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Abstract. Two distinct and parallel research communities have
been working along the lines of the Model-Based Diagnosis ap-
proach: the FDI community and the DX community that have
evolved in the fields of Automatic Control and Artificial Intelligence,
respectively. This paper clarifies and links the concepts that under-
lie the FDI analytical redundancy approach and the DX logical ap-
proach. The formal match of the two approaches is demonstrated and
the proof of their equivalence is provided under various assumptions.

1 Introduction

Diagnosis is an active research topic which can be approached from
different perspectives according to the type of knowledge available.
The so-called Model-Based Diagnosis (MBD) approach rests on the
use of an explicit model of the system to be diagnosed. Two dis-
tinct and parallel research communities have been using the MBD
approach. The Fault Detection and Isolation (FDI) community uses
techniques from control theory and statistical analysis. It has now
reached a mature state and a number of very good surveys exist in
this field [9, 6, 8]. The DX community emerged more recently, with
foundations in the fields of Computer Science and Artificial Intelli-
gence [11, 5, 7].

The goals of the IMALAIA group are to agree upon a common
FDI/DX terminology, to identify similarities and complementarities
in the FDI and DX methods, and to contribute towards a unifying
framework, thus taking advantage of the synergy of techniques from
the two communities.

This paper clarifies the link between parity equations or analytical
redundancy relations (ARR for short) and conflicts by introducing
the notion of potential conflicts or ARR supports. The formal match
of the two approaches is thus shown. The FDI and DX approaches
used for fault localization are then analyzed from the two perspec-
tives. The exoneration and no-compensation assumptions which are
implicit in FDI are made clear and the theoretical proof of equiv-
alence of the two approaches is included, according to adopted as-
sumptions. For the sake of clarity, the study is carried out in a pure
consistency-based framework, i.e. without fault models.

The example that has been chosen to support the comparative anal-
ysis throughout the paper is the well-known system from [3] com-
posed of three multipliers M1, M2, M3 and two adders A1, A2 (see
Figure 1). This choice and the fact that the system is assumed to op-
erate in an ideal non-noisy and non-disturbed environment has been
made on purpose to focus on the main features of each approach,
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without being overburdened neither with modeling details, nor with
detection criteria. Let us emphasize that this discrete static example
has been chosen for sake of clarity, but that the conclusions stemming
from the comparison are quite general. In particular both approaches
can deal with continuous dynamic systems by basing the methods
on differential or recurrent models. On the other side, the problems
related to temporal diagnosis [1] involve many open issues in both
approaches and are only evoked in the final discussion.
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Figure 1. The system

The paper is organized as follows. Sections 2 and 3 present the
FDI analytical redundancy approach and the DX logical approach,
respectively. Section 4 proposes a unified representation and proves
the equivalence of the two approaches. This proof is given under spe-
cific assumptions corresponding to two classical cases which are the
cases by default assumed in FDI and DX respectively. The general
case and a more thorough analysis can be found in the long paper
[2]. Finally, Section 5 discusses the results and outlines several inter-
esting directions for future investigation.

2 Redundancy-based diagnosis: the FDI approach

The behavioral model BM of a system is derived from its structure,
which shows the links between its components (structural model),
and the behavior model of each component.

Definition 2.1 The system model SM is defined as the behavioral
model BM, i.e. the set of relations defining the system behavior, to-
gether with the observation model OM, i.e. the set of relations be-
tween the variables X of the system and the observed variables O
acquired by the sensors.

Example: Elementary componentsare the adders A1, A2, the multipliers M1,
M2, M3 together with the set of sensors. The system model SM is hence given
by the following:
BM: RM1: x = a� c RM2: y = b� d

RM3: z = c� e RA1: f = x + y RA2: g = y + z

OM: RSa: a = aobs RSb: b =bobs RSc: c = cobs
RSd: d = dobs RSe: e = eobs RSf: f = fobs RSg: g = gobs



Definition 2.2 A diagnosis problem is defined by the system model
SM, a set of observations OBS assigning values to observed vari-
ables, and a set of faults F 2.

