
Maximizing the Number of Connections
in Optical Tree Networks

Thomas Erlebach
�����

and Klaus Jansen
�������

	
TU München, 80290 München, Germany, erlebach@in.tum.de


IDSIA Lugano, Corso Elvezia 36, 6900 Lugano, Switzerland, klaus@idsia.ch

Abstract. In optical networks with wavelength division multiplexing (WDM),
multiple connections can share a link if they are transmitted on different wave-
lengths. We study the problem of satisfying a maximum number of connection
requests in a directed tree network if only a limited number

�
of wavelengths

are available. In optical networks without wavelength converters this is the maxi-
mum path coloring (MaxPC) problem, in networks with full wavelength conver-
sion this is the maximum path packing (MaxPP) problem. MaxPC and MaxPP
are shown to be polynomial-time solvable to optimality if the tree has height
one or if both

�
and the degree of the tree are bounded by a constant. If either�

or the degree of the tree is not bounded by a constant, MaxPC and MaxPP
are proved ��
 -hard. Polynomial-time approximation algorithms with perfor-
mance ratio ��������� for arbitrarily small � are presented for the case

�����
, in

which MaxPC and MaxPP are equivalent. For arbitrary
�

, a � -approximation for
MaxPP in arbitrary trees, a

��� ��� -approximation for MaxPC in trees of bounded
degree, and a � � ��� -approximation for MaxPC in arbitrary trees are obtained.

1 Introduction
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All-optical communication networks are the technology of choice for satisfying the
ever-growing demands for telecommunication bandwidth. Data is transmitted through
optical fiber at the rate of gigabits-per-second, and WDM (wavelength-division multi-
plexing) allows several connections to use a link simultaneously if the signals are trans-
mitted on different wavelengths. In all-optical networks with switches without wave-
length conversion capabilities, a connection must use the same wavelength on the whole
path from transmitter to receiver. If  wavelengths are available, a set of connections
can be established if each connection is assigned a transmitter-receiver path and one
of the  wavelengths such that connections sharing a directed link receive different
wavelengths. Another model of optical networks employs switches with wavelength
conversion. A connection can use different wavelengths on different segments of its
transmitter-receiver path. If all network switches have full wavelength conversion capa-
bilities, a set of connections can be established if they are assigned transmitter-receiver
paths such that no directed link is used by more connections than the number of avail-
able wavelengths.
!
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As the number of distinct available wavelengths is small in practice, it is not always
the case that all requests in a given set of connection requests can be established si-
multaneously under the constraints mentioned above. In such a scenario, the network
provider might decide to reject some requests and to maximize the number of accepted
requests. We investigate the complexity and approximability of this optimization prob-
lem for the case that the topology of the network is that of a directed tree, i.e., the graph
obtained from an undirected tree by replacing each undirected edge by two directed
edges with opposite directions.

1.1 Preliminaries

A connection request in a directed tree � is given by a sender-receiver pair �������	� and
corresponds to the directed path from � to � in � . We will refer to requests as paths in
the remainder of this paper. Two paths intersect if they share a directed edge of � . For
a given set 
 of paths, the load ����
�� of a directed edge 
 of � is the number of paths in

 using edge 
 , and � denotes the maximum load among all edges of � . A  -coloring
of a given set of paths is an assignment of colors (wavelengths) to the paths using at
most  colors such that intersecting paths receive different colors.

For given directed tree � , set 
 of paths in � , and number  of available colors,
the maximum path coloring problem (MaxPC) is to compute a subset 
�����
 and a
 -coloring of 
�� such that � 
���� is maximized, and the maximum path packing prob-
lem (MaxPP) is to compute a subset 
�����
 with maximum load  such that � 
���� is
maximized. For a given instance of MaxPC or MaxPP, we denote by 
�� an arbitrary op-
timum solution. MaxPC models optical networks without wavelength converters, while
MaxPP models the availability of full wavelength conversion.

By � we denote the maximum outdegree of all nodes in the given directed tree � .
We assume that an arbitrary node � of � has been designated the root of � . For � �! � ," ���#� denotes the parent of � . The level of a node is its distance (number of edges)
from � . For a pair �������$� of nodes in � , we denote by %'&)(*�+�,�-�$� the unique least common
ancestor (lca) of � and � , i.e., the node with smallest level among all nodes on the path
from � to � . The one or two edges on a path �������$� that are incident to %'&)(.�������$� are
called the top edges of the path �������$� . A subtree of � contains a path �������$� if %/&0(*�������$�
is a node of the subtree.

