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System reliability can not be overemphasized in software engineering as large and complex systems are
being built to fulfill complicated tasks. Consequently, testing is an indispensable part of system design and
implementation; yet it has proved to be a formidable task for complex systems. Testing software contains
very wide fields with an extensive literature. See the articles in this volume. We discuss testing of software
systems that can be modeled by finite state machines or their extensions to ensure that the implementation
conforms to the design.

A finite state machine contains a finite number of states and produces outputs on state transitions after
receiving inputs. Finite state machines are widely used to model software systems such as communication
protocols. In a testing problem we have a specification machine, which is a design of a system, and an
implementation machine, which is a ‘‘black box’’ for which we can only observe its I/O behavior. The task
is to test whether the implementation conforms to the specification. This is called the conformance testing
or fault detection problem. A test sequence that solves this problem is called a checking sequence.

Testing finite state machines has been studied for a very long time starting with Moore’s seminal 1956
paper on ‘‘gedanken-experiments’’ (31), which introduced the basic framework for testing problems.
Among other fundamental problems, Moore posed the conformance testing problem, proposed an approach,
and asked for a better solution. A partial answer was offered by Hennie in an influential paper (14) in
1964: he showed that if the specification machine has a distinguishing sequence of length L then one can
construct a checking sequence of length polynomial in L and the size of the machine. Unfortunately, not
every machine has a distinguishing sequence. Hennie also gave another nontrivial construction of checking
sequences in case a machine does not have a distinguishing sequence; in general however, his checking
sequences are exponentially long. Several papers were published in the 60’s on testing problems, moti-
vated mainly by automata theory and testing switching circuits. Kohavi’s book gives a good exposition of
the major results (18), see also (12). During the late 60’s and early 70’s there were a lot of activities in the
Soviet literature, which are apparently not well known in the West. An important paper on fault detection
was by Vasilevskii (37) who proved polynomial upper and lower bounds on the length of checking
sequences. However, the upper bound was obtained by an existence proof, and he did not present an algo-
rithm for constructing efficiently checking sequences. For machines with a reliable reset, i.e., at any
moment the machine can be taken to an initial state, Chow developed a method that constructs a checking
sequence in polynomial time (9). There was very little activity subsequently until the late 80’s when the
fault detection problem was resurrected and is now being studied extensively anew due to its applications in
testing communications protocol software systems (see (25) for a detailed survey and references).

After introducing some basic concepts of finite state machine, we discuss various techniques of confor-
mance testing. In the first part of this article, we describe several test generation methods based on status
messages, reliable reset, distinguishing sequences, identifying sequences, characterization sets, transition
tours and UIO sequences, and finally a randomized polynomial time algorithm. Finite state machines
model well some software systems and control portions of protocols. However, often in practice systems
contain variables and their operations depend on variable values; finite state machines are not powerful
enough to model in a succinct way such systems. Extended finite state machines, which are finite state
machines extended with variables, have emerged from the design and analysis of both circuits and commu-
nication protocols as a more convenient model. We discuss conformance testing of extended finite state
machines in the second part of this article.

Background

Finite state systems can usually be modeled by Mealy machines that produce outputs on their state transi-
tions after receiving inputs.

Definition 1. A finite state machine (FSM) M is a quintuple M = (I , O , S , δ , λ) where I , O , and S are
finite and nonempty sets of input symbols, output symbols, and states, respectively. δ: S×I → S is the
state transition function; and λ: S×I → O is the output function. When the machine is in a current state s
in S and receives an input a from I it moves to the next state specified by δ(s , a) and produces an output
given by λ(s , a).
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There is a variant of the model in which outputs are associated with the states (instead of the transitions);
the following theory and testing methods apply also to this model. An FSM can be represented by a state
transition diagram, a directed graph whose vertices correspond to the states of the machine and whose
edges correspond to the state transitions; each edge is labeled with the input and output associated with the
transition. For the FSM in Fig. 1, suppose that the machine is currently in state s 1. Upon input b, the
machine moves to state s 2 and outputs 1. We denote the number of states, inputs, and outputs by n = S ,
p = I , and q = O , respectively. We extend the transition function δ and output function λ from input
symbols to strings as follows: for an initial state s 1, an input sequence x = a 1 , ... ,a k takes the machine suc-
cessively to states s i + 1 = δ(s i , a i ), i = 1 , . . . , k, with the final state δ(s 1 , x) = s k + 1, and produces an
output sequence λ(s 1 , x) = b 1 , ... ,b k , where b i = λ(s i , a i ), i = 1 , . . . , k. Suppose that the machine in
Fig. 1 is in state s 1. Input sequence abb takes the machine through states s 1 , s 2 , and s 3, and outputs 011.

Two states s i and s j are equivalent if and only if for every input sequence the machine will produce the
same output sequence regardless of whether s i or s j is the initial state; i.e., for an arbitrary input sequence
x, λ(s i , x) = λ(s j , x). Otherwise, the two states are inequivalent, and there exists an input sequence x
such that λ(s i , x) ≠ λ(s j , x); in this case, such an input sequence is called a separating sequence of the
two inequivalent states. For two states in different machines with the same input and output sets, equiva-
lence is defined similarly. Two machines M and M ′ are equivalent if and only for every state in M there is
a corresponding equivalent state in M ′, and vice versa. Two machines are isomorphic if they are identical
except for a renaming of states. Note that any two isomorphic machines are equivalent, but not necessarily
vice-versa. Given a machine, we can ‘‘merge’’ equivalent states and construct a minimized (reduced)
machine which is equivalent to the given machine and no two states are equivalent. The minimized
machine is unique up to isomorphism. We can construct in polynomial time a minimized machine and also
obtain separating sequences for each pair of states (18).

