
1

A Practical approach to UML-based derivation of integration tests

F. Basanieri, A. Bertolino
IEI-CNR, Pisa, Italy

Abs t rac t : We present an on-going project for developing a

tool supported test methodology based on UML descriptions.

The leading criteria of this investigation are that no

additional language or expertise is required more than UML,

and that the methodology can be easily transferred to

industrial contexts.

Keywords:

Category-partition, Integration test strategy, UML, Use-

Interaction test.

1. INTRODUCTION
In recent years, the object oriented (OO)
paradigm has got widespread use. Software
developers need appropriate OO models and
support tools for describing and analysing the
characteristics of complex distributed systems. OO
system models usually involve graphical notations,
so that the relationships between the many
elements (objects) forming the system can be
easily visualized.
UML, the Unified Modeling Language, is the
emerging graphical notation to model, document
and specify OO systems along all the phases of
the software process. Indeed, there exist now
many studies about using UML for design, and
many tools are available. However, only a little
part of these studies so far has addressed the usage
of UML for testing, and none of the available
commercial tools provide specific assistance for
test planning and generation from the UML
descriptions.
In this paper we address UML-based testing.
Specifically, we want to address this task
according to the following two guidelines: (i) we
aim at a test method that is entirely based on
UML, so that it can be easily adopted by
industries already using UML; and, (ii) we refer to
high level descriptions of the system: indeed, we
want to address test planning for the integration
test phase starting from the very first stages of
system design.

We present here our practical approach for UML-
based integration testing, that is called Use-
Interaction testing, as it mainly uses the UML Use
Case and Interaction diagrams (specifically, the
Sequence diagram). Indeed, integration testing is
aimed at verifying that the (hopefully pre-tested)
system components interact correctly, and UML
Interaction diagrams can provide the information
of how the system components should interact.
The proposed approach is very simple, and is
inspired at large by the well-known Category
Partition method [OB88]: we first look at the Use
Case diagram to identify the suitable steps of an
incremental test strategy. For each identified sub-
Use Case, we then look at the Sequence diagram
to identify the relevant components, or "Test
Units". For each Test Unit, we derive the relevant
"Settings" (could be parameters, variables,
environmental states) and the relevant
"Interactions" (essentially, messages from other
Test Units), and identify for them the significant
"Choices" (with the same meaning of the Category
Partition method). To do this, we can analyse the
related Class Diagrams, as well as other design
documentation. Hence, by following the
sequences of messages between the components
over the Sequence Diagram, we construct the Test
Cases, whereby each Test Case is characterized by
a combination of all suitable choices of the
involved Settings and Interactions.
We have applied the method to a case study,
Argo/UML [Argo]. Argo/UML is an open source
tool that provide cognitive support to system
design. We have developed quite a few Test Cases,
and we have been able to identify a few bugs in
the case study. However, the method is currently
manual, and still under evaluation. Our short term
plan is the realization of a tool that support it, by
smoothly expanding an existing UML design
tool.
The paper is organized in the following way. In
the next section, we provide some introductory
material to UML and Integration testing. In

2

Section 3, we describe the method in more detail,
explaining it step by step. Then, in Section 4 the
case study Argo/UML is briefly introduced, so
that in Section 5 some examples of application of
Use-Interaction to it are shown. In Section 6 we
also provide a very brief sketch of a UML
definition of the Use Interaction method itself by
means of the UML extension mechanism of
stereotypes.

2. BACKGROUND
UML is a graphical modeling language to
visualize, specify, design and document all the
phases of a software development process. Born
by the unification of I. Jacobson, J. Rumbaugh
and G. Booch methods, in 1997 it was declared by
OMT the standard for analysis and design of
Object-Oriented systems.