A polynomial-time algorithm is a 1 -approximation algorithm for MaxPC or MaxPP
if it always outputs a set 
�� whose cardinality is at least a ��24341#� -fraction of the car-
dinality of an optimum solution. An algorithm that computes an optimum solution in
polynomial time is called an exact algorithm.

1.2 Related Work

Previous work has focused on the path coloring problem, where the goal is to assign
wavelengths to all given connection requests while minimizing the number of different
wavelengths used. For undirected trees, a �+563878� -approximation algorithm was given in
[10] and improved to an asymptotic 289/2 -approximation in [2]. For directed trees, the
best known algorithm colors a given set of directed paths with maximum load � using
at most :���;63�5<����= colors [8, 5, 7, 6]. While the path coloring problem is relevant when
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a provider designs a network in order to meet the given demands or when the network
has enough capacity for satisfying all given requests, MaxPC and MaxPP apply to the
case where an existing network has insufficient capacity and the goal is to maximize
the number of accepted requests.

In chain networks, MaxPC and MaxPP are equivalent and can both be solved opti-
mally in polynomial time by finding a maximum  -colorable subgraph in the conflict
graph, which is an interval graph in this case [12]. For undirected trees, the exact algo-
rithm for integral multicommodity flow with unit edge capacities from [3] (see below)
gives an exact algorithm for MaxPC and MaxPP with  ! 2 , and using the reduction
from Sect. 4 a 2<9 ;�� -approximation for MaxPC with arbitrary  is obtained. The same
results can be derived for ring networks [11]. For ring networks with predetermined
routing of the given requests, a 56387 -approximation algorithm for MaxPC was obtained
in [9]. A variant of the MaxPC problem is considered in [1]; see Sect. 4 for more details.

MaxPP is closely related to the integral multicommodity flow problem. Integral
multicommodity flow and multicut have been studied for undirected trees in [3]. For a
given set of source-sink pairs (commodities) in an undirected tree with edge capacities,
the integral multicommodity flow problem is to maximize the sum of the flows of the
commodities constrained by the given edge capacities. Exact algorithms for integral
multicommodity flow are obtained in [3] for trees of height one with arbitrary edge
capacities and for arbitrary trees with unit edge capacities. For trees with edge capacities
2 or 7 the problem is proved ��� -hard and MAX SNP-hard. For trees with arbitrary
edge capacities, a 7 -approximation algorithm is given. The main differences between
the multicommodity flow problem considered in [3] and the MaxPP problem studied in
the present paper are that we investigate directed instead of undirected trees and that no
commodity can have a flow greater than 2 in our setting.

1.3 Results

We determine the complexity of MaxPP and MaxPC in directed trees under various re-
strictions and give approximation algorithms with small constant approximation ratios
for the variants that are ��� -hard. We are not aware of any previous results regarding
MaxPP and MaxPC in directed trees. Our complexity results are listed in this section
without giving proofs; details can be found in the full paper available from the authors.

MaxPP and MaxPC are equivalent if the given tree has height one and can be solved
in polynomial time using an algorithm for capacitated � -matching [4, pp. 257–259].
This algorithm extends to the weighted version of MaxPC and MaxPP, where each path" has associated benefit � � " � and the goal is to maximize the total benefit of accepted
paths. MaxPP and MaxPC can also be solved optimally in polynomial time using a
bottom-up computation if the maximum degree � of the given tree network and the
number  of available wavelengths are bounded by a constant. This algorithm extends
to the weighted version of MaxPC and MaxPP as well, and also to variants where the
set of available wavelengths can vary from link to link or where wavelength converters
with limited conversion are allowed. (Furthermore, variants of the algorithm give exact
algorithms for integral multicommodity flow in directed or undirected trees of bounded
degree, if the edge capacities are bounded by a constant.) If either � or  can be
arbitrarily large, MaxPP and MaxPC become ��� -hard. More precisely, both problems
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are ��� -hard for  ! 2 and arbitrary degree, and for arbitrary  and degree bounded
by 5 (i.e., binary trees).