Example: OBS = faobs = 2, bobs = 2, cobs = 3, dobs = 3, eobs = 2, f obs
= 10, gobs = 12g. The set of single faults is SF = fFA1, FA2, FM1, FM2,
FM3g and the set of faults is F = 2SF.

Definition 2.3 The system structure is defined through a binary appli-
cation s: SM � V ! f0,1g, where V = X

S
O is the set of variables

and s(rel,v) = 1 if and only if v appears in relation rel.

Definition 2.4 An analytical redundancyrelation (ARR) is a relation
entailed by SM (and the components whose behavior model is used
by this entailment are said to be involved in the ARR) which contains
only observed variables, and which can therefore be evaluated from
OBS. It is noted r = 0, where r is called the residual of the ARR. For
a given OBS, the instantiation of the residual is noted val(r,OBS),
abbreviated as val(r) when not ambiguous. Thus, val(r,OBS)=0 if the
observations satisfy the ARR.

ARRs can be obtained from the system model by eliminating the
unknown variables. This problem can be formalized in a graph the-
oretical framework, which comes down to the well-known problem
of finding a complete matching w.r.t. the unknown variables X in the
bipartite graph whose incidence matrix is the matrix associated to the
application s. In this system structure matrix representation, a com-
plete matching appears as a selection of one and only one entry per
column, corresponding to an unknown variable, and per row, corre-
sponding to a SM relation.

Example: A complete matching leads to the following ARRs:
ARR1: r1 = 0 where r1 � fobs – aobs� cobs – bobs � dobs

ARR2: r2 = 0 where r2 � gobs – bobs� dobs – cobs� eobs
If we assume that the sensors are not faulty, the ARRs can be rewritten as:
ARR1: f – (a� c + b� d) = 0 ARR2: g – (b� d + c� e) = 0

Let us call the ARRs that are obtained from a given complete match-
ing elementary ARRs. Given a set of elementary ARRs, additional
redundancy relations can be obtained by combining the elementary
ones.

Example: A third redundancy relation ARR3: f – g – a� c + c� e = 0 can
be obtained. The components involved in ARR3 are A1, A2, M1, M3. Notice
that it is not the union of the components involved in ARR1 (A1, M1, M2)
and in ARR2 (A2, M2, M3).

Besides analytical redundancy relations, a fundamental concept in
the FDI approach is that of fault signature.

Definition 2.5 Given a set R = fARR1, . . . , ARRng of n ARRs and
a set F = fF1, . . . ,Fmg of m faults, the signature of a fault Fj is given
by the binary vector FSj = [s1j, . . . , snj]T in which sij is given by:

(ARRi, Fj) 7! sij = 1 if some components involved in Fj are in-
volved in ARRi

7! sij = 0 otherwise.

The interpretation of some sij being 0 is that the occurrence of the
fault Fj does not affect ARRi, meaning that val(ri) = 0. The interpre-
tation of some sij being equal to 1 is that the occurrence of the fault
Fj is expected to affect ARRi, meaning that val(ri) is now expected
to be different from 0.

Definition 2.6 Given a set R of n ARRs, the signatures of a set F of
m faults all put together constitute the so-called signature matrix.

2 In order to facilitate the comparison with DX, and without loss of generality,
a fault can be seen as a set of faulty components.

In our example, the signature matrix for the set of single faults cor-
responding to components A1, A2, M1, M2 and M3 is given by:

FA1 FA2 FM1 FM2 FM3
ARR1 1 0 1 1 0
ARR2 0 1 0 1 1
ARR3 1 1 1 0 1

The case of multiple faults can be dealt with by expanding the num-
ber of columns of the signature matrix, leading to a total number of
2m–1 columns with m the number of single faults, if all the possible
multiple faults are considered. Let FJ be a multiple fault correspond-
ing to the occurrence of k single faults Fj1, . . . , Fjk, then the entries
of the signature vector of FJ are given by:

sij = 0 if si j1 = . . . = si jk = 0
sij = 1 if 9l 1� l � k such that si jl = 1

Example: Extending the matrix above, the 26 additional columns have a
[1, 1, 1]T signature, except for FfA1, M1g which has a [1, 0, 1]T signature,

and for FfA2, M3g which has a [0, 1, 1]T signature.

