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ABSTRACT
We consider the problem to infer a concise Document Type
Definition (DTD) for a given set of XML-documents, a prob-
lem which basically reduces to learning of concise regu-
lar expressions from positive example strings. We iden-
tify two such classes: single occurrence regular expressions
(SOREs) and chain regular expressions (CHAREs). Both
classes capture the far majority of the regular expressions oc-
curring in practical DTDs and are succinct by definition. We
present the algorithm iDTD (infer DTD) that learns SOREs
from strings by first inferring an automaton by known tech-
niques and then translating that automaton to a correspond-
ing SORE, possibly by repairing the automaton when no
equivalent SORE can be found. In the process, we intro-
duce a novel automaton to regular expression rewrite tech-
nique which is of independent interest. We show that iDTD
outperforms existing systems in accuracy, conciseness and
speed. In a scenario where only a very small amount of
XML data is available, for instance when generated by Web
service requests or by answers to queries, iDTD produces
regular expressions which are too specific. Therefore, we in-
troduce a novel learning algorithm crx that directly infers
CHAREs (which form a subclass of SOREs) without going
through an automaton representation. We show that crx

performs very well within its target class on very small data
sets. Finally, we discuss incremental computation, noise,
numerical predicates, and the generation of XML Schemas.

1. INTRODUCTION
1.1 Motivation

XML is the lingua franca for data exchange on the Inter-
net [2]. Within applications or communities, XML data is
usually not arbitrary but adheres to some structure possibly
imposed by a schema. The advantages offered by the pres-
ence of such a schema are numerous. The most direct ap-
plication is of course automatic validation of the document
structure. Input validation, for instance, not only facilitates
automatic processing but also ensures soundness of the in-
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put data. Indeed, unvalidated input from web requests is
considered as the number one vulnerability for web applica-
tions [1]. The presence of a schema allows for automation
and optimization of search, integration, and processing of
XML data (cf., e.g., [7, 17, 30, 31, 38, 50]). Various soft-
ware development tools such as Castor1 and SUN’s JAXB2

rely on schemas to perform object-relational mappings for
persistence. Further, the existence of schemas is imperative
when integrating (meta) data through schema matching [43]
and in the area of generic model management [8, 32]. A fi-
nal advantage of a schema is that it assigns meaning to the
data. That is, it provides a user with a concrete semantics
of the document and aids in the specification of meaningful
queries over XML data. Although the examples mentioned
here just scrape the surface of current applications, they al-
ready underscore the importance of schemas accompanying
XML data.

Unfortunately, in spite of the above mentioned advan-
tages, a schema is not mandatory and many XML-documents
do not possess one. Indeed, in a recent study, Barbosa et
al. [6, 33] have shown that approximately half of the XML
documents available on the web do not refer to a schema. In
another study Bex et al. [9, 10] noted that about two-thirds
of XSDs gathered from schema repositories and from the
web are not valid with respect to the W3C XML Schema
specification [48], rendering them essentially useless for im-
medidate application. A similar observation was noted by
Sahuguet [44] concerning DTDs.

Based on the above described advantages and the lack of
schemas in practice, it is essential to devise algorithms that
can infer a schema for a given collection of XML documents
when none, or no syntactic correct one, is present. The lat-
ter problem is also acknowledged by Florescu [22] who em-
phasizes that in the context of data integration “We need

to extract good-quality schemas automatically from existing

data and perform incremental maintenance of the generated

schemas”. In this paper, we describe two novel schema infer-
ence algorithms outperforming existing systems in accuracy,
conciseness and speed.

Before we outline our approach, we give two applications
of schema inference in situations where a schema is already
available: schema cleaning and dealing with noise. Even
when schemas do exist, it can be advantageous to derive
one solely from the XML data at hand. Indeed, sometimes
schemas can be too general with respect to the data they
are to represent. This is, for instance, nicely illustrated by

1http://www.castor.org/
2http://java.sun.com/webservices/jaxb/



the following real-world example taken from the Protein Se-
quence Database DTD [34]. Consider the definition of the
refinfo-element:
authors,citation,volume?,month?,

year,pages?,(title|description)?,xrefs?

An analysis of the available XML corpus (683 megabyte of
data) shows that the refinfo-element is better described by
the following which is more strict than the original:
authors,citation,(volume|month),

year,pages?,(title|description)?,xrefs?

The latter emphasizes that volume and month do not oc-
cur together: one either specifies a journal articles month of
publication, or the volume it appeared in, but not both. The
latter definition for refinfo is derived by our algorithms, il-
lustrating that they can be used to better understand the
semantics of the data and adapt the schema when neces-
sary. In general, schema inference can be used to restrict
schemas to the relevant subset that is needed by the applica-
tion at hand, thereby facilitating difficult tasks like schema
matching and data integration. Indeed, as argued by Hinkel-
man [28], industry-level standards are generally too loosely
defined, which can result in XML schemas in which many
business structures are formally specified as being optional.

A final example illustrating the importance of schema in-
ference is one in the context of noisy data. We investigated
a corpus of XHTML documents gathered from the web and
found that an astonishing 89 % of 2092 documents was not
valid to the XHTML Transitional specification3. Inference
of a schema from the data at hand and comparing it with
the schema provided by the specification provides a uniform
view of the kind of errors. Further, given that one often has
no choice but to deal with such noisy data one may derive a
schema from a subset and work with that rather than with
the official specification to retain at least a minimal valida-
tion. We refer to Section 9 for a more thorough discussion.

1.2 Problem setting
Given a collection of XML documents, a schema should

be inferred in an automatic way without intervention of the
user and can therefore solely be based on the XML data at
hand. Like for any effective inference algorithm, the gener-
ated schema should strike a good balance between (1) spe-
cialization, i.e., covering all XML documents in the sample
in a minimal way; and, (2) generalization, i.e., covering all
documents satisfying the target schema but which are not
necessarily present in the sample.

In this respect, schema inference problems come in two fla-
vors. First, there is the setting when only little XML data
is present, for instance, when XML is returned as answers
to queries or Web service requests [39, 40]. In such a case,
a schema inference algorithm should balance more towards
generalization than to specificity as it is unlikely that a rich
class of schemas can be learned from only a limited number
of data instances. The other scenario is one in which there
is a huge amount of XML data available, for instance, when
the data resides in a native XML databases or is generated
in bulk from existing (say relational) data. In this case,
there usually is enough information to derive a highly spe-
cific schema in a rich class and a learning algorithm should
therefore favor specialization over generalization.

We consider the inference of concise Document Type Def-
initions (DTDs) in both of the above settings. We briefly

3http://www.w3.org/TR/xhtml1/

motivate why we want to infer DTDs and not the much
richer formalism of XML Schema [49]. The most important
reason is that, as we explain in the related work section,
DTD inference has not adequately been addressed yet: ex-
isting systems do not perform well when tested on real world
or sparse XML data, and as a result, generate lengthy and
long-winded regular expressions. Secondly, DTD inference
is a subcase of XSD inference. Indeed, recent characteriza-
tions by Bex et al. [9] show that the structural core of XML
Schema, that is, the pure sets of trees which are definable by
XSDs, corresponds to DTDs extended with vertical regular
expressions. Therefore, one cannot hope to successfully infer
XSDs without good algorithms for the derivation of DTDs.
So, the present work can be seen as a first necessary step
towards XML Schema inference.

