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Abstract: In this paper, we address multi�ber optical networks with Wavelength Division
Multiplexing (wdm). Assuming that the lightpaths use the same wavelength from source
to destination, we extend the de�nition of the well-known Wavelength Assignment Prob-
lem (wap), to the case where there are k �bers per link, and w wavelengths per �ber are
available. We then develop a new model for the (k; w)-wap, based on con�ict hypergraphs :
Con�ict hypergraphs more accurately capture the lightpath interdependencies, generalizing
the con�ict graphs used for single-�ber networks. By relating the (k; w)-wap with the hy-
pergraph coloring problem, we prove that the former is NP-complete, and present further
results with respect to the complexity of that problem. Finally, we analyze the practical
performances of two methodologies based on hypergraph coloring, on existing backbone net-
works in Europe and in the USA. The �rst relies on an integer programming formulation
and the second consists of a heuristic based on a randomized algorithm. We consider the two
natural optimization problems that arise from the (k; w)-wap: the problem of minimizing k
given w, and that of minimizing w given k.
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Une étude sur le dimensionnement

de réseaux WDM multi�bres

Résumé : Nous étudions dans ce rapport de recherche les réseaux optiques multi�bres
utilisant la technique de multiplexage en longueurs d'onde (wdm pour Wavelength Division
Multiplexing). Sous l'hypothèse que les chemins optiques utilisent la même longueur d'onde
de la source à la destination (i.e. nous ne nous préoccupons pas de question de conversion de
longueur d'onde), nous étendons la dé�nition classique du problème de plani�cation optique
(wap pour Wavelength Assignment Problem) au cas où k �bres sont présentes dans chaque
câble du réseau, et où w longueurs d'ondes sont disponibles sur chaque �bre. Nous déve-
loppons alors une nouvelle modélisation du (k; w)-wap basée sur l'hypergraphe des con�its :
l'hypergraphe des con�its est une généralisation du graphe des con�its utilisé dans le cadre
des réseaux mono�bres qui rend mieux compte des interdépendances entre les chemins op-
tiques. En reliant le (k; w)-wap à un problème de coloriage d'hypergraphe, nous prouvons
que le premier est NP-complet et nous présentons d'autres résultats de complexité à propos
de ce problème. Ensuite nous analysons les performances concrètes de deux méthodolo-
gies basées sur de la coloration d'hypergraphe, sur des réseaux d'infrastructures déployés
en Europe et aux États-Unis. La première méthodologie s'appuie sur une formulation en
programmation linéaire en nombres entiers tandis que la seconde est une heuristiques issue
d'un algorithme aléatoire. Nous considérons les deux problèmes d'optimisation découlant
naturellement du (k; w)-wap: la minimisation de k sachant w et celle de w sachant k.

Mots-clés : réseaux optiques, multiplexage en longueurs d'onde, dimensionnement de
réseau, optimisation, problème d'a�ectation de longueur d'onde, problème de plani�cation
optique, modélisation, hypergraphes, coloration d'hypergraphes, programmation linéaire en
nombres entiers, heuristiques, COST239, réseau Pan-American
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1 Introduction

Wavelength Division Multiplexing (wdm) is currently the most promising existing optical
network technology, since it allows for e�cient use of the high bandwidth o�ered by optical
networks. Under wdm, wavelengths are used to implement �xed end-to-end connections �
called lightpaths in this context � in the network. The major constraint imposed by this
technology is that di�erent lightpaths cannot share the same wavelength over the same link.

In order to avoid wavelength con�icts, two main techniques may be used. The �rst
technique places wavelength converters at carefully chosen network nodes, in order to ensure
that all lightpaths going through a link have di�erent wavelengths. Wavelength conversion
has been the subject of a large volume of recent research (e.g., [KK01, RM88]). In practice,
the major drawback of this technology lies on the very high costs of acquiring wavelength
converters.