The diagnostic sets in the FDI approach are given in terms of
the faults accounted for in the signature matrix. The generation of
the diagnostic sets is based on a column interpretation of the signa-
ture matrix and consists in comparing the observation signature with
the fault signatures. This comparison is stated as a decision-making
problem.

Definition 2.7 The signature of an observation OBS is a binary vector
OS = [OS1, . . . , OSn]T where OSi = 0 iff val(ri,OBS) = 0.

The first step (the detection task) is to build the observation signa-
ture, i.e. to decide whether a residual value is zero or not, in the pres-
ence of noises and disturbances. This problem has been thoroughly
investigated within the FDI community. It is generally stated as a sta-
tistical decision-making problem, making use of the available noise
and disturbance models.

Example: With OBS as above, OS = [1, 0, 1]T. In the case f = 10 and g = 10,
OS = [1, 1, 0]T and in the case f = 10 and g = 14, OS = [1, 1, 1]T.

The second step (the isolation task) is to actually compare the obser-
vation signature with the fault signatures. A solution to this decision-
making problem is to define a consistency criterion as follows:

Definition 2.8 An observation signature OS = [OS1, . . . , OSn]T is
consistent with a fault signature FSj = [s1j,. . . ,snj]T if and only if
OSi = sij for all i.

Definition 2.9 The diagnostic sets are given by the faults whose sig-
natures are consistent with the observation signature.

Example: The diagnostic sets got for the following observation signatures
are:
OS = [1, 0, 1]T, FA1 or FM1 or FfA1, M1g

OS = [1, 1, 0]T, FM2
OS = [1, 1, 1]T, any multiple fault except FfA1, M1g and FfA2, M3g

Note that the FDI community generally uses a similarity-based con-
sistency criterion arising from the definition of a distance rather than
the equality-based criterion defined above.

3 Logical-based diagnosis: the DX approach

Reiter [11] proposed a logical theory of diagnosis. This approach,
also referred to as consistency-based diagnosis, was later extended



and formalized in [4]. In the following we refer to the basic defi-
nitions of [11] without considering posterior extensions and refine-
ments. The description of the behavior of the system is component-
oriented and rests on first-order logic.

Definition 3.1 A system model is a pair (SD, COMPS) where SD, the
system description, is a set of first-order logic formulas with equality
and COMPS, the components of the system, is a finite set of con-
stants. SD uses a distinguished predicate AB, interpreted to mean
abnormal. :AB(c) with c belonging to COMPS hence describes the
case where the component c is behaving correctly.

Example: COMPS = fA1, A2, M1, M2, M3g
SD = f ADD(x) ^ :AB(x)) Output(x) = Input1(x) + Input2(x),
MULT(x) ^:AB(x)) Output(x) = Input1(x)� Input2(x),
ADD(A1), ADD(A2), MULT(M1), MULT(M2), MULT(M3),
Output(M1) = Input1(A1), Output(M2) = Input2(A1),
Output(M2) = Input1(A2), Output(M3) = Input2(A2),
Input2(M1) = Input1(M3) g

Let us note one point which differs somewhat from the description of
the system in the FDI approach: with the distinguished predicate AB
it is possible to make explicit the fact that a formula in SD describes
the normal behavior of a given component. The description can easily
be extended to include faulty behaviors.

A diagnosis problem results from the discrepancy between the nor-
mal behavior of a system as described by the system model and a set
of observations.

Definition 3.2 A set of observations OBS is a set of first-order for-
mulas.

Example: An example of observations for our system is OBS = fInput1(M1)
= 2, Input2(M1) = 3, Input1(M2) = 2, Input2(M2) = 3, Input2(M3) = 2, Out-
put(A1) = 10, Output(A2) = 12g.

Definition 3.3 A diagnosis problem is a triple (SD, COMPS, OBS)
where (SD, COMPS) is a system model and OBS a set of observa-
tions.

A diagnosis is a conjecture that certain components of the system are
behaving abnormally. This conjecture has to be consistent with what
is known about the system and with the observations.