As DTDs can be abstracted by context-free grammars
with regular expressions (REs) at their right-hand sides,
DTD inference reduces to learning of REs from positive ex-
ample strings. Indeed, for every element name we need to
infer an RE describing all the strings occurring below that
element name in the XML corpus. Unfortunately, a seminal
result by Gold [25] shows that the class of all REs cannot be
learned from positive data only. This means that no mat-
ter how many example strings from the target language are
provided, no algorithm can infer every target RE. As the
framework for schema inference from XML data is exactly
such that only positive example strings are provided, it is
unrealistic to develop inference algorithms for the class of
all DTDs. One of the main challenges is therefore to iden-
tify subclasses of REs which include the far majority of REs
occurring in practical DTDs, which are concise, and which
can be learned efficiently from positive data only.

We present two such classes:

1. The class of single occurrence REs (SOREs), these
are REs in which every element name can occur at
most once. For instance, ((b?(a + c))+d)+e is SORE
while a(a + b)∗ is not as a occurs twice.

2. The class of chain regular expressions (CHAREs)
which are those SOREs consisting of a sequence of fac-
tors f1 · · · fn where every factor is an expression of the
form (a1+· · ·+ak), (a1+· · ·+ak)?, (a1+· · ·+ak)+, or,
(a1+· · ·+ak)∗, where k ≥ 1 and every ai is an alphabet
symbol. For instance, the expression a(b + c)∗d+(e +
f)? is a CHARE, while (ab + c)∗ and (a∗ + b?)∗ are
not.

Note that every SORE, and therefore, also every CHARE is
deterministic (or one-unambiguous [12]) as required by the
XML specification.

These classes certainly satisfy the relevance criteria men-
tioned above: an examination of the 819 DTDs and XSDs
gathered from the Cover Pages4 (including many high-quality
XML standards) as well as from the web at large, reveals
that more than 99% of the REs occurring in practical schema’s
are CHAREs (and therefore also SOREs) [10]. Furthermore,
they are succinct by definition: every element name can oc-
cur only once. Hence, the size of the generated RE is always
linear in the number of different element names occurring in
the corpus.

In this paper, we show that these classes of REs can be
efficiently learned, thereby deriving efficient algorithms for

4http://xml.coverpages.org/



the corresponding classes of DTDs. For REs outside these
classes we derive a super-approximation within the class,
that is, an RE which is a SORE or a CHARE containing all
strings defined by the original RE (cf. example5 in Table 2).
An immediate drawback of SOREs is that they can only
count up to zero, one or more occurrences of an element
name. In Section 9, we discuss extensions of SOREs which
can express cardinality constraints like “there should be at
least three a’s”.

In the next subsections, we give an overview of our ap-
proach.

1.3 Approach
1.3.1 Inferring SOREs: iDTD

Proposition 1 shows that the regular languages defined
by SOREs form a subclass of the 2-testable regular lan-
guages, a class for which it is well-known that an automaton
can be learned efficiently from positive data only [23]. The
details of that algorithm, called 2T-INF, are explained in
Section 4. An obvious approach would be to first derive an
automaton which can then be translated to an equivalent
RE. Unfortunately, as already hinted upon by Fernau [20,
21] and as we illustrate below, it is very difficult to get con-
cise REs from an automaton representation. Indeed, con-
sider for instance the automaton of Figure 1 which is gener-
ated by 2T-INF from a set of input strings as explained in
Section 4. When the standard state elimination algorithm
(cf., e.g., [29]) is applied, the following RE is generated:5

(aa∗d + (c + aa∗c)(c + aa∗c)∗(d + aa∗d) + (b + aa∗b + (c +
aa∗c)(c + aa∗c)∗(b + aa∗b))(aa∗b + (c + aa∗c)(c + aa∗c)∗

(b + aa∗b))∗(aa∗d + (c + aa∗c)(c + aa∗c)∗(d + aa∗d)))(aa∗d +
(c + aa∗c)(c + aa∗c)∗(d + aa∗d) + (b + aa∗b + (c + aa∗c)(c +
aa∗c)∗(b + aa∗b))(aa∗b + (c + aa∗c)(c + aa∗c)∗(b + aa∗b))∗

(aa∗d + (c + aa∗c)(c + aa∗c)∗(d + aa∗d)))∗e, (†)

which differs quite a bit from the equivalent SORE

((b?(a + c))+d)+e (‡).

A result by Ehrenfeucht and Zeiger [18] explains why it
is impossible in general to generate concise REs from au-
tomata: there are automata, even of the restricted kind as
generated by 2T-INF, for which the smallest equivalent RE
contains an exponential number, in the size of the automa-
ton, of occurrences of alphabet symbols. But, as by defi-
nition the number of occurrences of alphabet symbols in a
SORE equals the number of states of the corresponding au-
tomaton, SOREs constitute a well-behaved concisely repre-
sentable subset of the regular languages. It therefore makes
sense to investigate how to generate a concise SORE rather
than applying a transformation based on state elimination
which results in long-winded REs.

We provide a polynomial time algorithm rewrite which
transforms an automaton to an equivalent SORE when one
exists. The algorithm is of independent interest, as to the
best of our knowledge, this is the first time a subclass of
REs has been identified for which an efficient rewriting from
automata exists.

Unfortunately, real world XML data does not always con-
stitutes a representative sample with respect to the target
schema. That is, when 2T-INF is executed some edges of
the generated automaton might be missing. For instance,

5Transformation computed by JFLAP: www.jflap.org.

due to lack of data, it could be that the automaton of Fig-
ure 2 is inferred which is a subautomaton of the intended
one in Figure 1. As that automaton does not correspond
to a SORE anymore, rewrite does not succeed in deriving
an equivalent SORE.We present iDTD (iDTD), an adap-
tation of rewrite with repair rules which derives a SORE
defining a superset of the language accepted by the given
automaton. We show that iDTD outperforms existing sys-
tems in accuracy, conciseness and speed both in the presence
of abundant and moderately small data, as well as on real-
world and generated data. For instance, iDTD still succeeds
in deriving the corresponding intended RE ((b?(a+c))+d)+e
when started with the automaton of Figure 2.

Why it is necessary to infer DTDs with REs when there is
already an efficient algorithm to learn automata? One could
indeed opt to stick with the automata representation and
not to bother with a transformation to REs. Unfortunately,
no popular schema language for XML is based on an au-
tomata encoding of regular languages. So, whenever a con-
crete schema has to be generated, either a DTD, an XSD or
even a Relax NG schema [15], equivalent regular expressions
have to be constructed. Therefore, in this transformation it
is important to avoid any unnecessary blow-up in size. Sec-
ondly, manageable REs are also often much more readable
than automata, giving users a clear idea about the semantics
of the documents and helping them to specify meaningful
queries (cf., e.g., the RE generated by state elimination (†)
versus the equivalent SORE (‡)).

1.3.2 Inferring CHAREs: CRX
The class of SOREs on which iDTD focuses is too rich to

be learned from very small data sets. To address DTD in-
ference in that setting we switch to the subclass of CHAREs
and present an algorithm CRX (Chain Regular expres-
sion eXtractor) which derives CHAREs directly without
going through the intermediate automaton representation
like for SOREs and, hence, bypassing a difficult automaton
to RE translation.