The second technique avoids the use of wavelength converters, ensuring that the light-
paths use the same wavelength from source to destination. This scenario leads to the de-
sign problem known as the wavelength assignment problem (wap) [RS95, BBG+97, Kum98,
BHP98, RS98, Bea99, ACKP00, CFK+01]. The o�-line version of the wap can be de�ne as
follows: Given a wdm network N and a set of lightpaths satisfying tra�c requests, assign
wavelengths to the lightpaths so that any two paths that cross the same link are assigned
di�erent wavelengths.

Our work focuses on studying wdm networks in real-life scenarios [PCR00], from both
theoretical [BHP98, CFK+01] and practical [PCR00, BFM98, CFM00b, CFM00a] perspec-
tives. Perhaps surprisingly, from the telecommunications operator viewpoint, one of the
largest costs incurred while deploying an optical network stems from physically trench-
digging to bury the optical �bers. Hence, it is usual to have many �bers deployed between
any two points of the network, giving rise to multi�ber wdm networks (or mwns for short).

Unfortunately, the existing work on single-�ber network design cannot be extended to
mwns in a straightforward way. Lately, the real impact of mwns has attracted considerable
attention [ZQ98, LS99, BBGK99, HV99, MS00, LS00, MS01]. Note that using k �bers per
link immediately allows for reducing the number of wavelengths by a factor of k. Actu-
ally multi�bers may allow us to reduce the number of wavelengths required even further.
For example, adding just one �ber to a single-�ber network can decrease the number of
wavelengths required to route n lightpaths from n to 1 [MS00, LS00].

Unfortunately, results of this �avor, which speci�cally determine the impact of having
multi�bers either hold for very speci�c networks, as the results in [MS00, LS00], or are very
preliminary as far as modeling is concerned [ZQ98, LS99, BBGK99, HV99]. For instance,
the model used for the wap on single-�ber networks fails to fully capture the bene�ts of
having more �bers per link when minimizing the total number of wavelengths used in the
network in mwns.

In this paper, we generalize the wap to the case where there are k �bers per link, and
w wavelengths per �ber are available � this generalization is called the (k; w)-wap. Two
optimization problems naturally arise from the (k; w)-wap: the problem of minimizing the
number of wavelengths used, given k, and that of minimizing the number of �bers k if we are
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4 A. Ferreira, S. Pérennes, A. W. Richa, H. Rivano & N. Stier

given w. In order to build a general framework around the (k; w)-wap, we propose a new tool
for modeling con�icts arising in wavelength utilization in mwns, based on hypergraphs. The
con�ict hypergraph, formally de�ned in Section 3, is a generalization of the popular con�ict
graph, used for the wap on single-�ber networks. We validate the concepts proposed in
this work by considering both optimization problems (of minimizing k and of minimizing
w) in two backbone networks: the European COST 239 [PCR00] and the Pan-American
[BCF+00]. The contributions of this work can be summarized as follows:

� We formally de�ne the (k; w)-wap for mwns, where either the number of �bers, or the
number of wavelengths per �ber can be optimized.

� We develop a new model for the (k; w)-wap, based on hypergraphs. The con�ict hy-
pergraphs will be used for modeling the interdependence of the lightpath intersections.
The con�ict hypergraphs more accurately capture the lightpath interdependencies,
generalizing the concept of con�ict graphs used for single-�ber networks.

� Using this new hypergraph model, we build a bridge between coloring results for
hypergraphs in the literature and the (k; w)-wap.

� We show complexity results for the (k; w)-wap in mwns. In fact, minimizing the
number of wavelengths is NP-complete, even in the case where the number of �bers
is �xed in advance.

� We analyze the practical performances of two methodologies based on hypergraph
coloring on existing backbone networks in Europe and in the USA. The �rst relies on
an integer programming formulation and the second consists on a heuristic based on a
randomized approximation algorithm. We analyze the feasibility of solving real-world
(k; w)-wap with existing LP/IP solvers of the market. The �eld is still open to new
heuristics for hypergraph coloring.