We define now within a uniform framework some important types of sequences. A separating family of
sequences for a FSM A is a collection of n sets Z i , i = 1 ,... ,n, of sequences (one set for each state) such
that for every pair of states s i , s j there is an input string α that: (1) separates them, i.e.,
λ A (s i ,α) ≠ λ A (s j ,α); and (2) α is a prefix of some sequence in Z i and some sequence in Z j . We call Z i

the separating set of state s i , and the elements of Z i its separating sequences. If a separating family has the
same set Z for all the states (i.e. Z = Z i for all i), then the set Z is called a characterizing set. Every reduced
FSM has a characterizing set containing at most n − 1 sequences each of length no more than n − 1. The
same is true for separating families, although they provide more flexibility (since one can use a different set
for each state) and thus may have fewer and shorter sequences. If there is a characterizing set Z that con-
tains only one sequence x, then x is called a (preset) distinguishing sequence. Note that if we input the
sequence x to the machine, then every state gives a different output; hence a distinguishing sequence allows
us to identify the initial state of a machine. Unfortunately, not every reduced machine has a distinguishing
sequence; furthermore it is possible that there is such a sequence but only of exponential length, and it is a
computationally intractable problem to determine if a given machine has a preset distinguishing sequence
(24). A separating family in which all sets Z i are singletons (though possibly distinct for different states)
forms what is called an adaptive distinguishing sequence; it provides a way for identifying the initial state
of a machine using an adaptive test, i.e., a test in which the input symbol that is applied at each step may
depend on the previously observed output symbols. Again, not every reduced machine has an adaptive dis-
tinguishing sequence, but unlike the preset case, we can determine efficiently if there exists an adaptive dis-
tinguishing sequence, and if so, we can construct one of polynomial length (24).

Given a reduced FSM A with n states, a separating family of sequences Z i for each state s i , and an FSM B
with the same input and output symbols, we say that a state q i of B is similar to a state s i of A if it agrees
(gives the same output) on all sequences in the separating set Z i of s i . A key property is that q i can be sim-
ilar to at most one state of A. Let us say that an FSM B is similar to A, if for each state s i of A, the machine
B has a corresponding state q i similar to it. Note that then all the q i’s must be distinct. If we know that B
has at most n states, then there is a one-to-one correspondence between similar states of A and B. For B to
be equivalent to A, it needs to be isomorphic (since A is reduced). That is, the ultimate goal is to check if
an implementation machine B is isomorphic to a specification machine A. Often we first check their
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similarity and then isomorphism.

Systems modeled by finite state machines

Given a complete description of a specification machine A, we want to determine whether an implementa-
tion machine B, which is a ‘‘black-box’’, is isomorphic to A. Obviously, without any assumptions the
problem is impossible to solve; for any test sequence we can easily construct a machine B, which is not
equivalent to A but produces the same outputs as A for the given test sequence. There is a number of natu-
ral assumptions that are usually made in the literature in order for the test to be at all possible. (1) Specifi-
cation machine A is strongly connected, i.e, there is a path between every pair of states; otherwise, during a
test some states may not be reachable. (2) Machine A is reduced; otherwise, we can always minimize it
first. (3) Implementation machine B does not change during the experiment and has the same input alpha-
bet as A. (4) Machine B has no more states than A. Assumption (4) deserves a comment. An upper bound
must be placed on the number of states of B; otherwise, no matter how long our test is, it is possible that it
does not reach the ‘‘bad’’ part of B. The usual assumption made in the literature, and which we will also
adopt is that the faults do not increase the number of states of the machine. In other words, under this
assumption, the faults are of two types: output faults, i.e., one or more transitions may produce wrong out-
puts, and transfer faults, i.e., transitions may go to wrong next states. Under these assumptions, we want to
design an experiment that tests whether B is isomorphic to A. From assumptions (2) and (4), B is isomor-
phic to A if and only if B is equivalent to A.

Suppose that the implementation machine B starts from an unknown state and that we want to check
whether it is isomorphic to A. We first apply a sequence that is supposed to bring B (if it is correct) to a
known state s 1 that is the initial state for the main part of the test; such a sequence is called a homing
sequence (18). Then we verify that B is isomorphic to A using a checking sequence, which is to be defined
in the sequel. However, if B is not isomorphic to A, then the homing sequence may or may not bring B to
s 1; in either case, a checking sequence will detect faults: a discrepancy between the outputs from B and the
expected outputs from A will be observed. From now on we assume that a homing sequence has taken the
implementation machine B to a supposedly initial state s 1 before we conduct a conformance test.

Definition 2. Let A be a specification FSM with n states and initial state s 1. A checking sequence for A is
an input sequence x that distinguishes A from all other machines with n states; i.e., every (implementation)
machine B with at most n states that is not isomorphic to A produces on input x a different output than that
produced by A starting from s 1.

All the proposed methods for checking experiments have the same basic structure. We want to make sure
that every transition of the specification FSM A is correctly implemented in FSM B; so for every transition
of A, say from state s i to state s j on input a, we want to apply an input sequence that transfers the machine
to s i , apply input a, and then verify that the end state is s j by applying appropriate inputs. The methods dif-
fer by the types of subsequences they use to verify that the machine is in a right state. This can be accom-
plished by status messages, separating family of sequences, characterizing sequences, distinguishing
sequences, UIO sequences, and identifying sequences, depending on what types of sequences the given
specification machine possesses.