1.4 Outline and Contributions
We summarize the contributions of this paper:

1. We introduce a novel polynomial time algorithm (re-

write) to translate an automaton to an equivalent
SORE, when one exists. This is the first time a sub-
class of the regular expressions is identified for which a
linear size transformation from the corresponding au-
tomata exists. For the general class of REs, a resulting
expression can be of exponential size. Furthermore,
SOREs form a robust extension of the class of REs
frequently encountered in practical DTDs, making it a
relevant target class w.r.t. DTD inference. (Section 5)

2. We introduce the algorithm iDTD that first infers an
automaton from a set of strings by applying 2T-INF
and then rewrites the latter into an equivalent SORE
when one exists and into a SORE that is a super-
approximation otherwise. As the output of iDTD is
restricted to the class of SOREs, the size of the pro-
duced regular expression is always linear in the number
of different alphabet symbols. As every alphabet sym-
bol needs to occur at least once, a SORE can be seen
as the most concise representation. (Section 6)

3. We introduce the algorithm crx that derives CHAREs



(a subclass of SOREs) directly without going through
an automaton representation. Whereas iDTD derives
more specific REs, the strength of crx is its strong
generalization ability. As a consequence only very small
data sets are necessary to infer an optimal CHARE.
(Section 7)

4. Although iDTD and crx are complete for the tar-
get classes of SOREs and CHAREs, respectively, it
remains to validate them on real world data, incor-
porating small and large data sets, and on real world
DTDs containing REs in and outside the target classes.
Our experiments show that iDTD and crx outperform
existing systems on such data. Further, we asses the
strong generalization ability of crx by establishing on
average the minimal number of strings needed to de-
rive optimal REs. (Section 8)

5. We discuss how to extend iDTD and crx to incremen-
tally compute the inferred RE when new data arrives,
how to address noise, and how to deal with numerical
predicates. We briefly explain how our inference algo-
rithms can be used to infer simple XSDs. (Section 9)

In Section 3, we introduce the necessary definitions, and in
Section 4 we recall the algorithm 2T-INF to learn automata
from data. We conclude in Section 10.

2. RELATED WORK
Schema inference. Schemas for semi-structured data have
been defined in [13, 19, 42] and their inference has been ad-
dressed in [26, 37, 36]. The methods in [37, 26] focus on
the derivation of a graph summary structure (called full
representative object or dataguide) for a semi-structured
database. This data structure contains all paths in the
database. Approximations of this structure are considered
by restricting to paths of a certain length. The latter then
basically reduces to the derivation of an automaton from a
set of bounded length strings. Naively restricting the algo-
rithms to trees rather than graphs is inappropriate since no
order is considered between the children of a node so that
DTD-like schemas can not be derived. However, even the
use of more sophisticated encodings of the XML documents
using edges between siblings would be to no avail since no
algorithms are given to translate the obtained automata to
regular expressions. In [36], a schema is a typing by means
of a datalog program. The complexity of optimal schema
inference is NP-hard. Again, no algorithms are given to
transform datalog types into regular expressions. So, these
approaches can therefore not be used to derive DTDs, not
even when the semi-structured database is tree-shaped.
DTD inference. In the context of DTD inference, [47]
proposes several approaches to generate probabilistic string
automata to represent REs. To transform these into actual
REs, and hence to obtain DTDs, the authors refer to the
methods of [3]. The latter provides a method to translate
one-unambiguous non-probabilistic string automata to REs,
as given by Brüggemann-Klein and Wood [12], followed by
a post-processing simplification step. Apart from several
case analyses based on a dictionary example, no systematic
study of the effectiveness of the approach is provided. In
particular, in contrast to our results, no target class is given
for which the set of transformations is complete.

There are only a few papers describing systems for direct
DTD inference [24, 35, 14]. Only one of them is available
for testing: xtract [24]. In Section 8, we make a detailed
comparison with our proposal. In contrast to our approach,
the xtract systems generates for every separate string a
regular expression while representing repeated subparts by
introducing Kleene-*. In a second step, the system factorizes
common subexpressions of these candidate regular expres-
sions using algorithms from the logic optimization literature.
Finally, in the third step, xtract applies the Minimum De-
scription Length (MDL) principle to find the best RE among
the candidates. Although the approach has been shown to
work on real world DTDs in [24] the XML data comply-
ing to these DTDs was generated. We report in Section 8,
that xtract has two kinds of shortcomings on real world
XML data: (1) it generates large, long-winded, and difficult
to interpret regular expressions; and (2) it cannot handle
large data sets (over 1000 strings). The latter is due to
the NP-hard submodule in the third step of the xtract

algorithm [20]. The former problem seems to be more fun-
damental. The final step results in expressions consisting
of disjunctions of regular expressions while in practice the
large majority of regular expressions are concatenations of
disjunctions [10]. As a result, larger data sets result in larger
regular expressions.

In [35] an adaptation of the xtract approach to a re-
stricted class of regular expressions which form a subclass
of SOREs is described. Although the system, according to
the experiments conducted in [35], is outperforming xtract

in accuracy and efficiency, it seems that the two fundamen-
tal shortcomings described above remain present. It would
thus be surprising if the system performed much better than
xtract on real world data.

Similarly to [3], the approach of [14] relies on the transla-
tion of Glushkov automata to regular expressions which, in
general, can lead to an exponential blow-up.

Trang [46] is state of the art software written by James
Clark intended as a schema translator for the schema lan-
guages DTDs, Relax NG, and XML Schema. In addition,
Trang allows to infer a schema for a given set of XML doc-
uments. We discuss Trang further in Section 8.1.
Language inference. Most of the learning of regular lan-
guages from positive examples in the computational learning
community is directed towards inference of automata as op-
posed to inference of REs [4, 41, 45]. As noted by Fernau [20]
and argued in the previous Section, first using learning al-
gorithms for deterministic automata and then transforming
these into regular expressions, in general leads to unmanage-
able and long-winded regular expressions. Some approaches
to inference of REs for restricted cases have been considered.
For instance, Brāzma [11] showed that REs without union
can be approximately learned in polynomial time from a set
of examples satisfying some criteria. Recently, Fernau [21]
provided a learning algorithm for regular expressions that
are finite unions of pairwise left-aligned union-free regular
expressions. These expressions are different from the expres-
sions we consider here: they are not included in the class of
SOREs and do not contain all CHAREs. The development
is purely theoretical, no experimental validation has been
performed.
Automata to RE translation. Although heuristics for
automata to RE translations [16, 27] have been proposed, all
of them are optimizations of the classical state elimination



algorithm. In particular, they investigate the best order to
eliminate states when going from automata to REs. So, they
focus on the class of all automata for which, as explained
above, an exponential increase in size cannot be avoided
in general. Further, the methods remain theoretical as no
experimental analysis has been performed. To the best of
our knowledge the present paper proposes for the first time
a rewrite algorithm for a subclass of the regular languages
that results in concise regular expressions of linear size when
one exists.

3. DEFINITIONS
In the rest of the paper Σ is a finite alphabet of symbols

(also called element names). Regular expressions (REs)
are recursively defined as follows: every alphabet symbol a ∈
Σ is a regular expression. If r and r′ are regular expressions,
so are r · r′, r + r, r?, r+, and r∗. Note that ε (the empty
string) and ∅ are not allowed as basic symbols. The language
defined by a regular expression r is defined as usual and
is denoted by L(r). We denote by RE(Σ) the class of all
regular expression over Σ. We abstract a DTD as a mapping
from Σ-symbols to regular expressions: A DTD is a pair
(d, sd) where d is a mapping from Σ to RE(Σ) and sd ∈
Σ is the start symbol. The regular expression d(a) is also
referred to as the element definition or content model of a.
The XML specification requires regular expressions to be
deterministic. Although the latter is a strict subclass of the
regular expressions [12], we do not go into details here as
the most general class of REs we consider are SOREs which
are by definition deterministic.