2.1 UML diagrams
A UML design consists of an integrated meta-
model composed of many elements representing
OO common world concepts. Through this meta-
model we define Views showing different aspects
of the system to be modelled (Logical View,
Component View, Deployment View,
Concurrency View and Use Case View). As a
whole, these views provide a complete picture of
the system to be built. UML diagrams are graphs,
each describing the content of a view; they can be
arranged in different combinations to provide
several system’s views.
We only provide in this section a brief description
of the UML diagrams mainly used in our
methodology (for more details see [UML97a],
[UML97b]):
Use Case diagram: a use case is the
representation of a functionality (a specific use)
provided by the system. This diagram shows a
number of external users (actors) and their
relationships with the system, when this is used to
satisfy a specific functional requirement.
Class diagram: it shows the static structure of the
system through the representation of its classes
with their attributes and methods. Moreover it
specifies the relations between the classes using
different types of associations. A system can have
more than one Class diagram; in subsequent
phases of the software development process, the
Class diagram represents objects at different levels
of abstraction.

Sequence diagram: it shows the dynamic
collaborations between a certain number of
objects, highlighting the way in which a particular
scenario1 is realized using the interactions of a
(sub)set of these objects. More precisely, a
scenario is described by the set of messages
exchanged between objects. A Sequence diagram
expresses the same information of a Collaboration
diagram, whereby the former describes the
interactions between the objects during their life-
cycle, while the latter shows the relative
distribution of these objects links in the space.

2.2 Integration Testing and UML-based Testing
The testing goal is to execute the system to verify
its behaviour and to reveal possible failures.
Testing is an important piece of the software
development process, because of its cost and
impact on the reliability of final product. In our
methodology we consider the Integration Testing
phase, performed to find errors in unit interfaces
and to build up the whole structure of software
system in a systematic way.
To do this, one could use a non-incremental
approach (big-bang), where all the modules are
linked together and tested all at once, or
preferably, incremental approaches like top-down,
where modules are integrated from the main
program downto the subordinated ones, or,
bottom-up, where tests are constructed from
modules at the lowest hierarchical level and then
are linked together upwards, to construct the
whole system.
But, when we consider an object-oriented system,
the described techniques are not always usable,
because, for example, we cannot identify the
hierarchical structure of control by which it is
possible to define top-down or bottom-up
strategies. In an object-oriented environment we
can test the class interactions by, for example,
integrating together those classes used in reply to
a particular input or system event (thread-based
testing) or by testing together those classes that
contribute to a particular use of the system. In the
proposed methodology, the classes to be
integration tested (modules, subsystem, processes)
are those that realize a system functionality
identified from a Use Case diagram.

1 A scenario is defined as a specific sequence of actions that

illustrates behaviour and may be used to show an interaction.

[UML97b]

3

As a matter of fact, even though UML is a
powerful mechanism of description, we have
found few studies about its use to guide the testing
phases.
Some researchers have proposed methods to
translate a UML description into another formal
description, and then derive the tests from the
latter. For instance, in [JGP98] the authors present
a tool, UMLAUT, that is used to manipulate the
UML representation of the system and
automatically transforms it into an intermediate
form, suitable for validation. Another interesting
paper is [OA99], where a method is proposed to
generate test data from UML State diagrams.
They translate the UML State diagram into formal
SRC specifications, from which input data for unit
testing are automatically generated. Finally, in a
recent paper from Siemens Corporate Research
[HIM00] UML diagrams are used to
automatically construct test cases as follows. The
developers first define the dynamic behaviour of
each system component using a State diagram; the
interactions between components are specified by
annotating the State diagrams, and then the global
FSM that corresponds to the integrated system
behavior is used to generate the tests. This
approach is being automated to execute the tests
in an environment compatible with the UML
modelling tool Rational Rose.
All the mentioned studies are interesting, and we
see them as complementary to ours, as we do not
use State diagrams, but system descriptions at
coarser granularity.