Status messages

A status message tells us the current state of a machine. Conceptually, we can imagine that there is a spe-
cial input status, and upon receiving this input, the machine outputs its current state and stays there. Such
status messages do exist in practice. In protocol testing, one might be able to dump and observe variable
values which represent the states of a protocol machine.

With a status message, the machine is highly observable at any moment. We say that the status message is
reliable if it is guaranteed to work reliably in the implementation machine B; i.e., it outputs the current state
without changing it. Suppose the status message is reliable. Then a checking sequence can be easily
obtained by simply constructing a covering path of the transition diagram of the specification machine A,
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and applying the status message at each state visited (32) (36). Since each state is checked with its status
message, we verify whether B is similar to A. Furthermore, every transition is tested because its output is
observed explicitly, and its start and end state are verified by their status messages; thus such a covering
path provides a checking sequence. If the status message is not reliable, then we can still obtain a checking
sequence by applying the status message twice in a row for each state s i at some point during the experi-
ment when the covering path visits s i ; we only need to have this double application of the status message
once for each state and have a single application in the rest of the visits. The double application of the sta-
tus message ensures that it works properly for every state.

For example, consider the specification machine A in Fig. 1, starting at state s 1. We have a covering path
from input sequence x = ababab. Let s denote the status message. If it is reliable, then we obtain the
checking sequence sasbsasbsasbs. If it is unreliable, then we have the sequence ssasbssasbssasbs.

Reset

We say that machine A has a reset capability if there is an initial state s 1 and an input symbol r that takes
the machine from any state back to s 1, i.e., δA (s i , r) = s 1 for all states s i . We say that the reset is reli-
able if it is guaranteed to work properly in the implementation machine B, i.e., δB (s i ,r) = s 1 for all s i ;
otherwise it is unreliable.

For machines with a reliable reset, there is a polynomial time algorithm for constructing a checking
sequence (6) (9) (37). Let Z i , i = 1 , ... ,n be a family of separating sets; as a special case the sets could all be
identical (i.e., a characterizing set). We first construct a breadth-first-search tree (or any spanning tree) of
the transition diagram of the specification machine A and verify that B is similar to A; we check states
according to the breadth-first-search order and tree edges (transitions) leading to the nodes (states) as fol-
lows. For every state s i , we have a part of the checking sequence that does the following for every member
of Z i : first it resets the machine to s 1 by input r, then it applies the input sequence (say p i) corresponding to
the path of the tree from the root s 1 to s i and then applies a separating sequence in Z i . If the implementa-
tion machine B passes this test for all members of Z i , then we know that it has a state similar to s i , namely
the state that is obtained by applying the input sequence p i starting from the reset state s 1. If B passes this
test for all states s i , then we know that B is similar to A. This portion of the test also verifies all the transi-
tions of the tree. Finally, we check nontree transitions as follows. For every transition, say from state s i to
state s j on input a, we do the following for every member of Z j : reset the machine, apply the input
sequence p i taking it to the start node s i of the transition along tree edges, apply the input a of the transi-
tion, and then apply a separating sequence in Z j . If the implementation machine B passes this test for all
members of Z j then we know that the transition on input a of the state of B that is similar to s i gives the
correct output and goes to the state that is similar to state s j . If B passes the test for all the transitions, then
we can conclude that it is isomorphic to A.

For the machine in Fig. 1, a family of separating sets is: Z 1 ={ a , b }, Z 2 ={ a }, and Z 3 ={ a , b }. A
spanning tree is shown in Fig. 2 with thick tree edges. Sequences ra and rb verify state s 1. Sequence rba
verifies state s 2 and transition (s 1 , s 2 ): after resetting, input b verifies the tree edge transition from s 1 to s 2

and separating sequence a of Z 2 verifies the end state s 2. The following two sequences verify state s 3 and
the tree edge transition from s 2 to s 3: rbba and rbbb where the prefix rbb resets the machine to s 1 and takes
it to state s 3 along verified tree edges, and the two suffixes a and b are the separating sequences of s 3.
Finally, we test nontree edges in the same way. For instance, the self-loop at s 2 is checked by the sequence
rbaa.

With reliable reset the total cost is O(pn 3 ) to construct a checking sequence of length O(pn 3 ). This bound
on the length of the checking sequence is in general best possible (up to a constant factor); there are specifi-
cation machines A with reliable reset such that any checking sequence requires length Ω(pn 3 ) (37). For
machines with unreliable reset, only randomized polynomial time algorithms are known (41); we can con-
struct with high probability in randomized polynomial time a checking sequence of length
O(pn 3 + n 4 log n).
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Distinguishing sequences

For specification machines with a distinguishing sequence there is a deterministic polynomial time algo-
rithm to construct a checking sequence (14) (18). of length polynomial in the length of the distinguishing
sequence. A distinguishing sequence is similar to an unreliable status message in that it gives a different
output for each state, except that it changes the state. For example, for the machine in Fig. 1, ab is a distin-
guishing sequence, since λ(s 1 , ab) = 01, λ(s 2 , ab) = 11, and λ(s 3 , ab) = 00.