For MaxPP with arbitrary  , we adapt the algorithm from [3] and obtain a 7 -
approximation (Sect. 2). If  ! 2 , i.e., only one wavelength is available, then MaxPC
and MaxPP are equivalent to finding a maximum cardinality subset of edge-disjoint
paths, and we give, as our main result, a family of polynomial-time approximation algo-
rithms with approximation ratio ;<3 5���� for this case, where � can be chosen arbitrarily
small (Sect. 3). For MaxPC with arbitrary  , we obtain a 7*9 7<7 -approximation for trees
of arbitrary degree and a 2<9 ;�� -approximation for trees whose degree is bounded by a
constant (Sect. 4).

2 Approximating MaxPP

The algorithm is as follows. Initially, set 
 � !�� . Then process all nodes of the tree in
order of non-increasing levels. When processing node � , consider the paths whose lca
is � in arbitrary order. Insert each such path in 
 � if this does not increase the maximum
load of 
�� above  . In the end, output 
�� . (Note that this algorithm for MaxPP works
also if the number of available wavelengths is different on different links.)

Theorem 1. The algorithm is a 7 -approximation algorithm for MaxPP, i.e., it outputs
a subset 
�� of 
 with maximum load at most  and with cardinality at least � 
 � � 387 .
Proof. First, we observe that the approximation algorithm from [3] works also for di-
rected trees. The only further difference between the multicommodity flow problem in
[3] and the MaxPP problem is that, with the MaxPP problem, no commodity can have
flow greater than 2 . But our greedy algorithm for MaxPP in a directed tree � with edge
capacity  behaves like the algorithm from [3] in a slightly extended tree ��� : for each
path (commodity) " from a node � to a node � , add two new nodes ��� and ��� , add
two unit capacity edges �����#��� � and �+�������6� , and replace " by a path from ��� to ��� .
The multicommodity flow problem in the resulting tree � � is equivalent to the MaxPP
problem in the original tree, and our greedy algorithm produces the same solution as
the 7 -approximation algorithm from [3] on this instance. 	


3 A Family of Approximation Algorithms for � ��


The algorithm from the previous section achieves approximation ratio 7 also for  ! 2 .
The main idea that leads to an improvement in this special case is to consider all paths
with the same lca simultaneously instead of one by one. This way we obtain, for any
fixed ����� , a polynomial-time � ;<3 5����8� -approximation algorithm.

Let 
�� denote the subset of all paths �+�,�-�$��� 
 with %'&)(*�+�,�-�$� ! � that do not
intersect any of the paths that have been accepted by the algorithm at a previous node
and that do not use any edges that have been reserved or fixed by the algorithm (see
below). We assume without loss of generality that we have � �! � �! � for all paths
�������$��� 
 � .

During a first pass, the algorithm processes the nodes of � in order of non-increasing
levels. When the algorithm processes node � , it tries to determine for the paths in 
 �
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Fig. 1. Possible configurations of deferred paths

whether they should be included in 
 � (these paths are called accepted) or not (these
paths are called rejected). But the algorithm can not always make this decision right
away. In some cases it leaves some paths in an intermediate state and resolves them
later on. The possibilities for paths in such intermediate states are undetermined paths,
groups of deferred paths, groups of exclusive paths, and groups of 7 -exclusive paths.
We refer to undetermined paths, groups of exclusive paths, and groups of 7 -exclusive
paths (but not groups of deferred paths) as unresolved paths.

If all paths in 
 � use the same two top edges, accepting one of them might cause the
algorithm to miss the chance of accepting two paths with an lca of smaller level later
on. Instead, the algorithm picks one of the paths in 
 � and makes it an undetermined
path in this case.

Sometimes the algorithm decides to accept one of several intersecting paths, but
it defers the decision which one of them to accept. The intersecting paths are called
a group of deferred paths (see Fig. 1), and some edges (indicated by dotted arrows in
Fig. 1) are marked as reserved. The motivation for introducing groups of deferred paths
is as follows: first, the reserved edges block at most one path with lca of smaller level
that could be accepted in an optimum solution; second, no matter which paths with lca
of smaller level not intersecting a reserved edge are accepted by the algorithm later
on, there is still at least one deferred path that can be accepted in a second pass that
proceeds top-down.

A group of exclusive paths is sketched in Fig. 2(a). Such a group consists of a lower
path " and a higher path � with lca of smaller level that intersects " . At most one of
the two paths can be accepted, but the algorithm can not afford to pick the wrong one.
It only marks the top edge of " that is intersected by � as fixed (indicated by a dotted
arrow in Fig. 2). Groups of exclusive paths have the following property.
Property (E): As long as at most one path touching � but not using the fixed edge is ac-
cepted at a later node, either " or � can still be accepted. Only when two paths touching
� are accepted at a later node, they may block both " and � from being accepted (see
Fig. 2(b)).