3. AN INTEGRATION TEST APPROACH

3.1 Overview of the Use Interaction Testing
approach.
As said, Integration Testing progressively verifies
the interactions between software components
(modules, packages, subsystem, processes, classes)
in order to realize the final integrated system.
The Use Interaction methodology for Integration
testing uses as a reference model the UML
diagrams to systematically construct and define
tests.
The Use Case diagrams, by visualizing the various
system functionalities, help the tester to decide the
way in which the system can be decomposed for
testing each of its parts (representing a specific
functionality of a Use Case) and then the whole
system. Each Use Case can contain in turn other

Use Cases, since, to obtain a complete system
functionality, it is generally necessary to execute
several actions realizing lower level functionalities.
In our methodology, Use Case diagrams drive
Integration test according to an incremental
strategy. We start analysing low-level
functionalities that represent a subset of actions
described by a sub-Use Case, and then we
progressively put them together, until the whole
system described in the main Use Case is
obtained.
For each selected Use Case we analyse the
corresponding Sequence diagram, composed by
objects and the messages they exchange. The
objects involved in the diagram are those that
realize and execute the functionality described in
the Use Case through elaborations and message
exchanges and so they are precisely the
components to be tested. In this phase we consider
the Class diagram too, and particularly a Class
diagram at high level of abstraction. This diagram
becomes important to define operations (or
abstract operations) and attributes required by
classes for the interactions of their objects. Also
the Collaboration diagram could be used to
analyse the object interactions, but it is not as
expressive, since it underlines links and
dependencies among objects, but not their
dynamic interactions along a temporal sequence.
Therefore, for our methodology, the most
important diagram is Sequence diagram, that is
the basis for generating integration tests. In
[JBR98], in fact, we can find a suggestion to use
this diagram in integration testing phase. They
suggest to study different sequences found in this
diagram from a possible input state, or from a
system input done by actors.
To analyse the message sequences we have used a
systematic methodology inspired by the well-
known Category Partition Method [OB88].

3.2. The Category Partition method
Category Partition (CP) [OB88] is a well-known
method to systematically derive functional tests
from the specifications.
Generally speaking, the partitioning of the input
domain is a standard approach to functional
testing, based on the idea that, for the classes of
equivalence defined by the identified partitions,
one or few tests can be selected as representative
of the whole class behaviour.

4

The first step of the CP method is to analyse the
functional requirements to divide the analysed
system in functional units to be separately tested.
A functional unit can be a high-level function or a
procedure of the implemented system. For each
defined functional unit, the environment
conditions (system characteristic of a certain
functional unit) and the parameters (explicit input
of the same unit) relevant for testing must be
identified. Test Cases are then derived by finding
significant values of environment conditions and
parameters; this can be done dividing them into
categories representing relevant system properties
or particular characteristics of parameters or
environment conditions. Then, for each category,
we identify different choices, that are different
significant values for these categories. The CP
method uses a tool to automatically construct test
cases from specifications expressed into a
dedicated semi-formal specification language,

called TSL. The CP method has encountered wide
interest, and has inspired the development of a
large number of test methodologies, also using
formal languages such as Z.

3.3 Steps for Use-Interaction testing
We now describe in more detail the proposed
approach. It can be logically subdivided into
seven steps.
Step 1: UML Design analysis and search of
different Use Cases. We analyse UML design and,
particularly, Use Case diagram. This diagram can
lead test construction by defining different
integration test stages with respect to an
incremental strategy from lower-level abstraction
levels upto higher ones. Inside this diagram we
can thus find different Use Cases representing
(sub)functionalities used to construct the main
one (see, for example, Fig.1)

Fig 1: Use Case diagram (of uci.argo.Kernel)

Step 2: Analysis of Sequence and Class diagrams
involved in the selected Use Case. After selecting
one of the Use Cases, we analyse the relative
Sequence (Fig. 2) and Class (Fig. 3) (at a high
level of abstraction) diagrams. The focus is
mainly on the Sequence diagram, analysed along
two orthogonal directions corresponding to its
axes. The horizontal axis (Arrow a) shows a set of
objects that interact through messages; this axis is
used to verify the object interactions and their
correct use with respect to the Use Case
requirements. The vertical axis (Arrow b) is
studied because it shows the temporal sequence,

from top to bottom along the objects life time, of
messages involved in object interactions.
Moreover, horizontal axis is useful for tracing the
message sequences, that is at the basis of test cases
construction.
Step 3: Test Units definition. Each object inside a
Sequence diagram is considered a Test Unit, since
it can be separately tested and it represents and
defines a possible use of system. Test Units search
can be done automatically because it descends
directly from a Sequence diagram.
Step 4: Research of Settings and Interactions
Categories. Interactions categories are the