In the literature, the e�ciency of a k-�ber network is measured in terms of k and the
number of wavelengths wk required by the (k; w)-wap, for �xed k. For a set of lightpaths
with load L, wk lies between L

k and w1

k . The e�ciency of the network is then de�ned as
L=k
wk

.
The remainder of this paper is organized as follows. First, we present an overview of

related work in Section 2. In Section 3, we give the problem formulation and the proposed
hypergraph model. Then, in Section 4, we relate the (k; w)-wap with hypergraph coloring,
proving that the (k; w)-wap is NP-complete, and presenting other results with respect to
the complexity of the problems. In Section 5, we address the actual problem of designing a
multi�ber network, with respect to the optimization of either parameter. Section 6 discusses
our prototypes and their performance evaluation. Finally, we conclude and present some
future work in Section 7.

INRIA
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2 Related work

Motivated by the very large costs of deploying wdm networks, a large volume of research
has targeted design issues on these networks in the past.

In single-�ber networks, it is usual to assume that two nodes are connected by one �ber
of unlimited capacity (i.e. able to carry any number of wavelengths). Hence the (1; w)-wap
(formerly known simply as wap) is exactly the path coloring problem in standard graphs,
which has been proven equivalent to the general vertex coloring problem [CGK92]. Thus,
there exists a �xed Æ > 0 such that no approximation within nÆ is possible unless P = NP
[Hoc97].

Therefore, a large amount of work concentrated on speci�c topologies [Kum98, BHP98,
Bea99, ACKP00, CFK+01, EJK+99, BGP+96]. On line networks, the e�ciency is always
equal to 1. For rings, a randomized (1 + 1

e )-approximation algorithm based on randomized
rounding of multicommodity �ows is proposed in [Kum98]. For trees, some of the current
best approximation results are a deterministic 5

3
-approximation [EJK+99], a randomized

1:61-approximation for bounded degree trees based on fractional path coloring [CFK+01],
and a randomized greedy 7

5
-approximation for binary trees [ACKP00]. Speci�c communica-

tion patterns have also been studied like All-to-All [Bea99, BGP+96] and multicast, which
achieves an e�ciency of 1 on general networks [BHP98].

The design of multi�ber networks has recently been studied under di�erent models and
tra�c assumptions [ZQ98, LS99, BBGK99, HV99, MS00, LS00, MS01]. For instance the
(1; w)�wap is NP-complete on undirected stars but becomes polynomial with an e�ciency
of 1 if 2 �bers are available on each link [MS00, LS00].

Dynamic tra�c � which means that lightpaths have to be established and released
dynamically � has been studied in [ZQ98, LS99], where multi�ber networks were shown
to be more e�cient than single-�ber networks with the same capacity1 per link. Using
multi�ber links has also been shown to lead to performances equivalent to those provided
by limited wavelength conversion.

In [BBGK99], an integer program and heuristics that solve the static problem are dis-
cussed. They consider path length constrained routing, wavelength assignment, wavelength
conversion, and link failure restoration. The objective is to minimize the total number of
�bers used in the network. Two meta-heuristic (simulated annealing and taboo-search) for
mwns design are proposed in [HV99]. Both papers show that adding �bers could improve
the network e�ciency.

mwns have been studied from a theoretical point of view in [MS00, LS00, MS01]. For
instance, it was proven that increasing the number of �bers per link often simpli�es the
optical routing problem: For all k and w, there exist a network and a set of communication
requests such that exactly w wavelengths are necessary to solve the problem with k �bers
per link while 1 wavelength is enough with k + 1 �bers.

Upper bounds on wk were improved in [MS00, LS00], for speci�c topologies like stars
and rings. Also, in [MS01] it was proven that for each �xed network N , there exists a k(N )

1The capacity of a link is the product of the number of �bers on the link and the capacity of each �ber.
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such that the e�ciency is 1 for all sets of paths provided that there are k(N ) �bers per link.
Unfortunately, k(N ) is usually very large (and therefore impractical).