The last types of unresolved paths are sketched in Fig. 2(c) and (d). These groups
of 7 -exclusive paths consist of a set of four paths at most two of which can be accepted
and have the following property.
Property (2E): If at most one path touching � but not using a fixed edge is accepted at
a later node, two paths from the group of 7 -exclusive paths can still be accepted. If two
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Fig. 2. (a) Possible configuration of exclusive paths; (b) situation in which both exclusive paths
are blocked; (c) and (d) groups of � -exclusive paths

paths touching � but not using a fixed edge are accepted at a later node, at least one
path from the group of 7 -exclusive paths can still be accepted.

When the algorithm has finished processing a node � , the subtree rooted at � will
contain at most one of the following: one undetermined path, or one group of exclusive
paths, or one group of 7 -exclusive paths. All other paths in the subtree are accepted,
rejected, or member of a group of deferred paths.

3.1 Invariants

In the next subsection we will sketch how the algorithm proceeds during the first pass.
At the same time, we will show that the approximation ratio achieved by the algorithm is
;<3�5 � � . For establishing this, it can be proved by induction that the following invariant
can be maintained. This invariant holds before the first node of � is processed, and it
holds again each time an additional node of � has been processed.

Let � be the set of all paths that have already been accepted by the algorithm. Let�
be the set of all paths in 
 whose lca has not yet been processed and which are not

blocked by any of the accepted paths, by reserved edges of deferred paths, or by fixed
edges. Let � be the number of groups of deferred paths that are contained in processed
subtrees. Let � be the set of all undetermined paths. Let � be the union of all groups
of exclusive paths and groups of 7 -exclusive paths. Then there is a set � � ��� � � �
of edge-disjoint paths satisfying the following conditions:
Condition 1: � 
 �<�	� � � ��
 � ;<3 5����8� � � ��� ���6�
Condition 2: For every group of exclusive paths, � contains one path from that group;
for every group of 7 -exclusive paths, � contains two paths from that group.

� represents a set of paths that could still be accepted by the algorithm and that has
the following property: if the algorithm accepts at least a 243*��;63�5 � �8� -fraction of the
paths in � (in addition to the paths it has already accepted), its output is a � ;<3 5 � �8� -
approximation of the optimum solution.

The invariant is satisfied initially with � !�� , � ! � , � ! 
 , � ! � , � !�� , and
� ! 
 � . In order to prove that the invariant can be maintained, it suffices to show how
the set � that establishes the invariant before node � is processed can be manipulated so
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as to satisfy the invariant also after node � is processed. In particular, some paths must
be replaced in � or removed from � in order to satisfy � � ��� � � � and to keep �
a set of edge-disjoint paths after � is processed, and it must be shown that the number
of paths removed from � is at most ��;<3 5�� �8�)��� � � � � � if the algorithm accepts � �
additional paths and creates � � new groups of deferred paths while processing � (thus
satisfying Condition 1). Condition 2 must only be considered explicitly when a new
group of exclusive paths or group of 7 -exclusive paths is created.

If the invariant is satisfied after the root node is processed, we have
� ! � , � �

� � � , and � 
 � � ��� � � 
 � ;<3 5 � �8� �-� � � � � � . By accepting the undetermined path
(if any), accepting an arbitrary path from the group of exclusive paths (if any), and
accepting two arbitrary edge-disjoint paths from the group of 7 -exclusive paths (if any),
the algorithm accepts � � � additional paths, and the resulting set � satisfies � 
 � � 

��;<3 5 ��� �)�-� � � � �6� . In the second pass, the algorithm processes the nodes of the tree
in order of non-decreasing levels and accepts � additional paths at each node � that is
the lca of � groups of deferred paths. Then the algorithm outputs the set of all accepted
paths. As the algorithm accepts � additional paths, one from each group of deferred
paths, in the second pass, this establishes our main theorem.

Theorem 2. For every fixed ��� � , there is a polynomial-time approximation algorithm
for MaxPC and MaxPP with one available color (wavelength) having approximation
ratio ;<3�5 ��� .

3.2 The First Pass

Recall that 
 � � 
 is the set of all paths with lca � that do not intersect any previously
accepted path nor any fixed or reserved edge. Let � � be the set of undetermined paths
contained in subtrees rooted at children of � . Let � � be the union of groups of exclusive
paths and groups of 7 -exclusive paths contained in subtrees rooted at children of � .
We sketch how the algorithm processes node � and determines which of the paths in

 � � � � � � � should be accepted, rejected, deferred, or left in an unresolved state.