5

interactions that an object has with the others
involved in a same Sequence diagram and they
are represented by all the messages to the
considered object. In this type of diagram, in fact,
the interactions are defined with a sender who
sends a message to a receiver asking for a service
provided by the latter. So, following vertically the
life time of the analysed object, we can find all its
Interaction Categories represented by the entering
arrows. We could also study these methods in the
Class diagram description, but it is for searching
the Settings Categories that the Class diagram
becomes very important. Settings categories are
attributes (or a subset of them) of a class (and the
corresponding Sequence diagram’s object), like
input parameters used in messages or data
structures.
Step 5: Test Specification construction. In this
step we define a Test Specification involved in a
Test Unit, that is: for each found category we find
all its possible values and constraints. For this aim
we use the Class diagram where we can find a
preliminary description of a method
implementation, its possible input values or the
description of an attribute used and its significant
values.
Step 6: Search of Messages Sequences and Test
Cases definition. Following the temporal order of

the messages involved in a Sequence diagram, it is
possible to find some Messages Sequences, i.e., a
set of messages used by objects to define and
elaborate particular functionalities. Several
categories can correspond to each found Message
Sequence, of the two types Interaction and
Settings: precisely, messages/methods in the
considered sequence identify the Interaction
Categories, and the attributes that affect these
messages identify the Settings Categories. For
each category (of either types) within a Message
Sequence, we consider each possible choice,
taking them from the Test Specification (Step 5).
Then, we derive as many Test Cases as necessary,
by considering all potential combinations of
compatible choices. The construction of Test
Cases could be performed by a tool, after
Messages Sequences and Test Specification have
been appropriately defined.
Step 7: Definition of Use Case Test Suite and
Incremental Construction of Test Frame. Finally,
all Test Cases built for a same Use Case are
collected together into a Use Case Test Suite. If
there exist more than one Use Cases to be
analysed at the same level of abstraction, we repeat
the process from step 2, constructing other Use
Case Test Suites.

Fig 2: Sequence diagram analysis

After all the (sub)-Use Cases, at a given level, have
been analysed, we consider other possible Use

Cases at higher levels of abstraction, based on the
Use Case diagrams, until we reach the main Use

6

Case. The same seven-steps process is applied at
the identified (higher) Use Cases, using again the
Sequence and Class diagrams. As we move
towards the main Use Case, the Test Units in the
Sequence diagram will generally be more abstract

system components than those considered for the
(sub)-Use Cases.
Finally, we define a Test Frame, that is, the set of
all Use Case Test Suites built for the analysed
(sub)system.

Fig 3: Class diagram of the selected Use case for uci.argo.UserModel

4. THE CASE STUDY
The analysed case study is Argo/UML [Argo], a
tool supporting Object Oriented design with
UML; this is an open source project that was
launched by a research group of the Institute of
Computer Science of Irvine, University of
California. Argo/UML is based on the UML 1.1
specification and uses a Java version of UML
meta-model with support for OCL and XMI
(XML Model Interchange format).
We selected this case study because it follows
exactly the UML specifications, and it is
completely UML designed with good
documentation on Java code, even if only a part
of its UML design is available on the web. This
tool is designed to provide very interesting
features, but most of them are not yet developed
and only three diagrams are supported so far: Use
Case, Class and State Machine diagrams. Its major
feature is to provide “cognitive support for
design”, that is an intelligent support for
designers who have to build a complex software
product. This support, as the authors describe, is

based on: (a) Reflection-in-action; (b)
Opportunistic Design.
(a)Reflection-in-action is divided into: Design Critics :

simple agents that continuously execute design analysis in a

background thread of control, while the designer is working,

and suggest possible improvements. The suggestions can be,

for instance, the signalling of syntax errors or reminders to

return to parts of the design that needed to be finishing;

