and for each vertex v, there
is at most one arc (u; v) directed to v.

From this de�nition, we say that a vertex with no arc directed to it (but eventually some
leaving it) is a root.

Lemma 10 There exists a (n; s; t)-Quasi-Gossip with minimal cost where all the t-broadcasts are
the same, moreover one can assume that the broadcast is performed using a forest.

Proof. Consider (Kn; c) an optimal Quasi-Gossip network and (c0; c1) a decomposition of c as
described in De�nition 7. By de�nition: c1 = c1;1 + c1;2 + : : : + c1;s where each function c1;i is a
t-Broadcast. Since by de�nition the capacity c1 of a Quasi-Gossip network needs only to be the
sum of s t-Broadcasts, we note that any c0 + sc1;i, for i = 1; 2 : : : s, is a Quasi-Gossip, so c is a
convex combination of the Quasi-Gossips c0+sc1;i. Since the cost function is concave, we conclude
that, there exists an optimal Quasi-Gossip (Kn; c), where c1 is s times the same t-Broadcast. We
next consider such a particular optimal (n; s; t)-Quasi-Gossip. Assume that the undirected graph
supporting the �ow c1 does not induce a forest, then there exists " > 0 such that some vertex v
receives a �ow " along at least two distinct dipaths P1 and P2. Let �(Pi) (for i = 1; 2), be the
function that equals 1 on the arcs of Pi and 0 otherwise, and consider c0 = c0+c1+"�(P1)�"�(P2)
and c00 = c0 + c1 + "�(P2) � "�(P1). Both c0; c00 are Quasi-Gossips, and c is their mean, so, as f
is concave, we conclude that c0 and c00 are also optimal Quasi-Gossips. �

We now evaluate the cost of an optimal Quasi-Gossip of the above form. Note that since f
is increasing we can assume that the capacity corresponds to the capacity necessary to broadcast
some information to t vertices using a forest.

Lemma 11 The minimal cost of (n; s; t)-Quasi-Gossip, QGC(n; s; t), is at least

t� min
L=1;2;:::;t

2C(Ls) +
Pi=L�1

i=1 C(is)

L

Proof. We consider an optimal (Kn; c) Quasi-Gossip with c = c0+c1 where c1 describes a forest
F as in Lemma 10. Assume that one knows c1, then c0 is almost completely determined, indeed
the only constrain on c0 is that c

+
0 (x) � n�1 for any x 2 V . Since f is concave the cheapest Quasi-

Gossip is obtained by choosing c0(x; y) = n�1 for any arc leaving x such that c1(x; y) is maximum.
Note that there may exist several such arcs but in this case all the choices are equivalent, and one
can compute the cost of any Quasi-Gossip simply looking at c1. We consider one tree of the forest

RR n° 5201



8 Choplin, Galtier & Pérennes

with root r. If there exists a vertex u (distinct from the root) with degree greater than 2, one can
attach all of its subtrees directly to the root, excepted one with maximum c1(u; v) for all v's. This
operation decreases the cost since the capacity function decreases if one consider that a capacity
function c is greater than a capacity c0 if, up to a permutation, c� c0 � 0 (see Figure 3). In order

C

B

root

D

(n−1,0) (n−1,0)
C

A

(0,ns)

 (n−1,0)

(n−1,0)

(n−1,0)

(n−1,ns)

 (0, 3ns) 

(n−1,0) (n−1,0)

 (n−1,0)

(n−1,0)

 (0,ns) (n−1,0)

A

 (0, 3ns) 

root

D
(0,ns)(n−1,ns) (n−1,ns) (0,ns)

(0,3ns)(0,3ns) (0,7ns)
 (0, 4ns) 

B

(n−1,ns)

(n−1,3ns)

(n−1,ns) (0,ns)

(n−1,3ns)

(n−1,ns)
 (0,ns)

(n−1,0) (n−1,0)

Figure 3: Moving a subtree to the root decreases the cost, each arc a is labeled with a couple
(c0(a); c1(a)).

to simplify the counting we will never take into account the capacity c0 for arcs leaving the root.
Consider a branch with length l, the load on the arc attached to the root is ls, the load of the
arc at distance i > 0 from the root is n � 1 + (l � i)s � (l � i + 1)s. So the total cost induced

by the branch is at least C(ls) +
Pi=l

i=1 C(is) = 2C(ls)+
Pi=l�1

i=1 C(is). Since this branch contains l

sinks, we pay 1
l
(2C(ls)+

Pi=l�1
i=1 C(is)) per sink. Let opt(s; t) = minL=1;2;:::;t

2C(Ls)+
P

i=L�1

i=1
C(is)

L

be the minimum cost per sink of a branch, the cost of any branch with l sinks is then at least
l � opt(s; t), since there are t sinks, and since the cost of the Quasi-Gossip is the sum of the cost
of the branches, we conclude that QGC(n; s; t) � t� opt(s; t). �

Theorem 12 Let f(n) = n� 1��(n),

KC(n) � f(n) min
L=1;:::;f(n)

 
2C(Lf(n)) +

Pi=L�1
i=1 C(if(n))

L

!

Proof. Applying Lemma 8 and Corollary 11 we have

KC(n) � (n� 1��) min
L=1;2;:::;n�1��

 
2C(LN�) +

Pi=L�1
i=1 C(iN�)

L

!

applying it with �(n), Lemma 5 gives the result. �

Remark : Note that formula of Theorem 12 can be computed in polynomial time, moreover if
one wishes for estimates, one can for large values L use the fact thatR x=L�1
x=0

C(f(n)x) dx �
P

i=1;2;:::;L C(f(n)x) �
R x=L
x=1

C(f(n)x).