Note that for a given set of paths with lca � the problem of determining a maximum
subset of edge-disjoint paths is equivalent to finding a maximum matching in a bipartite
graph [8] and can thus be done in polynomial time. Furthermore, we use the following
property of bipartite graphs: for � ! 2 or � ! 7 , the fact that a maximum matching in a
bipartite graph � has cardinality � implies that there are � vertices in � such that every
edge is incident to at least one of these � vertices. (The property holds for arbitrary �
and is known as the König theorem.)

Let � be the number of children of � that have an undetermined path in their subtree,
let � be the number of children that have a group of exclusive paths, and let � be
the number of children that have a group of 7 -exclusive paths. We use the expression
subtrees with exclusive paths to refer to all subtrees of � with either a group of exclusive
paths or with a group of 7 -exclusive paths. Before � is processed, the invariant implies
that there is a set � � � � � � � satisfying Condition 1 and 2. In each single case
of the following case analysis, it must be shown how a set � � can be obtained from �
such that Condition 1 and 2 are satisfied for ��� after � is processed.
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Case 1: � � � � � 
 � (�� � 5*� 7<3 ��� . The algorithm can try out all combinations of
accepting or rejecting unresolved paths in the subtrees rooted at children of � : for un-
determined paths there are two possibilities (accepting or rejecting the path), for groups
of exclusive paths there are two possibilities (accepting the lower path or accepting the
higher path), and for groups of 7 -exclusive paths there are at most four relevant possibil-
ities of accepting two edge-disjoint paths of the group (see Fig. 2). Hence, the number
of possible combinations is bounded from above by 7��
	���
�� ! ����2 � .

For each of these combinations, the algorithm can compute a maximum number of
edge-disjoint paths in 
 � not intersecting any of the (tentatively) accepted paths from
� � � � � . Let � be the maximum, over all combinations, of the number of tentatively
accepted paths from � � � � � plus the number of maximum edge-disjoint paths in 
 � .
If � ! � , we have � ! � ! � ! � and 
 � ! � , and the algorithm proceeds with the
next node. Otherwise, we distinguish the following cases.

If ��� 5 , the algorithm accepts the � paths and rejects all other paths from 
 � � � � �
� � . As � is the maximum number of edge-disjoint paths in 
 � � � � � � � , � can contain
at most � paths from 
 � � � � � � � . Furthermore, � can contain at most two paths from�

using the edges �+�.� " �+� �-� or � " ���#� �-� � , and these are the only two further paths in �
that could possibly be blocked by the � paths accepted by the algorithm. Hence, a valid
set � � can be obtained from � by deleting at most ��� 7 paths. As ��� 7 
 � ;<3 5<� � , the
invariant is maintained. In the cases � ! 2 and � ! 7 , a huge number of subcases for � , �
and � such that � � � � 7 � 
 2 resp. � � � � 7 � 
 7 is distinguished. For each of these
subcases, a number of configurations of paths in 
 � with respect to the paths in � � � � �
are considered. Each such subcase and configuration can be recognized in polynomial
time, and it can be shown that one of the following actions can satisfy the invariant:
(1) The algorithm creates a new undetermined path or a new group of exclusive paths.
A valid set � � can be derived from � by replacing or inserting one path, if necessary.
(2) The algorithm creates a new group of deferred paths. In this case, a valid set � � can
be derived from � by deleting at most one path. (3) The algorithm accepts paths and/or
creates groups of deferred paths such that � � ��� � ! 7 . In this case, a valid set � � can
be derived from � by deleting at most 5 paths. (4) The algorithm creates a group of
7 -exclusive paths from some paths in 
 � � � � � � � . In this case, a valid set ��� can be
derived from � by replacing or inserting at most two paths. All details are omitted in
this extended abstract due to space limitations.

Case 2: � � ��� � � � (�� � 5*� 7<3 ��� . The algorithm calculates four candidate sets� � ,. . . ,
���

of edge-disjoint paths from 
 � � � � � � � and chooses the largest of them.
For obtaining

� � and
���

, we employ a method of removing � paths from an arbitrary
set

�
of edge-disjoint paths in 
�� such that � � 7 � exclusive paths from � � can be

accepted in addition to the paths remaining in
�

. The details of the method and a proof
that � 
 � � � � � � � � �-3 5 are omitted.