3 Problem formulation

In this section, we formally de�ne the (k; w)-wap, the con�ict hypergraph, and some other
concepts related to those. Let N be an instance of a mwn, where the set of nodes is
represented by N and the set of links by L. Assume, without loss of generality, that every
link in the network contains the same number of �bers, denoted by k, and that a set of
communication paths P is given. A solution to the (k; w)-wap is an assignment of one out
of w wavelengths to each path, satisfying the constraints that for every link in the network,
no more than k paths using the link are assigned the same wavelength. In order to model
these constraints, we de�ne the con�ict hypergraph H (N ;P) of the set of paths P in N , as
follows:

De�nition 1 The con�ict hypergraph H = (V;E) of the paths P in N is a hypergraph such
that each vertex v 2 V corresponds uniquely to a path p 2 P, and such that for every link
` 2 L, there exists a hyperedge in E containing the vertices that correspond to all the paths
going through ` (and these are the only hyperedges in E).

A vertex coloring of the con�ict hypergraph induces a feasible wavelength assignment to
the paths if and only if no hyperedge contains more than k vertices with the same color.
This motivates the following de�nition.

De�nition 2 Given a hypergraph H = (V;E) and a set of colors C = f1 : : : cg, a mapping
f : V ! C is a (k; c)-coloring if and only if no hyperedge contains more than k vertices with
the same color, that is, 8e 2 E; 8q 2 C; jfv 2 e : f(v) = qgj � k.

The four main parameters of the hypergraph H = (V;E) can be expressed in terms of
N and P :

� the number of vertices n � jV j = jPj,

� the number of hyperedges m � jEj = jLj,

� the rank (maximum size of a hyperedge) t � max`2L jfP 2 P : ` 2 Pgj = load of P ,

� the maximum degree (number of hyperedges incident to a node) � � maxv2V jfe 2
E : e 3 vgj. Note that � � maxp2P length(p), which is equal to the diameter of the
routing.

INRIA



On the design of multi�ber wdm networks 7

(Recall that the load of P is equal to the maximum number of paths passing through any
one edge in the network, by de�nition.)

It is easy to see from De�nitions 1 and 2, that there is a one-to-one correspondence
between the (k; c)-colorings of the con�ict hypergraph of P and the feasible wavelength
assignments to these paths. Thus, the (k; c)-coloring problem is at least as di�cult as the
(k; w)-wap. Actually, we prove their equivalence in the next section. For that reason, in the
sequel, we will use colors and wavelengths interchangeably.

4 Complexity of wavelength assignment in mwns

In this section, we prove the equivalence between the (k; w)-wap and (k; c)-coloring, prove
that the (k; w)-wap is NP-complete even in the case where k is �xed, and present a lower
bound on the number of colors needed in a (k; c)-coloring of a (hyper)clique.

Theorem 1 The (k; c)-coloring problem is polynomially equivalent to the (k; w)-wap on
mwns.

Proof: It is enough to prove that any hypergraph H is the con�ict hypergraph of a set of
paths P on a network N , where the sizes of both P and N are polynomial on the size of
H . Let H = (fv1; : : : ; vng; fe1; : : : ; emg) be a hypergraph, where ei = fvji

1

; : : : ; vji
ri

g, for all
i. Let ri = jeij, for all i. For every hyperedge ei, let Ni(Vi; Ei) be the network (depicted in
Figure 1) containing

� n nodes xij ; j = 1 : : : n, and n nodes zij ; j = 1 : : : n,

� two special nodes Yi et Y 0
i ,

� an edge Yi ! Y 0
i ,

� 8j 2 fji1; : : : ; j
i
rig,

� an edge xij ! Yi, and

� an edge Y 0
i ! zij ,

� 8j 62 fji1; : : : ; j
i
rig, an edge xij ! zij .

Let N be the network composed of the union of the subnetworks Ni connected by the
edges zij ! xi+1j ; 8i = 1 : : : n � 1; 8j = 1 : : : n. Clearly, the size of N is O(nm) and H is
the con�ict hypergraph of the set of the unique shortest paths between x1j and znj , for all j,
in N .