Given a distinguishing sequence x 0, first check the similarity of the implementation machine by examining
the response of each state to the distinguishing sequence, then check each transition by exercising it and
verifying the ending state, also using the distinguishing sequence. A transfer sequence τ(s i , s j ) is a
sequence that takes the machine from state s i to s j . Such a sequence always exists for any two states since
the machine is strongly connected. Obviously, it is not unique and a shortest path (3) (10) from s i to s j in
the transition diagram is often preferable. Suppose that the machine is in state s i and that distinguishing
sequence x 0 takes the machine from state s i to t i , i.e., t i = δ(s i , x 0 ), i = 1 , . . . , n. For the machine in
the initial state s 1, the following test sequence takes the machine through each of its states and displays
each of the n different responses to the distinguishing sequence:

x 0 τ(t 1 , s 2 ) x 0 τ(t 2 , s 3 ) x 0
. . . x 0 τ(t n , s 1 ) x 0 . (1)

Starting in state s 1, x 0 takes the machine to state t 1 and then τ(t 1 , s 2 ) transfers it to state s 2 for its
response to x 0. At the end the machine responds to x 0 τ(t n , s 1 ). If it operates correctly, it will be in state
s 1, and this is verified by its response to the final x 0. During the test we should observe n different
responses to the distinguishing sequence x 0 from n different states, and this verifies that the implementation
machine B is similar to the specification machine A.

We then establish every state transition. Suppose that we want to check transition from state s i to s j with
input/output a / o when the machine is currently in state t k . We would first take the machine from t k to s i ,
apply input a, observe output o, and verify the ending state s j . We cannot simply use τ(t k , s i ) to take the
machine to state s i , since faults may alter the ending state. Instead, we apply the following input sequence:
τ(t k , s i − 1 ) x 0 τ(t i − 1 , s i ). The first transfer sequence is supposed to take the machine to state s i − 1, which
is verified by its response to x 0, and as has been verified by (1), x 0 τ(t i − 1 , s i ) definitely takes the machine
to state s i . We then test the transition by input a and verify the ending state by x 0. Therefore, the following
sequence tests for a transition from s i to s j :

τ(t k , s i − 1 ) x 0 τ(t i − 1 , s i ) ax 0 (2)

After this sequence the machine is in state t j . We repeat the same process for each state transition and
obtain a checking sequence. Observe that the length of the checking sequence is polynomial in the size of
the machine A and the length of the distinguishing sequence x 0.

Recall that a distinguishing sequence for the machine in Fig. 1 is x 0 = ab. The transfer sequences are
straightforward, for example, τ(s 1 , s 2 ) = b. The sequence in (1) for checking states is abababab. Sup-
pose that the machine is in state s 3. Then the following sequence babbab tests for the transition from s 2 to
s 3: b takes the machine to state s 1, ab definitely takes the machine to state s 2 if it produces outputs 01,
which we have observed during state testing, and, finally, bab tests the transition on input b and the end
state s 3. Other transitions can be tested similarly.

We can use adaptive distinguishing sequences to construct a checking sequence. An adaptive distinguish-
ing sequence is not really a sequence but an adaptive experiment (i.e. a decision tree) that specifies how to
choose inputs adaptively based on observed outputs to identify the initial state. An adaptive distinguishing
sequence corresponds to a separating family in which each state s i has only one separating sequence x i in
its set, i.e., Z i = {x i }. We can construct a checking sequence using the same construction as above with the
following difference: at each step where we are supposed to apply the distinguishing sequence x 0, we apply
instead the separating sequence x i for the current state s i . An adaptive distinguishing sequence has length
O(n 2 ), and, consequently, a checking sequence of length O(pn 3 ) can be constructed in time O(pn 3 ) (see
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(24) for the details).

Identifying sequences

The previous three methods are based on knowing where we are during the experiment, using status mes-
sages, reset, and distinguishing sequences, respectively. However, these sequences may not exist in gen-
eral. A method was proposed by Hennie that works for general machines, although it may yield exponen-
tially long checking sequences. It is based on certain sequences, called identifying sequences in (18) (locat-
ing sequences in (14)) that identify a state in the middle of the execution. Identifying sequences always
exist and checking sequences can be derived from them (14) (18).

Similar to checking sequences from distinguishing sequences, the main idea is to display the responses of
each state to its separating family of sequences instead of one distinguishing sequence. We use an example
to explain the display technique. The checking sequence generation procedure is similar to that from the
distinguishing sequences and we omit the detail.

Consider machine A in Fig. 1. We want to display the responses of state s 1 to separating sequences a and
b. Suppose that we first take the machine to s 1 by a transfer sequence, apply the first separating sequence
a, and observe output 0. Due to faults, there is no guarantee that the implementation machine was trans-
ferred to state s 1 in the first place. Assume instead that we transfer the machine (supposedly) to s 1 and
then apply aaa which produces output 000. The transfer sequence takes the machine B to state q 0 and then
aaa takes it through states q 1, q 2, and q 3, and produces outputs 000 (if not, then B must be faulty). The
four states q 0 to q 3 cannot be distinct since B has at most three states. Note that if two states q i , q j are
equal, then their respective following states q i + 1 , q j + 1 (and so on) are also equal because we apply the
same input a. Hence q 3 must be one of the states q 0, q 1, or q 2, and thus we know that it will output 0 on
input a; hence we do not need to apply a. Instead we apply input b and must observe output 1. Therefore,
we have identified a state of B (namely q 3); that responds to the two separating sequences a and b by pro-
ducing 0 and 1 respectively, and thus is similar to state s 1 of A.