Corrective automations : done by a Wizard for critics

identifying specific problems in the design; To Do List :

items, organized in a To Do List, helping designer about

many details of his work. They are, for example, suggestions

from arisen critics, personal notes, suggestion for

improving and completing some parts and so on; User

Model : maintains information about designer’s choices

about project and its features. This is done, for example,

suggesting only critics that are relevant for designer’s tasks.

User model consists on a dec i s ion model , a list of

decisions that must be made when doing object-oriented

design and goa l mode l , a list of goals that designer must

reach for the design project. (b) Opportunistic Design divided

into: To Do List : a list of To Do Item; CheckList : used to

remind designers to cover all design details and avoid

Decision

Decision(name:String;priority:int)
GetName()
GetPriority()

Goal

Goal(name:String;priority:int)
GetName()
GetPriority()

 *

contains

 *

contains

DecisionModel

_decisions

DecisionModel()
GetDecisions()

GoalModel

_goals

GoalModel()
GetGoals()

Designer

7

common errors. These lists are specific to the selected design

element (association, classes, attributes..).

For our case study we have chosen the part of the tool

realizing cognitive support for design, the Argo package,

divided into two other packages: uci.argo.Kernel, that

manages Critics, User Model and To Do List and

uci.argo.Checklist, that manages Checklist. In this paper,

for reason of space, we analyse only uci.argo.Kernel. Its

functionalities are divided into: Des ign Cri t ics : that

manages critics, their definition and use during design.

Usable critics are visible in Critic Browser, Fig.4, that keeps

track of all information like critic state (active or inactive),

priority, general description and so on. All critics properties

can be changed by users but it implies changes in To Do

items, where you can keep track, every time, of active critics

and their priority values. T o Do Lis t : manages To Do

Items, Fig. 5; it shows all active critics descriptions and

steps to eliminate them. User Model : manages decisions

(Decision Model) and goals (Goal Model) made by users for

project. Decis ion Model , Fig. 6, is used to specify which

requirements are important for designer’s aim; they have a

priority value from 0 to 5 and if a decision priority is 0 the

corresponding critics are made inactive. Goal Model

shows which goals designer would achieve, Fig. 6. Now only

a goal type (Unspecified) is usable; like decisions, goals

have a priority from 0 to 5 and, if a goal has priority 0 the

related critic is made inactive.

Fig 4: Argo/UML Critic Browse Windows

 Fig 5: Argo/UML To Do Pane

8

Fig 6: Argo/UML Design Issues Panel and Design Goals Panel

5. APPLICATION OF USE INTERACTION
METHODOLOGY TO THE ARGO CASE
STUDY

Step 1: UML Design analysis and search of
different Use Cases. The Use Case diagram of
uci.argo.Kernel is shown in Fig. 1. We can see that
the main functionality of Kernel is divided into
three sub-functionalities, each of which can
represent a single sub-Use Case. These Use Cases
can be analysed separately to construct the Test
Units and Test Cases of a Use Case Test Suite, and
then linked together to build one main Test
Frame. In this section we analyse only the User
Model functionality.
Step 2: Analysis of Sequence and Class diagrams
involved in the selected Use Case. Fig. 2 and 3
show Sequence and Class diagram for
uci.argo.Kernel.UserModel.
Step 3: Test Units definition.
TestUnits :

DecisionModel, Decision, GoalModel, Goal.
Step 4: Research of Settings and Interactions
Categories.
Categories :

DecisionModel

 setting: _decisions

 interactions: DecisionModel(), getDecisions()

Decision

 interactions: Decision(name:String,priority:int) ,

 GetName(), GetPriority()

GoalModel

 settings:_goals

 interactions:GoalModel(), getGoals()

Goal

 interactions: Goal(name:String, priority:int),

 GetName(),GetPriority()

Step 5: Test Specification construction. We
describe the Decision Model Test Unit.
Decision Model: is a part of Design state, it describes which

type of decisions are useful for designer; critics relevant for

these decisions become active.