� � is obtained as the union of all � undetermined
paths and a maximum number � � of edge-disjoint paths from 
 � not intersecting any
undetermined path, and as many additional edge-disjoint paths from the � � � subtrees
with exclusive paths as possible. We have � � � ��� � � � � � � , because

� � contains �
undetermined paths and at least � paths from groups of 7 -exclusive paths in � � due to
Property (2E).

� � is obtained from
� � by removing � of the � � paths in

� ��� 
 � from� � until � � 7 � exclusive paths can be accepted.
� � contains � � 7 � exclusive paths,
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and only � 
 � � � � � � � � 3�5 of the � � paths in
� � � 
 � were removed to obtain

� � . As� � still contains the � undetermined paths, we have � � � ��� ��� � � � 7<3�56� � � � � � � � � .� � is obtained by taking a maximum number � � of edge-disjoint paths from 
 � and
as many additional edge-disjoint paths from the � � � subtrees with exclusive paths
and the � subtrees with undetermined paths as possible. We have � � � ��� � � � � ,
because

� � contains at least � paths from groups of 7 -exclusive paths in � � due to
Property (2E).

� �
is obtained from

� � by removing � of the � � paths in
� � � 
�� from

� �
until � � 7 � exclusive paths can be accepted. Since � 
�� � � � � � � �-3 5 , we have � � � ���
� � ��763�5<�)� � � � � � � � . We claim that the number of paths in � � ! � � ��
 � � � � � � � �
is at most � � � � � � � � � �-3 7�� ��� � � 7 � . With this upper bound on � � � � and the lower
bounds on the cardinalities of the four sets

���
, it can be proved that at least one of the

sets
���

satisfies � � � � � 7 
 ��;63�5 ���8�)� ��� � . At most � � � � � 7 paths must be removed
from � in order to obtain a valid set ��� .

4 Approximating MaxPC for Arbitrary �

In order to obtain an approximation algorithm for MaxPC with arbitrary number  of
available wavelengths from an algorithm for  ! 2 , we employ a technique from [1].
The approximation algorithm � for arbitrary number  of wavelengths is obtained
from an approximation algorithm � � for one wavelength by running  copies of � �
and giving as input to the

�
-th copy the set of paths that have not been accepted by the

first
� � 2 copies of � � . The output of � is the union of the  sets of paths output by

the copies of � � , and the paths in the
�
-th set are assigned colored

�
.

In [1] it is shown that the algorithm � obtained in this way has approximation ra-
tio at most 1 � 2 if � � has approximation ratio 1 , even if different wavelengths are
associated with different network topologies. There the technique is used to obtain ran-
domized on-line algorithms with logarithmic competitive ratio for networks shaped as
rooted forests. For identical networks, which we have in our application, the approxi-
mation ratio achieved by � can even be bounded by 243*� 2 � � 2 � 243#�+1  �-��� � , which is
smaller than 243*� 2 �
	�� ��
�� � for all  . This bound is mentioned in a preliminary draft
of the journal version of [1], which was kindly supplied to the authors by Adi Rosén.
The bound can be proved easily by using the fact that, if � has selected " � paths after
running � copies of � � , there is still a set of at least �-� 
 � � � " � �-3� edge-disjoint paths
among the remaining paths (this follows from a pigeonhole argument), and the next
copy of � � accepts at least a � 243�1 � -fraction of them. As we have obtained an exact al-
gorithm for MaxPC with  ! 2 in bounded degree trees and ��;63�5����8� -approximation
algorithms for MaxPC with  ! 2 in arbitrary trees, by employing the above tech-
nique we obtain approximation algorithms with ratio 2�3#� 2 � 2�3�
���� 289 ; � for arbitrary
 in bounded degree trees and with ratio � 7#9 787 for arbitrary  in arbitrary trees.

5 Open Problems

It is an interesting open question whether the approximation ratios of our algorithms for
directed trees can be improved. Other promising directions for future research include
approximation algorithms for the weighted MaxPP and MaxPC problems in arbitrary
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trees and for the MaxPC problem with different sets of available wavelengths on differ-
ent links. In addition, it would be very interesting to see whether techniques we used
in the ��;63�5 ���8� -approximation for MaxPC and MaxPP with  ! 2 can lead to im-
proved approximation algorithms for the integral multicommodity flow problem in trees
in general or for special cases thereof; for this problem, the best known approximation
is still the 7 -approximation from [3].
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