The length of an identifying sequence in the above construction grows exponentially with the number of
separating sequences of a state and the resulting checking sequence is of exponential length in general.

A Polynomial time randomized algorithm

With status messages, reset, or short distinguishing sequences (of at most polynomial length), we can find
in polynomial time checking sequences of polynomial length. In the general case without such information,
Hennie’s algorithm constructs an exponential length checking sequence. The reason of the exponential
growth of the length of the test sequence is that it deterministically displays the response of each state to its
separating family of sequences. Randomization can avoid this exponential "blow-up"; we now describe a
polynomial time randomized algorithm that constructs with high probability a polynomial length checking
sequence (41). The probabilities are with respect to the random decisions of the algorithm; we do not make
any probabilistic assumptions on the specification A or the implementation B. For a test sequence to be
considered ‘‘good’’ (a checking sequence), it must be able to uncover all faulty machines B. As usual,
‘‘high probability’’ means that we can make the probability of error arbitrarily small by repeating the test
enough times (doubling the length of the test squares the probability that it is not a checking sequence).

We break the checking experiment into two tests. The first test ensures with high probability that the
implementation machine B is similar to A. The second test ensures with high probability that all the transi-
tions are correct: they give the correct output and go to the correct next state.
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Test 1. (Similarity)
For i = 1 to n do

Repeat the following k i times:
Apply an input sequence that takes A from its current state to state s i ;
Choose a separating sequence from Z i uniformly at random and apply it.

We assume that for every pair of states we have chosen a fixed transfer sequence from one state to the
other. Assume that z i is the number of separating sequences in Z i for state s i . Let x be the random input
string formed by running Test 1 with k i = O(nz i min (p ,z i ) logn) for each i = 1 ,... ,n. It can be shown that,
with high probability, every FSM B (with at most n states) that is not similar to A produces a different out-
put than A on input x.

Test 2. (Transitions)
For each transition of the specification FSM A, say δA (s i , a) = s j , do

Repeat the following k i j times:
Take the specification machine A from its current state to state s i ;
Flip a fair coin to decide whether to check the current state or the transition;
In the first case, choose (uniformly) at random a sequence from Z i and apply it;
In the second case, apply input a followed by a randomly selected sequence from Z j .

Let x be the random input string formed by running Test 2 with k i j = O( max (z i ,z j ) log (pn) ) for all i , j. It
can be shown that, with high probability, every FSM B (with at most n states) that is similar but not isomor-
phic to A produces a different output than A on input x.

Combining the two tests, we obtain a checking sequence with a high probability (41). Specifically, given a
specification machine A with n states and input alphabet of size p, the randomized algorithm constructs
with high probability a checking sequence for A of length O(pn 3 + p ′n 4 logn) where p ′ = min (p ,n).

In our exposition we have assumed that the specification is a completely specified FSM. Similar methods
apply to partially specified machines, as long as the relevant sequences exist. The methods can be also
extended to the case of faults that introduce additional states, although in this case the tests become inher-
ently longer (see (25) for further discussion).

Heuristic procedures and optimizations

Checking sequences guarantee a complete fault coverage but sometimes could be too long for practical
applications and heuristic procedures are used instead. For example, in circuit testing, test sequences are
generated based on fault models that significantly limit the possible faults (1). Without fault models, cover-
ing paths are often used in both circuit testing (1) (12) and protocol testing where a test sequence exercises
each transition of the specification machine at least once. A short test sequence is always preferred and a
shortest covering path is desirable, resulting in a Postman Tour (2) (11) (20) (32) (36).

A covering path is easy to generate yet may not have a high fault coverage. Additional checking is needed
to increase the fault coverage. For instance, suppose that each state has a UIO sequence (33). A UIO
sequence for a state s j is an input sequence x j that distinguishes s j from any other states, i.e., for any state
s k ≠ s j , λ(s j , x j ) ≠ λ(s k , x j ). To increase the coverage we may test a transition from state s i to s j by its
I/O behavior and then apply a UIO sequence of s j to verify that we end up in the right state. Suppose that
such a sequence takes the machine to state t j . Then a test of this transition is represented by a test
sequence, which takes the machine from s i to t j . Imagine that all the edges of the transition diagram have a
white color. For each transition from s i to s j , we add a red edge from s i to t j due to the additional checking
of a UIO sequence of s j . A test that checks each transition along with a UIO sequence of its end state
requires that we find a path that exercises each red edge at least once. It provides a better fault coverage
than a simple covering path, although such a path does not necessarily give a checking sequence (6). We
would like to find a shortest path that covers each red edge at least once. This is a Rural Postman Tour



- 9 -

(13), and in general, it is an NP-hard problem. However, practical constraints are investigated and polyno-
mial time algorithms can be obtained for a class of communication protocols (2).

Sometimes, the system is too large to construct and we cannot even afford a covering path. To save space
and to avoid repeatedly testing the same portion of the system, a ‘‘random walk’’ could be used for test
generation (22) (38). Basically, we only keep track of the current state and determine the next input on-
line; for all the possible inputs with the current state, we choose one at random. Note that a pure random
walk may not work well in general; as is well known, a random walk can easily get ‘‘trapped’’ in one part
of the machine and fail to visit other states if there are ‘‘narrow passages’’. Consequently, it may take
exponential time for a test to reach and uncover faulty parts of an implementation machine through a pure
random walk. Indeed, this is very likely to happen for machines with low enough connectivity and few
faults (single fault, for instance). To avoid such problems, a guided random walk was proposed (22) for
protocol testing where partial information of a history of the tested portion is being recorded. Instead of a
random selection of next input, priorities based on the past history are enforced; on the other hand, we make
a random choice within each class of inputs of the same priority. Hence we call it a guided random walk; it
may take the machine out of the ‘‘traps’’ and increase the fault coverage.