4.3 Proposed solutions

Proposition 13 KC(n) � (n� 1)min1�k�n�1
k+1
k
C
�
nk � k(k+1)

2

�

INRIA



Optimal concave costs in the SDH context 9

Proof. A solution where the digraph of non-zero capacity arcs is formed by cycles of the same
size connected by one vertex seems to be a good construction. In this solution, routing using
elementary paths is unique and so the capacity of each arc is the same and then the cost of this
network can be easily estimated : let k + 1 be the length of each cycle (suppose that n � 1 is
multiple of k), then the load on each cycle is uniform and is equal to nk� k(k +1)=2. Then each
cycle costs (k+1)C(nk� k(k+1)=2) and as the number of cycle is (n� 1)=k, the total cost of this

network is (n� 1)k+1
k
C
�
nk � k(k+1)

2

�
. Figure 4 gives some examples of this class of solutions. If

C(c) = c� with 0 � � � 1, the cost is minimal when 1=� = (k+1)(1� k
2n�k�1 ), i.e. for k = 1=��1.

As k+1 is the length of each cycle, k has to be greater than 1 and then the optimal construction
of that type, if � � 1=2, is the star network (all cycles of length 2). Then the minimal cost of this
kind of construction is 1

1��

�
1��
�

��
n1+� + o(n1+�). �

A

B

C D

E

1
1

1
1

1

1

1
1

1

1

1
11

1

1

1

1
1

10

10

10

10

10

A

B

C D

E

D E

B

C

A

77

7 7

77

G4G3G2
arc with non−zero capcity 
routing of a request

Figure 4: G2 and G3: constructions using cycles of same length. G4: optimal construction for
C(n) = n.

Now we only compare our bound when C(n) is of the form n� with � 2 [0; 1], for this we study
how varies the e�ciency of a branch.

4.4 Gossip network cost with C(n) = n
�

4.4.1 Lower bound

When the cost function is C : n 7! n� we have
2C(Lf(n))+

P
i=L�1

i=1
C(if(n))

L
= f�(n)

2L�+
P

i=L�1

i=1
i�

L
,

simple analysis of
2L�+

P
i=L�1

i=1
i�

L
shows that the value L0 for which the minimum is attained

increase when � decrease. For � 2 [log2(
3
2 ); 1] the minimum is 2, attained for L = 1 ; for

� 2 [0:42; log2
3
2 � 0:58], the minimum is 2�+1+1

2 , attained for L = 2 and as long as the minimum
is not attained for L = 3, which happens for � � 0:42 ; and so on, Table 1 gives the intervals of
� and its corresponding optimal value L0.

4.4.2 Upper bound

We can do the same computation for the upper bound and �nd the best size of the cycle length
(k + 1) according to the value of �. Table 2 gives the intervals of � for �rst values of k.

RR n° 5201



10 Choplin, Galtier & Pérennes

� L0
[0:584 : : : ; 1] 1

[0:421 : : : ; 0:584 : : :] 2
[0:321 : : : ; 0:421 : : :] 3
[0:255 : : : ; 0:321 : : :] 4
[0:210 : : : ; 0:255 : : :] 5
[0:177 : : : ; 0:210 : : :] 6
[0:153 : : : ; 0:177 : : :] 7
[0:134 : : : ; 0:153 : : :] 8

. . . . . .

Table 1: Intervals of � for which the value L0 minimizes
2L�+

P
i=L�1

i=1
i�

L
.

� k
[0:415 : : : ; 1] 1

[0:290 : : : ; 0:415 : : :] 2
[0:224 : : : ; 0:290 : : :] 3
[0:183 : : : ; 0:224 : : :] 4
[0:157 : : : ; 0:183 : : :] 5
[0:134 : : : ; 0:157 : : :] 6
[0:118 : : : ; 0:134 : : :] 7
[0:105 : : : ; 0:118 : : :] 8

. . . . . .

Table 2: Intervals of � for which the value k minimizes min1�k�n�1
k+1
k
k�.

4.4.3 Proposed solutions versus lower bound

As f(n) = n� + o(n�) the lower bound is

n(1+�) min
1�L�f(n)

2L� +
Pi=L�1

i=1 i�

L
+ o(n(1+�))

and the upper bound, which is (n� 1)min1�k�n�1
k+1
k

�
nk � k(k+1)

2

��
, is less than

n(1+�)min
k�1

k + 1

k
k� + o(n(1+�))

Both of these minimum do not depend of n if n is large enough. So, for each value of �, the
asymptotical ratio between the upper and the lower bound is bounded by a constant. Numerical
analysis in Figure 5 indicates that this ratio is less than 1.12.

5 Conclusion

In this paper we have investigated an important special case of network design with concave costs.
The results obtained show that the general shape of the optimal network varies signi�cantly with
the type of concavity we study. In terms of network design, this result impacts the understanding
of much more than the SDH networks. Of course a natural question concerns other types of
demands than all-to-all requests, and other types of costs than uniform costs over all the edges.
Further insight in that �eld would greatly help the telecommunication operators and other actors
in the transportation industry to have a more e�cient management of their resources.

INRIA
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