We deviate from the usual definition of automata: labels
are placed at the states rather than on transitions. The
underlying idea is that every edge carries the label of the
state it points to. For a set S, an S-labeled graph G is
a tuple (V, E, λ, sin, sout) where V is a finite set of nodes,
E ⊆ V × V is the edge relation, λ : V \ {sin, sout} → S is
the labeling function, and sin, sout ∈ V are the source and
sink, respectively. The latter nodes will play the role of the
unique initial and final state, respectively. An automaton
is then simply a Σ-labeled graph. A single occurrence
automaton (SOA) is an automaton where every Σ-symbol
is assigned to at most one state. An example is given in
Figure 1. Note that no edges are labeled: all incoming edges
in a state a are assumed to be labeled with a. We say that
a SOA A is equivalent to an SORE when there exists an
SORE r such that L(A) = L(r).

4. INFERRING AUTOMATA
We provide some background on 2-testable regular lan-

guages. The class of 2-testable regular languages is de-
fined in terms of allowable 2-grams. A 2-gram of a string
is the set of its substrings of length two. For instance,
for the string w = bacacdacde its set of 2-grams is G2

w =
{ba, ac, ca, cd, da, de}. A language L ⊆ Σ∗ is then 2-testable
when there is a set of start element names I ⊆ Σ, a set of
final element names F ⊆ Σ, and a set of 2-grams S such
that w ∈ L iff the first symbol of w belongs to I , the last
symbol of w belongs to F and G2

w ⊆ S.
It is not so hard to see that every SORE is indeed 2-

testable. Consider for instance the expression r = (a+ b)+c.
The sets Ir = {a, b} and Fr = {c} are simply the symbols
that can start and end a string defined by r, respectively.
The set Sr equals the set of 2-grams {ab, aa, ba, bb, ac, bc}
which can be computed by inspecting which symbols can be

succeeded by which other symbols in strings defined by r.
We now describe the algorithm 2T-INF of [23] to infer

the sets I , F and S, and therefore every 2-testable language,
from a set of input strings W = {w1, . . . , wn}. Then IW and
FW are simply all first and last symbols, respectively, and
SW =

S

i≤n
G2

wi
. It remains to construct a corresponding

finite automaton GW : take a state for every element name
and a separate initial and final state. Construct an edge
from the initial state to every state in IW and an edge from
every state in FW to the final state. Further, for every ab ∈
SW there is an edge from state a to b.

We illustrate the latter by means of an example. Consider
the input strings bacacdacde, cbacdbacde, and abccaadcde.
Then IW = {a, b, c}, FW = {e}, and SW = {aa, ad, ac, ab, ba,
bc, cb, cc, ca, cd, da, db, dc, de}. The automaton derived from
IW , FW and SW is given in Figure 1. Note that every 2-
testable language is uniquely identified by its corresponding
SOA and vice versa. The automaton generated by bacacdacde
and cbacdbacde is given in Figure 2.

Proposition 1. Every SORE is 2-testable. More pre-

cisely, for every SORE r, there is an up to isomorphism

unique SOA Ar such that L(r) = L(Ar).

Proof. (sketch) Given a SORE r, its Glushkov automa-
ton [12] is an SOA. The result then follows as whenever
L(G) = L(G′) for two SOAs then G and G′ are isomorphic.
2

As every SORE is 2-testable, the algorithm 2T-INF suc-
ceeds in efficiently generating the SOA equivalent to the
target SORE when a representative sample of strings is pro-
vided. A set is representative w.r.t. a SORE when it con-
tains all corresponding 2-grams.

In the next subsection we give an algorithm rewrite to
translate SOAs into SOREs. The latter will then be adapted
in Section 6 to provide together with 2T-INF the inference
algorithm iDTD.

a

b c

d

e

Figure 1: The automaton GW corre-
sponding to IW , FW and SW for W =
{bacacdacde, cbacdbacde, abccaadcde}. Every edge is
assumed to be labeled by the label of the node it
points to.

a

b c

d

e

Figure 2: The automaton GW derived from W =
{bacacdacde, cbacdbacde}.



a

cb

d

e

−→
(1)

a

cb?

d

e

↓ (2)

(b?(a + c))+

d

e

←−
(3)

(a + c)

b?

d

e

Figure 3: An execution of rewrite on the example
automaton in Figure 1. Step (1) applies optional

to b. Step (2) applies disjunction to a and c. Step
(3) applies concatenation to b? and (a+ c). Two fur-
ther applications of concatenation lead to the result-
ing expression ((b?(a + c))+d)+e. Note that disjunc-

tion could also be applied to the original automaton
which would then result into the equivalent expres-
sion ((b?(a + c)+)+d)+e.

5. FROM SOA TO SORE
In this section we employ a graph-rewriting approach to

transform a SOA to a SORE. Our algorithm rewrite is re-
lated to the usual state-elimination algorithm transforming
an automaton to an RE (cf., e.g., [29]). However, in a trans-
formation step, we do not replace a state by introducing
edges but rather replace a suitable set of states by a single
state. Further, there are rewriting steps which only remove
edges.

Note that our rewrite algorithm never introduces the Kleene-
star as in r∗ but represent it like (r+)? or (r?)+. This is no
loss of generality as we can always rewrite the latter into the
former during a post-processing step.

Just like the classical algorithm, we use automata with
regular expressions as labels on the edges. In our setting,
these labels occur at the states. Again, the semantics can
be interpreted as if every edge carries the regular expres-
sion of the node the edge points to. Thus, a general-
ized finite automaton (GFA) is a RE(Σ)-labeled graph
G = (V, E, λ, sin, sout). Such an automaton is single oc-
currence (SO) iff λ(v) is an SORE for every v ∈ V and
different from ε, and every Σ-symbol occurs in at most one
λ(v). Clearly, each SOA is a single occurrence GFA. As ev-
ery node carries a unique regular expression, we can identify
a vertex v by its label r = λ(v).

Let G = (V, E, λ, sin, sout) be a GFA. The ε-closure G∗

of G is the graph (V, E∗), where E∗ contains (i) all edges
(r, r), where r = s+ or r = (s+)? and (ii) all edges (r, r′),
for which there is a path from r to r′ in G which only passes
(intermediate) nodes r′′ with ε ∈ L(r′′). The predecessor
set Pred(r) of a node r ∈ V contains all predecessors r′ of r
in G∗. Accordingly, we define the successor set of a node
r ∈ V denoted by Succ(r).

The rewrite system consists of four rules, corresponding
to the four operators used in (our) regular expressions. Two
of them replace state sets by states, the other two remove
edges. An example execution is shown in Figure 3.

1. disjunction. Precondition: W = {r1, . . . , rn} is a set
of states with n ≥ 2 such that every two nodes ri, rj

have the same predecessor and successor set. (Note,
that this implies that either (i) there are no edges in G
between r1, . . . , rn at all or (ii) that, for each i, j there
is an edge (ri, rj) in G∗.)
Action: Remove r1, . . . , rn, add a new node r = r1 +
· · · + rn, redirect all incoming and outgoing edges of
r1, . . . , rn to r. In case of (ii) add the edge (r, r).

2. concatenation. Precondition: W = {r1, . . . , rn} is
a maximal set of states, n ≥ 2, such that there is an
edge from every ri to ri+1, every node besides r1 has
only one incoming edge, and every node besides rn has
only one outgoing edge.
Action: Remove r1, . . . , rn, add a new node r = r1 · · · rn,
redirect all incoming edges of r1 and all outgoing edges
of rn to r. (In particular: if G has an edge (rn, r1) then
(r, r) is added.)