The (k; c)-coloring problem is clearly NP-complete for general k, since it generalizes the
graph coloring decision problem when k = 1. Therefore,

RR n° 4244
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x1

Yi

z1

xn zn

Y’i

Figure 1: Network Ni

Corollary 1 The (k; w)-wap on a mwns is NP-complete for a general k.

Moreover, we prove below that the problem remains di�cult even when k is �xed.

Theorem 2 The (k; c)-coloring problem is NP-complete for any �xed k.

Proof: We will reduce this problem to (standard) coloring on graphs. That is, given a
graph G with n nodes and m, we have to answer �Can G be colored using c colors or less?�.
To prove that (k; c)-coloring is NP-complete, we answer the graph coloring question by
calling the (k; c)-coloring oracle. We can assume that c < n because otherwise the answer
is trivially yes.

We are given a graph G with n nodes and m edges that we must color. We extend G
into a hypergraph H in the following way. Let Kn;t be a hypergraph with n nodes that
contains all the possible hyperedges of rank t. We start by adding a Kck;k+1 clique to H ,
which can trivially be (k; c)-colored. Fix one of the possible colorings of the clique. We will
now make that coloring the only feasible one (up to permutations of the colors). For that,
we add c new nodes to H , each with a di�erent color pre-assigned and then all the possible
(k+1)-hyperedges that do not join k+1 nodes of the same color. The coloring that we �xed
is, of course, feasible for this structure by construction. If we vary the cardinality of nodes
having a color, that is clearly infeasible because there is a clique included. If we permute
the colors there will be a hyperedge preventing that to be feasible.

The construction above allows us to claim that we have k+1 nodes having each of the c
colors. Now, returning to the original graph, for each edge we add c hyperedges as follows:
for each color �, include any of the k � 1 nodes that have color � in the structure and the
two endpoints of the edge. Every one of these hyperedges means that the two nodes cannot
be colored using the same color, which is what we need for graph coloring.

If we can (k; c)-color the hypergraph, then we can also color the graph with c colors.
What remains to be seen is that the transformation is polynomial on the parameters. We
added c(k + 1) nodes which is polynomial on the input. We added less than the maximum
possible number of (k + 1)-regular hyperedges, which is equal to

INRIA



On the design of multi�ber wdm networks 9

�
c(k + 1)

k + 1

�
�

ck+1(k + 1)k+1

(k + 1)!
;

which is certainly polynomial on c (k is �xed). Then we added mc more hyperedges for
preventing color repetitions. Therefore, recalling that c < n, a bound for the total number
of hyperedges added is O(nk+1 +mn), which completes the proof.

Corollary 2 The (k; w)-wap on a mwns is NP-complete for any �xed k.

4.1 A lower bound

Extending the notion of cliques in graphs, we can give a lower bound on the number of
colors needed in a (k; c)-coloring, by using (hyper)cliques, as follows. Recall that Kn;t is a
hypergraph with n nodes that contains all the possible hyperedges of rank t. The following
holds.

Lemma 1 A (k; c)-coloring of Kn;t is feasible if and only if

c �

�
dnk e if t > k;
1 otherwise:

Proof: The case where t � k is trivial because the hyperedges do not impose any restriction
on the coloring and therefore one color is enough. For the case where t > k, suppose Kn;t

can be colored with c colors. Then, as the hypergraph is symmetric, every color will be
repeated dnc e or b

n
c c times. As we assumed that c colors were feasible, we must have that

dnc e � k because otherwise there is a contradiction. The minimum number of colors that
satis�es that condition is dnk e and it is easy to see that any permutation of the colors is
feasible.

The lemma above bounds the number of colors required to color any hypergraph that
contains Kn;t, yielding the following generalization of the fact that the chromatic number
of a graph is larger than the size of its maximum clique (just make t = 2 and k = 1).

Corollary 3 Let H be a hypergraph containing Kn;t. If H can be (k; c)-colored, with k < t,
then c � dn=ke.