In the techniques discussed, a test sequence is formed by combining a number of subsequences, and often
there is a lot of overlaps in the subsequences. There are several papers in the literature that propose heuris-
tics for taking advantage of overlaps in order to reduce the total length of tests (8) (35) (39).

Systems modeled by extended finite state machines

In software applications such as feature testing of communication protocols, the pure finite state machine
model is not powerful enough to model in a succinct way the actual systems any more. Extended finite
state machines, which are finite state machines extended with variables, are commonly used to specify such
systems. For instance, IEEE 802.2 LLC (5) is specified by 14 control states, a number of variables, and a
set of transitions (pp. 75-117). For example, a typical transition is (p. 96):

current_state SETUP
input ACK_TIMER_EXPIRED
predicate S_FLAG = 1
output CONNECT_CONFIRM
action P_FLAG := 0; REMOTE_BUSY := 0
next_state NORMAL

In state SETUP and upon input ACK_TIMER_EXPIRED, if variable S_FLAG has value 1, then the
machine outputs CONNECT_CONFIRM, sets variables P_FLAG and REMOTE_BUSY to 0, and moves
to state NORMAL.

To model this and other protocols, including other ISO standards and complicated systems such as 5ESS
(Lucent No. 5 Electronic Switching System) we extend finite state machines with variables as follows. We
denote a finite set of variables by a vector: x→ = (x 1 , . . . , xk ). A predicate on variable values P(x→) returns
FALSE or TRUE; a set of variable values x→ is valid for P if P(x→) = TRUE, and we denote the set of valid
variable values by X P = {x→ : P(x→) = TRUE}. Given a function A(x→), an action is an assignment:
x→ : = A(x→).

Definition 3. An extended finite state machine (EFSM) is a quintuple M = (I , O , S , x→, T) where I, O, S,
x→, and T are finite sets of input symbols, output symbols, states, variables, and transitions, respectively.
Each transition t in the set T is a 6-tuple: t = (s t , q t , a t , o t , P t , A t ) where s t , q t , a t , and o t are the start
(current) state, end (next) state, input, and output, respectively. P t (x→) is a predicate on the current variable
values and A t (x→) defines an action on variable values.

Initially, the machine is in an initial state s 0 ∈ S with initial variable values: x→init . Suppose that the
machine is at state s t with the current variable values x→. Upon input a t , if x→ is valid for P t , i.e.,
P t (x→) = TRUE, then the machine follows the transition t, outputs o t , changes the current variable values
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by action x→ : = A t (x→), and moves to state q t .

For each state s ∈ S and input a ∈ I, let all the transitions with start state s and input a be:
t i = (s , q i , a , o i , P i , A i ), 1 ≤ i ≤ r. We assume that the sets of valid variable values of these r predi-
cates are mutually disjoint, i.e., X Pi

∩ X Pj
= ∅, 1 ≤ i ≠ j ≤ r.

Clearly, if the variable set is empty and all predicates P ≡ TRUE then an EFSM becomes an ordinary FSM.
Each combination of a state and variable values is called a configuration. Given an EFSM, if each variable
has a finite number of values (Boolean variables for instance), then there is a finite number of configura-
tions, and hence there is an equivalent (ordinary) FSM with configurations as states. Therefore, an EFSM
with finite variable domains is a compact representation of an FSM.

We now discuss testing of EFSM’s, which has become an important topic recently, especially in the net-
work protocol area (19) (26) (29). An EFSM usually has an initial state s 0 and all the variables have an ini-
tial value x→init , which consists of the initial configuration. A test sequence (or a scenario) is an input
sequence that takes the machine from the initial configuration back to the initial state (possibly with differ-
ent variable values). We want to construct a set of test sequences of a desirable fault coverage, which
ensures that the implementation machine under test conforms to the specification.

The fault coverage is essential. However, it is often defined differently from different models and/or practi-
cal needs. For testing FSM’s we have discussed checking sequences, which guarantee that the implementa-
tion machine is structurally isomorphic to the specification machine. However, even for medium size
machines it is too long to be practical (41) while for EFSM’s hundreds of thousands of states (configura-
tions) are typical and it is in general impossible to apply a checking sequence. A commonly used heuristic
procedure in practice is to try to make sure that each transition in the specification EFSM is executed at
least once.
Definition 4. A complete test set for an EFSM is a set of test sequences such that each transition is tested at
least once.

Given the succinct representation of EFSM’s, one might imagine that it is an easy problem. As a matter of
fact, even an apparently easier problem, the reachability problem, is hard where we want to determine if a
control state is reachable from the initial state. Specifically, it is undecidable if the variable domains are
infinite and PSPACE-complete otherwise.

To find a complete test set, we first construct a reachability graph G, which consists of all the configura-
tions and transitions that are reachable from the initial configuration. We obtain a directed graph where the
nodes and edges are the reachable configurations and transitions, respectively. Obviously, a control state
may have multiple appearances in the nodes (along with different variable values) and each transition may
appear many times as edges in the reachability graph. In this reachability graph, any path from the initial
node (configuration) corresponds to a feasible path (test sequence) in the EFSM, since there are no predi-
cate or action restrictions anymore. Therefore, a set of such paths in G, which exercises each transition at
least once, provides a complete test set for the EFSM. We thus reduce the testing problem to a graph path
covering problem.