Settings: _decision

 Naming, Storage, Stereotypes, Inheritance

 Relationship, Modularity, ….

Interactions:

 GetDecisions()

Opening a new file

 Opening a saved file

 After a modification and before saving

 After a modification and after saving

 DecisionModel()

 Constructor of class.

Step 6: Search of Messages Sequences and Test
Cases definition. One of the possible Messages
Sequences, highlighted in Fig.2 by Arrow c, is:
getDecisions() -> getName / getPriority(),
and the corresponding Test Case for a possible
choice involved categories is:
TEST CASE

g e t D e c i s i o n s ()

9

getName() /getPrior i ty()

 Opening a saved file.

_ d e c i s i o n s = Naming

Action to perform test:Visualizing Design Issues Panel for

the considering decision and priority opening a saved

document.

Instructions for checking the test: opening the Design Issues

Panel we see decision with Name=Naming and priority like

priorità of the same file previously saved.

Note 1: This Test must be repeated for all possibile values of

_decisions.

Step 7: Definition of Use Case Test Suite and
Incremental Construction of Test Frame. After
defining Test Cases we build a Use Case Test Suite
for User Model, Design Critics, To Do List and
then, following an incremental integration test
strategy, we analyse the main functionality of
Kernel constructing its Use Case Test Suite and, at
the end, the entire Test Frame.
Results from the case study: when the method has
been applied to case study Argo/UML some bugs
were discovered. We show two Test Results: the
first one, without bugs, is referred to previous Test
Case (Step 6); the second is an example of a test
with fail result.
TEST CASE 1

getDecisions()

getName()/getPriority()

Opening a saved document.

_decisions = Naming

Test Result: Passed.

TEST CASE 2

SetDecisionPriority (priority:int)

 From a >0 value to 0 before saving.

 BeInactive()

Critic is active.

RemoveItems(item:ToDoItem)

Critic is disactivated.

RecomputeAllToDoITems()

A decision has priority 0.

_ d e c i s i o n s : Naming.

Test Result: Fai led.

Fai l report: Test is made for all _dec i s ion values. For

each of these related critics are disactivated but one critic is

never disactived. This is critic 28: "Add operation to

<ocl>self</ocl>". This critic is linked to decision Behavior,

but this type of decision does not exist among built

decisions and inside DesignIssuesPanel. Moreover, in the

related ToDoPane the critic, even if active, is not visible

since it is not linked to any existing decision. The critic can

be disactivated only manually from Critic Browse Window.

6. UML DEFINITION OF METHODOLOGY
The Use Interaction testing methodology follows
a precise process, and therefore can itself be
designed using the UML language. We show, in
Fig. 7, a Use Case diagram in which the actor is
Tester who interacts with system generating test
cases.
Moreover, all the new introduced concepts, like
Test Unit or Setting and Interactions Categories,
have been defined using exthension mechanism
of stereotypes. A stereotype [UML97a] is a new
type of modeling element that extends the

Fig. 7: Use Case diagram of Use Interaction Test method.

semantic of the existing metamodel; all our new
concepts are (sub)classes of the existing metaclass
Class with new additional characteristics and
constraints. For instance, we show a stereotyped
class, Test Unit, with its properties and constraints
defined using the OCL language [UML97c].