RR n° 4244



10 A. Ferreira, S. Pérennes, A. W. Richa, H. Rivano & N. Stier

5 Tools for designing mwns

In this section, we will present two scenarios in the design of multi�ber networks. The
equivalence between solving the wap for P and computing (k; c)-colorings of H allows us
to concentrate on the latter. For instance, the problems we consider are the problems of
�nding the minimum k (respectively, c) such that there is a feasible (k; c)-coloring of H with
c (respectively, k) given. We address these two problems in Sections 5.1 and 5.2, respectively.

5.1 Minimizing the number of �bers

We consider �rst the problem of minimizing the number of �bers when the number of colors
is given. This problem can be formulated as a Minimax Integer Program (mip) [Sri96].
For instance, we de�ne (0; 1)-integer variables xij , for all i 2 V and 1 � j � c, such that
xij = 1 if and only if node i is colored with color j and xij = 0 otherwise. The variable k
is a common upper bound for the constraints de�ned by each hyperedge. It is called a mip
because our goal is to minimize it. The optimal number of �bers can be found by solving
the following IP.

Integer Program 1

minimize k (minimize # of �bers)

s.t.
X
c

xic = 1 8 node i

X
i2H

xic � k 8 color c; 8 hyperedge H

k � 0; xic 2 f0; 1g 8 color c; 8 node i:

Recently, Srinivasan showed that if the optimal solution of the LP relaxation is rounded
randomly, with positive probability, a solution that is feasible and not too large can be
encountered [Sri96]. A simple algorithm, discussed in Lu [Lu98], can compute a solution
that is not too far from the one proposed by Srinivasan. It is a simple randomized algorithm
that takes c as input and computes a suitable k for which it can assure that with high
probability2 the answer is going to be correct. Then, it proceeds with these three steps.

1. Color randomly all the nodes with c=3 colors.

2. Detect hyperedges whose constraints violate a (k; c)-coloring and re-color their nodes
randomly with another set of c=3 colors.

3. Detect hyperedges whose constraints violate a (k; c)-coloring again, but now color them
exhaustively with the last set of c=3 colors.

2With probability at least 1� 1=n�, for some constant �.

INRIA
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This algorithm can be used for obtaining any k, but in order to achieve the above
mentioned guarantee, the values of c and k with which the steps are computed must satisfy
a certain formula. Solving this formula, which involves also the maximum load L and the
maximum degree �, allows the algorithm to compute a suitable k, which is chosen to be
the minimum possible. Indeed, when the formula is satis�ed, it is unlikely that we have
many bad hyperedges after the second step, and thus the algorithm can be shown to run
in polynomial time [Lu98]. As the k returned by the algorithm may be large for practical
purposes, we exploit this idea in Section 6 to de�ne a heuristic for the same problem.

5.2 Minimizing the number of wavelengths

In this case, for a given number of �bers k, the problem consists of �nding the minimum
number of colors c such that a valid (k; c)-coloring of the hypergraph exist. Noting that
the number of colors is bounded by dn=ke (and could be equal if the graph is a clique), we
de�ne a variable xic for each node and each color. It is given the value 1 when the node i is
colored with color c and 0 otherwise. Then, the problem of minimizing c with k �xed can
be solved by

Integer Program 2

min
X
c

yc (minimize # of colors)

X
c

xic = 1 8 node i

X
i2H

xic � k 8 color c; hyperedge H

xic � yc 8 color c;node i

xic; yc 2 f0; 1g 8 color c;node i

There are O(n2) variables and O(n2m) constraints (although it can be written with
O(nm) constraints if the solver generates cuts automatically).

The drawback of these IP formulations is that they are not symmetric and thus Branch-
and-Bound will waste a lot of time iterating trough similar solutions [MT96]. The problem
arises because after a variable is constrained by the algorithm, a permutation of them may
still be feasible. Anyway, this problem can be solved using automatic pruning techniques,
as described in [Mar01].