The construction of the reachability graph is often a formidable task; it has the well-known state explosion
problem due to the large number of possible combinations of the control states and variable values. One
approach to this problem is to apply an on-line minimization algorithm to construct an equivalent graph
G min, which collapses all configurations of the reachability graph that are equivalent in terms of the transi-
tions that they can perform. Such a minimized graph can be constructed efficiently directly from the EFSM
{23); G min could be much smaller than G and can be used in its place for generating test sequences. Fur-
thermore, for the testing purpose, we do not need a complete reachability graph; we only need a subgraph
that contains all the transitions so that a set of covering paths still provides a complete test set (16). We
shall not digress to this topic further. From now on we assume that we have a graph G that contains all the
transitions of a given EFSM and we want to construct a complete test set of a small size. For clarity, we
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assume that each path (test sequence) is from the initial node to a sink node, which is a configuration with
the initial control state.

To summarize, we have a directed graph with an initial node and a sink node. The nodes are configurations,
which correspond to combinations of control states and variable values, and a state may appear in more
than one node. The edges correspond to transitions, and a same transition may appear many times in the
graph as edges between different configurations. We want to find a complete test set: a set of paths from
the initial node to the sink node such that each transition in the original EFSM is covered; specifically,
among the multiple appearances of a transition, it is sufficient to cover any one of them. Therefore, the test
generation is reduced to covering path problems on graphs.

Test sequence generation

Formally, we have a directed graph G = < V , E > with n = V nodes, m = E edges, a source
node s of in-degree 0, and a sink node t of out-degree 0. All edges are reachable from the source node and
the sink node is reachable from all edges. There is a set C of k = Cdistinct colors. Each node and edge
is associated with a subset of colors from C. Each transition in the EFSM corresponds to a distinct color in
C and may have multiple appearances in G. We consider a more general case here; each node and edge
have a set of colors from C. A path from the source to sink is called a test.

We are interested in a set of tests that cover all the colors; they are not necessarily the conventional cover-
ing paths that cover all the edges. Formally, a complete test set covers all the colors in C. The path (test)
length makes little difference and we are interested in minimizing the number of paths. We shrink each
strongly connected component (3) (10) into a node, which contains all the colors of the nodes and edges in
the component. The problem then is reduced to that on a directed acyclic graph (DAG) (10). From now
on, unless otherwise stated, we assume that the graph G = < V , E > is a DAG. We now describe differ-
ent test generation techniques, which correspond to path construction problems on graphs. For details see
(26).

Minimal complete test set

We need a complete test set - a set of paths from the initial node to the sink node that cover all the colors.
On the other hand, in the feature testing of communication systems, setting up and running each test is time
consuming and each test is costly to experiment. Consequently, we want to minimize the number of tests.
Therefore, our goal is: Find a complete test set of minimum cardinality. However, it turns out that the prob-
lem is NP-hard. We discuss a greedy method next.

Maximal color paths

We need to restrict ourselves to approximation algorithms. Similar to the standard approximation algo-
rithm for Set Cover (17) (27), we use the following procedure. We first find a path (test) that covers a max-
imum number of colors and delete the covered colors from C. We then repeat the same process until all the
colors have been covered. Thus, we have the following problem: Find a test that covers the maximum num-
ber of colors. This problem is also NP-hard.

In view of the NP-hardness of the problem, we have to content ourselves with approximation algorithms
again. We now describe some heuristic methods.

Longest path

Suppose that an edge (node) has c uncovered colors so far. We assign a weight c to that edge (node), and
we have a weighted graph. Ech path has an associated weight, which is the sum of the weights of its edges
and nodes. We find a longest (maximum weight) path from the source to sink; it is possible since the graph
is a DAG. This may not provide a maximal color test due to the multiple appearances of colors on a path.
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However, if there are no multiple appearances of colors on the path, then it is indeed a maximal color test.

There are known efficient ways of finding a longest path in a DAG. We can first topologically sort the
nodes and then compute the longest paths from each node to the sink in the reverse topological order (10).
Specifically, suppose that we are processing node u and examine all its outgoing edges (u , v) where v is a
node of higher topological ordering and has its longest path to the sink computed. Suppose that (u , v) has
weight w u,v and that a longest path from v to sink has weight w v . Then a path from u to v and then follow-
ing a longest path from v to the sink has a weight w u,v + w v . We can easily compare all the outgoing
edges from u and choose a longest path from u to the sink node.

The time and space needed is O(m) where m is the number of edges. How does this heuristic method com-
pare with the optimal solution? An obvious criterion is the coverage ratio: the number of maximal number
of colors on a path over the number of colors covered by the algorithm. In the worst case it can be k, the
number of uncovered colors.

A Greedy heuristic

We now discuss a greedy heuristic procedure. It takes linear time and works well in practice. We again
topologically sort the nodes and compute a desired path from each node to the sink in a reverse topological
order as follows. Instead of keeping the color sets of all the paths from a node to the sink, we only keep the
one with a supposedly ‘‘maximum number’’ of colors. Specifically, when we process a node u and con-
sider all the outgoing edges (u , v) where v has a higher topological order and has been processed, we take
the union of the colors of node u, edge (u , v), and node v. We compare the resulting color sets from all the
outgoing edges from u and keep one with the largest cardinality. This procedure is well defined since G is
a DAG. However, it may not provide a maximum color coverage test; when we choose the outgoing edge
from u, we do not incorporate information of the colors from the source to u.