3. self-loop. Precondition: (r, r) ∈ E.
Action: Delete (r, r), relabel r by r+.

4. optional. Precondition: Every r′ ∈ Pred(r), Succ(r) ⊆
Succ(r′). (Thus: every node that can be reached through
r from a predecessor, can also be reached directly from
that predecessor.)
Action: Relabel r by r?, remove all edges (r′, r′′) such
that r′ ∈ Pred(r) and r′′ ∈ Succ(r) \ {r}.

The algorithm repeats the above rewrite rules until it ends
up with a GFA which exists of one node r in addition to the
source and the sink, with an edge from the source to r and
an edge from r to the sink and no other edges. We say
that such a GFA is final. Clearly, the language accepted
by a final GFA is the language denoted by r. We denote
such a GFA by Gr. The algorithm rewrite is given in
Algorithm 1.

Algorithm 1 rewrite

Input: an SOA G
Output: a SORE r such that L(r) = L(G)
1: while a rewrite rule can be applied do
2: let G′ be obtained from G by applying a rewrite rule
3: G := G′

4: if G is final then
5: return the corresponding regular expression
6: else
7: fail

Note that the complexity O(n4) in the next theorem is
not so bad as n actually refers to the number of different
element names in the sample, not to the total number or
total length of strings.

Theorem 1. Algorithm rewrite transforms an SOA A
into an equivalent SORE or reports that no such SORE ex-

ists. It works in time O(n4) where n is the size of A.

Proof. Clearly, the size of the resulting SORE is linear
in n. As every rewrite step introduces at least one opera-
tor and operators are never removed, there can be at most
O(n) rewrite steps. It therefore suffices to show that, for
each of the four rules, in time O(n3) it can be checked,
whether it is applicable and, if possible, the action can be
taken. The precondition of self-loop can be checked in
time O(n). For the precondition of optional, for each pair



of nodes, O(n) steps are sufficient. To test the precondi-
tion of concatenation, it has to be checked, for each node
r1, whether there are r2, . . . , rn fulfilling the requirements.
Clearly, O(n2) steps are sufficient. Finally, for disjunction,
it suffices to first find two nodes r1, r2 fulfilling the precondi-
tion. This is possible in O(n3) steps. Then in another O(n2)
it can be checked whether there are suitable r3, . . . , rn.

By inspecting the four rules, soundness of the algorithm
can be easily checked. We denote by G⇒ G′ that G′ is ob-
tained from G by applying a rewrite rule. Then⇒∗ denotes
the reflexive transitive closure of⇒. Thus, if G⇒∗ Gr then
L(G) = L(Gr) = L(r).

It remains to prove the completeness of the algorithm.

Claim 1. For every SOA G that is equivalent to a SORE

r, there is a SORE s such that G⇒∗ Gs and L(r) = L(s).

Let G and r be as stated. By applying the transforma-
tion rules (s+)+ → s+, s?? → s?, and (s?)+ → (s+)? to
all subexpressions of r we obtain a normalized equivalent
SORE s without superfluous operators. We say that a GFA
with only normalized SOREs is itself normalized. It can be
shown that, whenever a GFA G contains at least one normal-
ized SORE which is not an alphabet symbol, there is a GFA
G′, such that G′ ⇒ G. By induction we obtain a “backward
rewriting” of Gs ending in an SOA G′. As SOAs are unique
up to isomorphism, we can conclude that G ⇒∗ Gs, thus
proving the claim.

Claim 2. If G is a GFA equivalent to a SORE r, then

any order of rewrite steps leads to a SORE s.

We call a set W fulfilling the precondition of disjunction

or concatenation a candidate. Likewise, a node r fulfilling
the precondition of self-loop or optional is a candidate
node. Clearly, two candidates sets are always disjoint, in
particular, a state to which disjunction can be applied can
not be a candidate for concatenation. Furthermore, a
candidate node for optional can not be in a candidate set
for concatenation. Finally, a candidate for self-loop

is not suitable for concatenation. Nevertheless, a self-

loop candidate might be also a candidate for optional

and/or disjunction, and an optional-candidate might be
in a disjunction candidate set. However, applying self-

loop does not change the candidate status of a state for
the other two rules. Thus, the only non-trivial interference
between rules is that an optional-candidate might be in
a candidate set for disjunction. But as the application of
optional does not change the closure of G,it does not affect
the candidate sets for disjunction. To sum up, application
of a rule never prevents the application of another rule.

All above claims taken together prove the theorem. 2

6. INFERRING SORES: IDTD
Although rewrite is complete, the algorithm only suc-

ceeds if the input SOA has an equivalent SORE. Otherwise
it reports failure. In the context of incomplete data, this fail-
ure might be due to missing edges in the SOA GW inferred
from the set W of example strings by 2T-INF. In this section,
we thus present an algorithm, iDTD (infer DTD), which is
an adaptation of rewrite which attempts to produce an
SORE which describes a (as small as possible) superset of
L(GW ).

An outline of iDTD is shown in Algorithm 2. It runs re-

write until no more rewrite rule can be applied (Line 1).
Then it chooses one repair rule and restarts rewrite on the
result graph. We discuss the repair rules below.

Algorithm 2 iDTD

Input: SOA GW

Output: SORE rW such that, L(GW ) ⊆ L(rW )
1: G := rewrite(GW )
2: k := 1
3: while G is non-final do
4: while no repair rule can be applied do
5: k := k + 1
6: Apply one repair rule on G

7: G := rewrite(G)
8: rW is the RE of the final SOA G

One repair rule enables application of disjunction the
other enables optional. The application of the latter might
in turn enable concatenation. The repair rules have a
parameter k which allows to vary the degree of fuzziness.
They are as follows.

1. enable-disjunction: Action: Add, for some set W =
{r1, . . . , rn} a (minimal) set of edges such that Pred(ri) =
Pred(rj) and Succ(ri) = Succ(rj), for all i, j.
Preconditions: (a) for each i, j, Pred(ri) ∩ Pred(rj) 6=
∅, |Pred(ri) \ Pred(rj)| ≤ k, |Pred(ri) \ Pred(rj)| ≤ k
and the corresponding conditions hold for the succes-
sor sets, or (b) for every r ∈ W , W ⊆ Pred(r) and
W ⊆ Succ(r).

2. enable-optional: Action: Add, for some state r,
all missing edges from states in Pred(r) to states in
Succ(r).
Preconditions: (a) there is at least one edge from a
predecessor of r to a successor of r, or (b) Pred(r) =
{r′}, for some r′ and |Succ(r′) \ {r, r′}| ≤ k

Note that after applying enable-optional, r is a candi-
date for optional. The application of optional will then
remove all edges introduced by enable-optional. In case
(a), at least one more edge is removed than inserted, in case
(b) r, r′ become candidates for concatenation.

As an example, we consider the automaton of Figure 2.
None of the rules of rewrite can be applied to it. Neverthe-
less, {a, c} fulfil Precondition (b) of enable-disjunction.
The minimal set of edges that need to be added to ensure
Pred(a) = Pred(c) and Succ(a) = Succ(c) are the ones that
are missing when comparing to Figure 1. So, from now on
the rules of rewrite can be applied.

Theorem 2. For an SOA A, iDTD always produces a

SORE r with L(A) ⊆ L(r).