Test Unit:

Stereotype Test Unit for instances of meta-class Class

[1] For each Test Unit there exists one and only one related

Classifier Role.

self_forAll(t: TestUnit | self.has_exists(c1: ClassifierRole |

c1.name = t.name and forAll(c2| c1<>c2 implies c2.name

<>t.name)))

<<Test Unit>>
TEST UNIT

SettingsCategories
InteractionsCategories

DefineTestUnit()
FindRelevantSettings()
FindRelevantInteractions()

10

[2] The attributes of a TestUnit are SettingsCategories and

InteractionsCategories.

self.Attribute.ocltype = enum{SettingsCategories,

InteractionsCategories}

[3] A SettingsCategory represents one of the class

attributes and it is involved in one iteration.

self.SettingsCategory_exists(a Attribute| a.isused=self and a

IsInvolvedIn Interactions)

[4] InteractionsCategories are the only associations of

CollaborationDiagram.

self.InteractionsCategory_forAll(i|self.ocltype.Collaboratio

n.Association_exists(ass| ass.name = i))

7. CONCLUSIONS
In this paper we have presented our methodology,
Use Interaction Test, that generates Integration
Tests from UML diagrams like Use Case and
Interactions diagrams.
This testing approach is placed inside a larger
research project trying to develop methods and
tools for design-based integration test of complex
system. The approach used in this work is not
based on formal methods for specification, like
the related [BCIM00], [MLB99] works, but only
on exclusive use of UML diagrams.
For this reason, we think it may be a viable
method for its simplicity and easy portability to
industrial contexts; moreover, since we use only
UML diagrams, the methods does not require
specialised expertise and analysis, and so
generation of test cases can be done
contemporary with project development, at no or
little extra cost.
On the other hand, the exclusive use of UML
diagrams can be considered also a limit of our
method, because as known UML semantic is not
very precise, and therefore the diagrams can have
different interpretations from different users, and
also different designers could provide different
diagram specifications.
In future, we aim at constructing a tool
automatizing part of this process in collaboration
with industrial partners. The tool would help the
Tester in Test Cases generation for the tasks not
requiring human judgement (for example,
identification of Test Unit and Messages
Sequences), thus enhancing the cost effectiveness
of the approach.

Acknowledgements

This work is supported in part by the Italian Murst Project

"Saladin : Software Architecture and Languages to

coordinate Distributed Mobile Components".

References:
[Argo] "Argo/UML", available from
http://argouml.tigris.org.

[BCIM00] A. Bertolino, F. Corradini, P. Inverardi and H.
Muccini, "Deriving Test Plans from Architectural
Descriptions"”, Proc. ACM/IEEE 22nd Int. Conf. on
Soft. Eng. (ICSE 2000), Limerick, 4-11 June 2000, pp
220-229.

[HIM00] J. Hartmann, C. Imoberdof, M. Meisenger,
"UML-Based Integration Testing", Proceedings of ISSTA
2000, Portland, Oregon, 22-25 August 2000.

[JBR98] I. Jacobson, G. Booch, J.Rumbaugh, The
Unified Software Development Process, Addison-Wesley,
1998.

[JGP98] J.M Jézéquel, A. Le Guennec, F. Pennanech,
"Validating Distributed Software Modeled with UML",
Proc. UML98, in LNCS 1618, pp. 365-376.

[MLB99] F. Mercier, P. Le Gall, A. Bertolino,
Formalizing integration test strategies for distributed
systems”, First Int. ICSE Workshop Testing Distributed
Component-Based System, Los Angeles, May 1999.

[OA99] J. Offutt, A. Abdurazik, "Generating Test from
UML Specifications", Second International Conference on
the Unified Modeling Language, UML 99, Fort Collins,
CO, October 1999.

[OB88] T.J. Ostrand, M.J. Balcer, "The Category
Partition Method For Specifying and Generating
Functional Tests", Communication of the ACM, 31(6),
p. 676-686, June 1988.

[UML97a] UML Notation Guide, v. 1.1, Sept. 1997,
www.rational.com/uml/resources/documentation/formats.j
tmpl

[UML97b] UML Semantics, v. 1.1, Sept. 1997,
www.rational.com/uml/resources/documentation/formats.j
tmpl

[UML97c] Object Constraint Language Specification,
version 1.1, Sept. 1997,
www.rational.com/uml/resources/documentation/formats.j
tmpl