Since we take unions of and compare color sets of no more than k colors, the time and space complexity of
this approach is O(km). where k is the number of uncovered colors and m is the number of edges.
Although the second method seems to be better in many cases, its worst case coverage ratio is also Ω(k).

A Transitive greedy heuristic

We now discuss an improved procedure. This is similar to the greedy heuristic, except that when we pro-
cess a node u, we do not consider only its immediate successors but all its descendants. Specifically, for
each outgoing edge (u , v) and descendant v ′ of v (possibly v = v ′), we take the union of the colors of node
u, edge (u , v), and node v ′. We compare the resulting color sets from all the outgoing edges from u and
descendants v ′ and keep one with the largest cardinality.

The time complexity of this algorithm is O(knm), since we may examine on the order of n descendants
when we process a node. The worst case coverage ratio of this method is somewhat better: O(√ k ).

More on complexity of test generation

We now come back to the original minimum complete test set problem. Suppose that we successfully find
a maximum color test repeatedly until we obtain a complete test set in N steps while the minimum complete
test set contains N * tests. How far is N from N *? Is there a better algorithm? It follows from the results on
the Set Cover problem that N = Θ(N * log k) (17) (27). That is, on the one hand, for any instance, if we
can find repeatedly maximum color tests, then the complete test set will contain at most N * log k tests;
moreover, an approximation within factor r for maximal color paths will yield a test set of size at most
N * rlog k. Conversely, there are instances in which even if we could find repeatedly paths that cover the
maximum number of colors, the resulting test set contains N * log e k test (where log e denotes the natural
logarithm).
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Moreover, the negative results on the approximation of the Set Cover problem (28) imply that we cannot do
better than a logarithmic factor in polynomial time. That is, for any polynomial time algorithm which con-
structs a complete test set of cardinality N, there are cases such that N = Ω(N * log k).

Paths with a constant bound on the number of colors covered

In spite of the negative results in the worst case, the longest path and greedy heuristic procedures were
applied to real systems (26) and proved to be surprisingly efficient; a few tests cover a large number of col-
ors and, afterwards, each test covers a very small number of colors. A typical situation is that the first 20 %
tests cover more than 70 % of the colors. Afterwards, 80 % of the tests cover the remaining 30 % of the col-
ors, and each test covers 1 to 3 colors. Consequently, the costly part of the test generation is the second
part. Under these circumstances, exact procedures for either maximal color paths or minimal complete test
sets are needed to reduce the number of tests as much as possible. The question is, can we obtain more effi-
cient algorithms if we know that there is a bound on the maximum number of colors on any path that is a
small constant c << k. We consider the following problems.

Suppose that a maximum color test covers no more than c << k colors where c is a small constant. (1)
Find a minimum complete test set; and (2) Find a maximum color test.

First, let us discuss Problem (1). We can find the different color sets of all the source-to-sink paths, in time
that depends on the number of the color sets (instead of the potentially much larger number of paths) by a
bottom-up processing of the DAG in reverse topological order. At each node we compute a family F u of
the color sets of the paths that start at u. At the source node we need to solve the Set Cover problem to find
a subset of minimum cardinality that covers all the k colors. The complexity varies with the constant c.
For c = 1, the problem is trivial: since a color set (path) contains at most one color, we can simply take k
distinct color sets, which provides a minimum complete test set. On the other hand, at each node we can
use a bit map to record the color sets and it takes time O(k) to process each outgoing edge from a node.
Therefore, the total time and space complexity is O(km). For c = 2, Problem (1) can still be solved in
polynomial time using graph matching techniques. For c ≥ 3, the problem is NP-hard.

Problem (2) can be solved in time and space polynomial in the number of colors k and the size of the graph.
The basic ideas are as follows. If all we want to do is to find a path that covers c colors (rather than all
paths), then in the bottom-up computation we do not need to keep all the color sets but only a sufficient
number of them. That is, at each node u, instead of the complete family F u of color sets of the paths starting
at u, we need keep only a subfamily L u such that if the DAG contains a path through u that covers c colors,
then there is such a path whose suffix from u to the sink t uses only colors from some member of L u . That
avoids keeping track all the subsets of colors; there are exponentially many of them. The detailed algo-
rithm is more involved and we refer the readers to (26).

Conclusion

We have studied various techniques for conformance testing of software systems that can be modeled by
finite state machines or their extensions. For finite state machines, we described several test generation
methods based on status messages, reliable reset, distinguishing sequences, identifying sequences, charac-
terization sets, transition tours and UIO sequences, and a randomized polynomial time algorithm. For
extended finite state machines, the problem can be reduced to a graph path covering, and we presented sev-
eral approaches to ensure the fault coverage and to reduce the number of tests.

While testing of software systems modeled by finite state machines is a well studied problem, testing of
extended finite state machines is still at an early stage; the difficulties arise because of the state explosion
due to the large number of combinations of variable values. Furthermore, software systems such as com-
munication protocols usually contain timers and testing of the temporal properties is necessary. However,
timers have an infinite range of values and their behaviors are difficult to test. Preliminary works have
been done for the system reduction (4) (23), yet efficient test generation methods remain to be explored.
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Figure 1. Transition diagram of a finite state machine.

Figure 2. A Spanning tree of machine in Figure 1.