Because of efficiency reasons, our implementation consid-
ers rule 1(a) only for n = 2. Further, we set k = 2. Rule 1
and 2 are tried in this order, the latter only when the former
can not be applied. Although, in our experiments iDTD al-
ways produced a SORE for these values of n and k, it is
possible, for each fixed k and n, to construct SOAs where
iDTD does not succeed. The unrestricted variant of iDTD
always succeeds.



7. INFERRING CHARES: CRX
In this section, we present the algorithm crx for the ex-

traction of chain regular expressions (CHAREs) as defined
in the introduction. We first present the core idea of crx

by means of an example. This idea is based on classify-
ing positional relationships between occurrences of alphabet
symbols in the input strings. Indeed, as every CHARE is
also single occurrence, this means that every occurrence of
an alphabet symbol in a string has to be generated by the
same factor in the target CHARE.

Example 1. Consider the input strings u = abd, v =
bcdee, and w = cade. Then, a occurs before b in u, b occurs

before c in v, and c occurs before a in w. This means that a,

b, and c belong to the same factor which can only be (a+ b+
c)+ or (a + b + c)∗. As in every string a symbol of {a, b, c}
is present we take the factor (a + b + c)+. Similarly, d and

e form a factor by themselves. Whereas d occurs in every

string once and is therefore presented by the factor d, e can

occur zero, one or more times and is thus represented by

the factor e∗. As a, b, c always occur before d, which in turn

always occurs before the e’s, the derived CHARE is then

(a + b + c)+de∗.

So, in brief, crx computes factors, orders them and uses
that order to generate a CHARE. Of course, the order of
factors is not necessarily linear. In that case, a linear order
can be constructed by making classes optional. Some care
has to be taken to generate factors which are disjunctions
without repetitions.

So, a set of strings induces a pre-order on the alphabet.
We define this order formally: for a, b ∈ Σ, a→W b iff there
are a string w = w1 · · ·wn ∈ W and some i such that wi = a
and wi+1 = b.

Example 2. Let W = {abccde, cccad, bfegg, bfehi}. The

graph induced by →W is as follows.

a

b

c d e

f

g

h i

We define the relation ≈W⊆ Σ × Σ as follows: a ≈W

b iff a →∗
W b and b →∗

W a, where →∗
W is the reflexive,

transitive closure of →W . Clearly, ≈W is an equivalence
relation. Let ΓW be the set of equivalence classes of ≈W .
We write equivalence classes in the form [a1, . . . , an]. A
node of the form [a] is called a singleton. Let �W be the
partial order on ΓW which is induced by →∗

W . For every
�W , we denote by HW its Hasse diagram, i.e., the graph of
�W without transitive edges. The successor set of a node γ
in HW , denoted by succ(γ), is simply the set of nodes that
can be reached by a single edge from γ. Conversely, the
predecessor set of a node γ, denoted by pred(γ), is the set
of nodes from which γ can be reached by a single edge.

Example 3. The Hasse diagram HW is as follows.

[a, b, c]

[f ]

[d]

[e]

[h] [i]

[g]

Note that succ([d]) = succ([f ]) = {[e]} and pred([d]) =
pred([f ]) = {[a, b, c]}. 2

Algorithm 3 crx

Input: set of strings W

Output: CHARE rW such that W ⊆ L(rW )
1: Compute the set ΓW of equivalence classes of ≈W

2: while a maximal set of singleton nodes γ1, . . . , γℓ such
that pred(γ1) = · · · = pred(γℓ) and succ(γ1) = · · · =
succ(γℓ) exists do

3: Replace γ1, . . . , γℓ by γ := ∪ℓ
j=1γj , redirect all incom-

ing and outgoing edges of the γi to γ
4: Compute a topological sort γ1, . . . , γk of the nodes
5: for all i ∈ {1, . . . , k} (γi = [a1, . . . , an]) do
6: if every string in W contains exactly one occurrence

of a symbol in {a1, . . . , an} then
7: r(γi) = (a1 + · · ·+ an)
8: else if every string in W contains at most one occur-

rence of a symbol in {a1, . . . , an} then
9: r(γi) = (a1 + · · ·+ an)?

10: else if every string in W contains at least one of
a1, . . . , an and there is a string that contains at least
two occurrences of symbols then

11: r(γi) = (a1 + · · ·+ an)+

12: else
13: r(γi) = (a1 + · · ·+ an)∗

The crx algorithm is shown in Algorithm 3 an illustrated
in the following example.

Example 4. Step 3 can be applied to [d] and [f ] resulting

in:

[a, b, c] [d, f ] [e]

[g]

[h] [i]

Although pred([g]) = pred([h]), step 3 cannot be applied as

succ([g]) 6= succ([h]). Similarly [g] and [i] share successors,

i.e. ∅, but have different predecessors. A possible topolog-

ical sort is [a, b, c], [d, f ], [e], [g], [h], [i]. Since at least one

of a, b and c occurs once or more in every string of W ,

r([a, b, c]) = (a + b + c)+ is the first factor; the second factor

is (d + f) since either d or f occurs exactly once; the factor

derived from [e] is e? since W contains a string without e
and similarly for those of [h], [i]. Finally, [g] occurs multiple

times in a single string. Hence the simple regular expression

derived by the algorithm is (a + b + c)+ ·(d+f) ·e?·g∗ ·h? ·i?
which completes step 3. 2

Note that the order of the factors in the regular expres-
sion depends on the topological sort (cf., e.g., genetics in
Table 1). It follows by inspection of the algorithm that the
generated rW is a CHARE.

Theorem 3. Given a set of strings W , crx computes a

CHARE rW such that W ⊆ L(rW ).

On the class of CHAREs, crx is complete:

Theorem 4. For each CHARE r there is a set of strings

Wr, such that crx infers rW from Wr with L(rW ) = L(r).

The experiments in Section 8.2 show that the number of
example strings in Wr needed in practice is very small.

Actually, the prime feature that makes crx much more
robust than iDTD for very small data sets is its strong gen-
eralization ability. Indeed, consider an expression of the



form (a1 + · · ·+ an)∗. While rewrite requires all n2 sub-
strings of the form aiaj for i, j ∈ {1, . . . , n} to be present,
iDTD also still requires around n2 − n substrings. For crx,
the set {a1a2, a2a3, . . . , an−1an, ana1} of size O(n) will suf-
fice. This point is illustrated in practice by example3 and
example4 in Table 2 where n has a value of 41 and 56 re-
spectively. Experiments illustrate that only 400≪ 1682 and
500 ≪ 3136 length 2 substrings are needed in the samples
for crx to learn example3 and example4, respectively.

The following theorem shows that crx is optimal within
CHAREs when the partial order ΓW is in fact a linear order:

Theorem 5. For every set W , if ΓW is linearly ordered

then for every CHARE r such that W ⊆ L(r) and L(r) ⊆
L(rW ), we have rW = r, i.e. rW is syntactically equal to r

up to commutativity of +.

However, a simple example shows that this property does
not hold when the partial order is not linear. Consider W =
{abc, ade, abe} that yields rW = a ·b? ·d? ·c? ·e? whereas the
simple regular expression a ·(b+d) ·(c+e) is better balanced
between specificity and generalization.

crx can be efficiently executed on very large datasets by
only maintaining �W and the multiplicities of occurrences
of Σ-symbols in strings (needed for steps 6–13). From this
representation, steps 2–5 can be executed. Hence, it is not
necessary that the entire XML data resides in main memory.
The complexity of the algorithm is O(m + n3), where m is
the size of the XML data and n the number of alphabet
symbols.