As the problems of minimizing k and minimizing c look at the same situation from
di�erent perspectives, an exact algorithm for one gives an exact algorithm that solves the
other. For instance, if we only need a solution for a �xed k or a �xed c, using binary search
we can give an answer to one problem using a routine for the other. In fact, the whole
feasible region can be described by the Pareto points [Ste86], that is, the undominated pairs

RR n° 4244
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of k and c that induce feasible colorings. For the case of approximations, that is not true
anymore. Having an �-approximation algorithm for one problem does not imply the same
for the other. This situation is evident for this pair of problems because one generalizes the
coloring problem which is very hard and the other is a mip that is not as hard to solve.

6 Implementation and Performance Evaluation

To computationally evaluate the problems, we implemented the two integer programs and
the approximation algorithm, described in Section 5. This allowed us to evaluate the tradeo�
between the performance and the running time of the exact version and the approximation.
As we implemented an approximation algorithm for the problem of minimizing k, and com-
puting exact solutions is equivalent for both problems, we used that problem to compare the
results. We also report our �ndings in the experience of solving the problem of minimizing
c.

The IPs for both versions of the problem were implemented using using AMPL [FGK93],
while the approximation for the problem of minimizing k was implemented in C++. AMPL
is a modeling language for mathematical programming that allows to type-in the IP for-
mulations algebraically. In our case, the formulations that we used were exactly the ones
described in the previous section. To solve them, AMPL uses a generic LP/IP solver, that
in our case was CPLEX. Without making any e�ort in trying to tune up the parameters of
the CPLEX Branch-and-Bound algorithm, the program could handle real-world instances
in a relatively small PC (Pentium II, 500 MHz, 64MB).

The implementation of the approximate version was also straightforward. The three
steps described in the Section 5 where implemented in a function that takes an hypergraph,
a c and a k and tries to compute a (k; c)-coloring of the hypergraph. If a feasible coloring is
found, it returns the number of �bers used and otherwise it fails. A di�culty we encountered
is that the analysis guarantees a good behavior asymptotically, but our instances were too
small. Indeed, the values of k that match the theoretical analysis of the algorithm are too
large, even compared with the load, which is an upper bound. Hence, we sometimes obtained
a set of nodes to be colored exhaustively in the third step which was larger than logarithmic
in the size of the instance. In order to cope with this problem and obtain reasonable running
time, we set a limit on this size. If the number of nodes to re-color was too large, the coloring
procedure returned that the coloring was not feasible, which is likely to be the correct answer
since there were only c

3
colors available.

The function just described was used as an oracle for the decision problem �does a
(k; c)�coloring exist?�. With it, we performed a binary search to minimize k for the given c.
As the algorithm is randomized, we ran it 10 times per iteration and kept the best solution
found so far.

We used instances based on an European network named COST 239 [PCR00] and an
American one [BCF+00]. The European network joins 11 capitals using 24 multi�ber links
as depicted in Figure 2. As the referenced work included a demand matrix, we used it.
Overall, there were 176 requests, which covered all possible pairs of cities. The maximum
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Figure 2: European network COST 239.

Figure 3: American network.

load of the routing was 29, which is also a lower bound for the number of colors in the
single-�ber case.

The American network was bigger: it consists of 78 cities, interlinked by 102 arcs (see
Figure 3). A demand matrix was not available in this case, and we had to generate it. For
that, we used a gravitational model, for which we needed to associate weights to the cities.
They represent, basically, the importance of every city. We made the weights proportional
to the distance to 5 main population areas in the USA. Finally, the demand was generated
between every two cities. The number of requests was made proportional to the product of
the two weights while keeping the outgoing number of requests from every city equal to the
weight. Using di�erent weights, we generated instances that were used for the benchmarks.
We report on a relatively big instance with 2022 requests and a load of 520.