8. EXPERIMENTAL EVALUATION
We assess the quality of our algorithms on real-world cor-

pora and DTDs, and compare it with that of xtract [24]
and Trang [46]. Next, we compare the generalization fac-
tor of iDTD and crx by investigating how many example
strings are needed to derive an optimal expression. Finally,
we discuss the time performance of the algorithms.

8.1 Real-world examples
The number of publicly available XML corpora is rather

limited. We employed the XML Data repository maintained
by Miklau [34] as a testbed. Unfortunately, most of the
listed XML corpora are either very small, lack a DTD or
contain one with only trivial regular expressions. Neverthe-
less, two of them prove to be quite interesting for our ex-
periments. Specifically, we compared xtract, iDTD, and
crx on the Protein Sequence Database and the Mondial cor-
pus [34], a database of information on various countries. As
no real-world data could be obtained for SOREs that are not
CHAREs, we generated our own XML data for a number of
real world DTDs considered in [10] containing a number of
sophisticated REs outside the class of CHAREs.

Real-world data.Table 1 lists all non-trivial element def-
initions6 in the above mentioned DTDs together with the
results derived by the inference algorithms iDTD, crx and
xtract. It is interesting to note that only the regular ex-
pression for authors is not a CHARE. Moreover, no ele-
ments are repeated in any of the definitions. This should

6It should be noted that the examples from the Mondial
corpus are not valid according to their DTD, so for the city
element only valid elements were used as training examples.

not come as a surprise given the observations discussed in
the introduction on the content models occurring in practice.
The regular expression derived by the xtract algorithm is
shown whenever it fitted the table, otherwise the number
of tokens it consists of is listed. For better readability the
actual output of xtract has been simplified by replacing
expressions such as (ai + ε) by ai?.

It can be verified that all regular expressions in Table 1
are learned quite satisfactory by iDTD and crx w.r.t. the
examples extracted from the XML corpus. The numbers in
the first column refer to the number of used example strings.
iDTD and crx always produce the same result except for
authors where crx cannot derive the target expression as
it is not a CHARE. We note that no corpus formed a rep-
resentative sample. That is, in every single case iDTD had
to apply repair rules. The expressions in the table indicate
that the result of these repairs are satisfactory. For a few ex-
pressions, e.g., ProteinE(ntry), refinfo and genetics, the
expressions produced by crx and iDTD are more strict than
the corresponding one in the DTD. This is due to the data
present in the sample. For instance, for genetics, no a11

element occurs in the sample so it obviously cannot be part
of the derived expression. The element refinfo illustrates
that a3 and a4 are mutually exclusive in the sample and that
a8 is never followed by a9. Inspecting the original DTD
illustrates the underlying semantics: (authors, citation,
volume?, month?, year, pages?, (title | description)?,
xrefs?). Indeed, volume is used in the context of a jour-
nal, while month is used for a conference publication. Apart
from the element authors, xtract either produces a sub-
optimal expression or no expression at all. For instance,
xtract crashes on the ProteinE(ntry) sample due to ex-
cessive memory consumption (more than 1 GB of RAM).
Reducing the size of the sample to approximately 800 unique
examples yields a complex expression of 185 token.

Real-world regular expressions.Table 2 lists the results
of the algorithms on a number of more sophisticated reg-
ular expressions extracted from real-world DTDs discussed
in [10]. As no data was available, we randomly generated
some using ToXgene [5], taking care that all relevant exam-
ples where present to ensure the target expression could be
learned. Again, we list the number of used strings in the first
column. As some of these numbers might seem artificially
large, we note that, for instance, the SOA corresponding
to example3 already contains 1897 edges. Hence, a random
data set of 5741 strings is not unreasonably large. Note that
only the first three expressions in Table 2 are SOREs, none
of them are CHAREs. The table shows clearly that crx

yields fairly good and concise super-approximations to the
original expressions. In some cases, the results produced by
iDTD are more precise. For xtract, the size of the sample
had to be limited to 300–500 in order to avoid a crash. As
can be seen from the table, xtract performed excellently
on the first example, but failed to generate an expression
that fitted the table in all other cases on all the sample sets
we tried.

Trang. We ran Trang [46] on the XML data discussed in
this section. In all but one case, Trang produced exactly the
same output as crx, with a notable exception: for example1
Trang’s output depends on the order in which the examples
are presented, yielding either a1

∗a2?a3
∗ or a1

+ + (a2?a3
+).



Element Original DTD
Sample Result of crx/iDTD
size Result of xtract

ProteinE. a1a2a3a4
∗a5

∗a6
∗a7

∗a8
∗a9?a10?a11

∗a12a13

2458 a1a2a3a4
+a5

∗a6
∗a7

∗a8
∗a9?a10?a11

∗a12a13

843 an expression of 185 tokens

organism a1a2?a3a4?a5
∗

9 a1a2?a3a4?a5
∗

9 a1((a2a3a4?+a3a4)a5?+a3a5
∗)

reference a1a2
∗a3

∗a4
∗

45 a1a2
∗a3

∗a4
∗

45 a1(a2
∗(a4

∗+a3
∗)+a2a3

∗a4a4+a3
∗a4

∗)

refinfo a1a2a3?a4?a5a6?(a7+a8)?a9?
10 a1a2(a3+a4)?a5a6?a7?a9?a8?
10 a1a2((a3a5a6a7?+a4a5)a9?+a5(a7+a8)?+a4a5a8)

authors a1
++(a2a3?)

54 a1
∗a2?a3? / a1

++(a2a3)
54 a1

∗+a2a3

accinfo a1a2
∗a3

∗a4?a5?a6?a7
∗

124 a1a2
∗a3

+a4?a5?a6?a7
∗

124 an expression of 97 tokens
genetics a1

∗a2?a3?a4?a5?a6?a7?a8?a9?a10?a11
∗a12

∗

219 a1
∗a2?a3?a4?a5?a6?a7?a8?a9?a10?a12

∗

219 an expression of 329 tokens
function a1?a2

∗a3
∗

26 a1?a2
∗a3

∗

26 (a1(a2?a2?a3
∗+a2

∗(a3a3)
∗+a2a2a2a3)+a2(a2a3

∗+a3
∗))

city a1a2
∗a3

∗

9 a1a2
∗a3

∗

9 a1(a2
∗a3a3?+a2(a3

∗+a2))?

Table 1: Results of iDTD, crx and xtract on
DTDs and sample data from the Protein Description
Database and the Mondial corpora. The left column
gives element names, sample size for crx/iDTD and
sample size for xtract, respectively. The right col-
umn lists original DTD, inferred DTD by crx/iDTD
and the result of xtract, in that order.

The former is the same output as crx, the latter is the in-
tended RE that cannot be derived by crx as it is outside
the class of CHAREs. This inconsistency in Trang’s output
casts some doubt on its correctness and underscores the need
for a formal model as the cornerstone of an implementation.
Indeed, there is no paper or manual available describing the
machinery underlying Trang. A look at the Java-code in-
dicates that Trang is related to but different from crx: it
uses 2T-INF to construct an automaton, eliminates cycles
by merging all nodes in the same strongly connected compo-
nent, and then transforms the obtained DAG into a regular
expression. However, no target class of REs for which Trang
is complete, as is the case for crx, is specified. As Trang is
similar to crx, it is outperformed by iDTD.