Routing was implemented through a minimum cost disjoint path problem for each origin-
destination pair. For each origin and destination, we computed the shortest total distance
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c min k time (sec.) approx k time (sec.)
1 29 < 1 29 < 1
3 10 < 1 29 < 1
9 4 < 1 9 < 1
15 2 2 6 < 1
33 1 < 1 3 < 1
63 1 < 1 2 < 1

Table 1: Output for the European network

of two disjoint paths linking them and distributed all the demand among the two paths.
Routing the requests in such a way ensures that short paths are selected while maintaining
two disjoint routes from each origin to each destination, which helps to improve the reliability.

When solving the exact version of the minimization of the number of �bers, the solver
found feasible solutions reasonably fast. Except for the biggest instances (the American
network with many colors), the solver did not have di�culties in proving optimality. It
was expected, though, that when the instances grew bigger, the running time was going to
degrade because the underlying problem is NP-hard. Nevertheless, this does not seem to
be an issue for the instances generated from real-world networks.

6.1 Results

The number of �bers needed, as a function of the number of colors available, is displayed
in Tables 1 and 2. We include instances with the number of colors increasing exponentially,
rounded to the nearest multiple of 3. For the results of our heuristic, we report the best
of 10 runs and the total computation time. Figure 4 shows the exact Pareto curve for
the European instance. This kind of output could be of great utility when analyzing the
tradeo�s involved between the necessary number of colors and �bers in reality.

It is important to notice that in these instances, and often with real-world networks,
the number of colors equals its lower bound, that is the load of the network divided by the
number of �bers. It is known that pathological examples can be constructed although they
do not usually appear in real instances.

The biggest dependency of the running time of the Integer Program 2, that optimizes the
number of colors, is on the number of variables representing the colors. Initially, we used as
many colors as the number of requests, because that is an upper bound. Obviously, this did
not scale well when the size of the instances increased to real-world problems. Instead, we
performed a binary search for the upper bound of the colors. We relied on the observation
that when the bound is too small, the IP solver returns quickly that no feasible solution
exists. On the other hand, when the upper bound is not tight, it takes too much time to solve
the �rst node of the Branch-and-Bound tree because there are too many variables. With
this strategy we got IPs of the correct size that could be handled by the solver. As expected
though, due to the symmetry in the formulation (the labeling of the colors can be permuted

INRIA
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c min k time (sec.) approx k time (sec.)
1 520 < 1 520 < 1
3 174 6 520 554
9 58 228 173 479
15 35 2033 106 468
33 20 2:6 h. 47 419
63 29 368
129 15 299
255 7 272
513 6 276
1023 4 257

Table 2: Output for the American network

colors

fibers

10 20 30

10

20

30

feasible region

Figure 4: Tradeo� between the number of colors and the number of �bers in the European
network

without altering the solution), the enumeration of the nodes of the Branch-and-Bound tree
could not be completed in general. In any case, we had a proof of optimality. Indeed, we
found that when using one less color, the LP relaxation of the problem was already not
feasible. Therefore, showing a feasible solution with that many colors was enough. Indeed,
it would be interesting to characterize the integrality gap of that problem.

7 Conclusion

In this paper, we have proposed a framework to model the wap in mwns, reducing it to a
coloring problem on hypergraphs. Practically, the coloring problem appeared to be tractable
since its straightforward IP formulation gave optimal solutions reasonably fast.

On the other hand, in all our real-world instances we found wk = dL=ke. Hence, the
e�ciency gain due to multi�ber �exibility was not observed. However, since ad-hoc con-
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structions prove that this gain can be enormous, practical instances could still be found
where such a gain appear.

Furthermore, the heuristic that we implemented turned out to be very fast, but did
not perform very well, despite the provably good asymptotic properties of the underlying
randomized approximation algorithm. Therefore, we are currently working on the design of
other heuristics for hypergraph coloring.

Another interesting research direction is to address the design of mwns in the case where
the routing is not �xed in advance. In such a case the lightpaths are not given, and one
needs to design both the routing and the wavelength assignment at once. We believe that,
as soon as k is large enough, this problem can be practically solved to optimality.
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