8.2 Generalization
We experimentally address the question of how many ex-

ample strings are needed to learn a regular expression with
crx and iDTD. We do not address xtract as Table 1 al-
ready shows that even for small data sets xtract produces
suboptimal results. We use the following approach: we start
by generating a representative sample set for a regular ex-
pression. That is, when 2T-INF derives the corresponding
SOA no edges are missing. Next, we compute from this data
the target expressions rcrx for crx and riDTD for iDTD.
Then, for both rcrx and riDTD, the critical size, i.e., the
smallest c such that from all tested samples of size c the tar-
get expression can be derived. This is done by generating
200 subsamples using reservoir sampling for each size and

Element Original DTD
Result of crx

Sample Result of iDTD
size Result of xtract

example1 a1
+ + (a2?a3

+)
48 a1

∗a2?a3
∗

48 a1
+ + (a2?a3

+)
48 a1

∗ + (a2?a3
∗)

example2 (a1a2?a3?)?a4?(a5 + · · · + a18)∗

2210 a1?a2?a3?a4?(a5 + · · · + a18)∗

2210 (a1a2?a3?)?a4?(a5 + · · · + a18)∗

300 an expression of 252 tokens

example3 a1?(a2a3?)?(a4 + · · · + a44)
∗a45

+

5741 a1?a2?a3?(a4 + · · · + a44)∗a45
+

5741 a1?(a2a3?)?(a4 + · · · + a44)
∗a45

+

400 an expression of 142 tokens

example4 a1?a2a3?a4?(a5
+ + ((a6 + · · · + a61)+a5

∗))
10000 a1?a2a3?a4?(a6 + · · · + a61)∗a5

∗

10000 a1?a2a3?a4?(a6 + · · · + a61)∗a5
∗

500 an expression of 185 tokens

example5 a1(a2 + a3)∗(a4(a2 + a3 + a5)
∗)∗

1281 a1(a2 + a3 + a4 + a5)∗

1281 a1((a2 + a3 + a4)
+a5

∗)
∗

500 an expression of 85 tokens

Table 2: Results of iDTD, crx and xtract on non-
simple real world DTDs and generated data. The
left column gives element names, sample size for
crx, iDTD and xtract, respectively. The right col-
umn lists original DTD, inferred DTD by crx, by
iDTD and the result of xtract, in that order.

counting the number of those subsamples from which the
target expression is successfully obtained. It is ensured that
the subsamples contain all alphabet symbols of the target
expressions for fair comparisons. For samples smaller than
this critical size, the relative frequency of cases where the
target expression can be successfully recovered decreases as
is shown in Figure 4 for the expressions example2, example4,

and
`

a1 (a2 + · · ·+ a12)
+ (a13 + a14)

´+
. (‡)

The plots highlight crx’ strong generalization abilities:
crx needs far fewer example strings than iDTD to derive
an optimal RE (depending on the example 2 to 10 times
less). Note however that crx is a super-approximation and
that iDTD derives an approximation that is more precise.
The plots also clearly illustrate that iDTD is able to infer
riDTD in cases where rewrite alone fails, emphasizing the
effectiveness of the repair rules.

8.3 Performance
The performance of iDTD is adequate to deal with large

data sets. Example4 with 61 symbols in Table 2 is derived
from 10000 example strings in 7 seconds while crx only
needs 3.2 seconds. More typical expressions of about 10
symbols derived from a few hundred examples take approxi-
mately a second. These figures include the time to initialize
a Java Virtual Machine while the tests are done on a 2.5 GHz
P4 with 512 MB of RAM. Trang slightly outperforms crx

thanks to very efficient XML parsing. We did not make a de-
tailed comparison with xtract for the reason that xtract

can not handle data sets with more than 1000 strings.

9. EXTENSIONS
Incremental computation. Especially in the setting of
sparse data when over time more XML data gets gener-
ated, for instance, by answers to queries or results of calls to
web services, it is desirable to update an already generated
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Figure 4: Fraction of runs resulting in target ex-
pression example2 (top), example4 (middle), and ex-
pression (‡) (bottom) as a function of the sample
size for each of crx (diamonds/dotted,green), iDTD
(squares/dashed,red) and rewrite (circles/solid,
black).

schema based on the newly arrived XML data only. Such an
approach is possible for both iDTD and crx: as both algo-
rithms make use of an internal representation (automata or
partial orders), we only need to update that representation.
So, for every element name we store the corresponding in-
ternal graph representation, which is only quadratic in the
number of different element names, and we can forget about
the XML data that generated it. Actually, for crx, to assign
the qualifiers ?, + and ∗, we also need to remember for each
element name how it occurs (always exactly once, always
more than once,. . . ), but this is only a constant amount of
information.

Noise. Like any real world data, XML data can contain
noise. For instance, in XHTML the definition of a para-
graph <P> element is a quite elaborate repeated disjunction
(a1 + · · ·+ ak)∗ where k = 41. Nevertheless, in the XHTML
documents we examined (with a total number of more than
30000 occurrences of paragraph elements), a dozen of dis-
allowed elements appeared (like table, h1, h2, . . . ) albeit
in small numbers: on average in around 10 strings. An ob-
vious way in dealing with noise is to consider the support
of each element name and to simply disregard that element
when the latter is less then a given threshold. For iDTD, a

more sophisticated approach can be taken where a support
is associated to each edge of the SOA generated by 2T+INF.
As long as iDTD can apply the unmodified rewrite rewrite
rules these numbers are ignored, from the moment rewrite

get stuck and repair rules should be considered, it is checked
whether removing some of the edges with low support allows
to advance rewrite.

Numerical predicates. An immediate drawback of SOREs
is that they can not count. For instance, they can not ex-
press aabb+ specifying that a string should start with two a’s
followed by any number of b’s larger than 1. XML Schema
even uses dedicated attributes for expressing the desired
number of repetitions:

<xs:sequence>
<xs:element name="a" minOccurs=2 maxOccurs=2/>
<xs:element name="b" minOccurs=2 maxOccurs="unbounded"/>

</xs:sequence>

In the same way, REs can be extended by numerical pred-
icates: when r is an RE and i is a natural number then r≥i

and r=i are also REs. They are semantically equivalent to
rir∗ and ri, respectively, where ri = r · r · · · · · r (i times).
The above expression can then be expressed as a=2b≥2. To
both iDTD and crx a post-processing step can be added
that rewrites + and ∗ to numerical values based on exact
occurrences of element names in the XML data.

Generation of XSDs. The study in [9] shows that 85%
of XSDs are structurally equivalent to a DTD. Generating
such XSDs is merely a matter of using the correct syntax.
Improvements to the derivation of built-in data types can be
made by introducing heuristics to recognize times or dates,
integers, doubles, nmtokens and strings hence extending the
implementation for DTDs that was done for crx. Extending
schema derivation to XSDs with more expressive power than
DTDs is the topic of current research.

10. DISCUSSION
We introduced two novel algorithms iDTD and crx for

the inference of concise DTDs. We show that the quality
of inferred DTDs on real-world and synthetic data sets out-
performs those returned by xtract where crx is similar
to Trang. crx’ generalization ability makes it highly quali-
fied in dealing with very small data sets. Further, iDTD and
crx always infer succinct DTDs by definition which can eas-
ily be interpreted by humans. Of independent interest, we
introduced a new algorithm to generate REs from automata.
In future work, we plan to investigate the inference of XML
Schema Definitions, which by [9] can be abstracted by DTDs
with vertical regular patterns.

Acknowledgments..We thank the authors of [24], for mak-
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