Definition 3.4 A diagnosis for (SD, COMPS, OBS) is a set of com-
ponents � � COMPS such that SD

S
OBS

S
fAB(c) j c 2 �gS

f:AB(c) j c 2 COMPS – �g is satisfiable. A minimal diagnosis
is a diagnosis� such that 8�’ ��, �’ is not a diagnosis.

Following the principle of parsimony, minimal diagnoses are often
the preferred ones. For the sake of simplicity, we will limit ourselves
to minimal diagnoses. A method based upon the concept of conflict
set has been proposed in [11] to generate minimal diagnoses and is
at the basis of most of implemented DX algorithms.

Definition 3.5 An R-conflict for (SD, COMPS, OBS) is a set of
components C = fc1, . . . , ckg � COMPS such that SD

S
OBSS

f:AB(c) j c 2 Cg is inconsistent. A minimal R-conflict is an R-
conflict which does not include any R-conflict.

An R-conflict can be interpreted as follows: one at least of the com-
ponents in the R-conflict is faulty in order to account for the obser-
vations.

Example: The system with the observations as seen above has the follow-
ing minimal R-conflicts: fA1, M1, M2g and fA1, A2, M1, M3g due to the
abnormal value of 10 for f. In the case f = 10 and g = 10, the two minimal

R-conflicts are: fA1, M1, M2g and fA2, M2, M3g. In the case f = 10 and g

= 14, there are three minimal R-conflicts: fA1, M1, M2g, fA2, M2, M3g and
fA1, A2, M1, M3g.

Using these minimal R-conflicts, it is possible to give a characteri-
zation of minimal diagnoses which provides a basis for computing
them [11].

Proposition 3.1� is a minimal diagnosis for (SD, COMPS, OBS) if
and only if� is a minimal hitting set 3 for the collection of (minimal)
R-conflicts for (SD, COMPS, OBS).

Example: With f = 10 and g = 12, there are four minimal diagnoses given by
the minimal hitting sets for ffA1, M1, M2g, fA1, A2, M1, M3ggwhich are:
�1 = fA1g, �2 = fM1g, �3 = fA2, M2g, �4 = fM2, M3g. With f = 10
and g = 10, there are five minimal diagnoses given by the minimal hitting sets
for ffA1, M1, M2g, fA2, M2, M3gg which are: �1 = fM2g, �2 = fA1,
A2g, �3 = fA1, M3g,�4 = fA2, M1g,�5 = fM1, M3g. With f = 10 and g

= 14, there are eight minimal diagnoses given by the minimal hitting sets for
ffA1, M1, M2g, fA2, M2, M3g, fA1, A2, M1, M3ggwhich are:�1 = fA1,
A2g, �2 = fA1, M2g, �3 = fA1, M3g, �4 = fA2, M1g, �5 = fA2, M2g,
�6 = fM1, M2g,�7 = fM1, M3g, �8 = fM2, M3g.

4 Unified framework for DX and FDI approaches

4.1 ARRs vs R-conflicts

In both approaches, diagnosis is triggered when discrepancies occur
between the modeled (correct) behavior and the observations (OBS).
In the ARR framework, discrepancies come from ARRs which are
not satisfied by OBS. In DX, discrepancies allow the identification
of R-conflicts, where an R-conflict is a set of components the cor-
rectness of which supports a discrepancy. An analogous concept can
be defined in FDI.

Definition 4.1 The support of an ARR is the set of components in-
volved in this ARR, i.e. columns of the signature matrix with a non
zero element in the row corresponding to this ARR. It is also called
a potential R-conflict. This name is justified by the following result.

Proposition 4.1 Let OBS be a set of observations for a system mod-
eled by SM (resp. SD). There is an identity between the set of mini-
mal R-conflicts for OBS and the set of minimal potential R-conflicts
associated to the ARRs which are not satisfied by OBS (proof in [2]).

Example: The potential R-conflicts are: C1 = fA1, M1, M2g (support of
ARR1), C2 = fA2, M2, M3g (support of ARR2) and C3 = fA1, A2, M1,
M3g (support of ARR3). With f = 10 and g = 12, ARR1 and ARR3 are not
satisfied, which gives rise to the minimal R-conflicts C1 and C3. With f = 10
and g = 10, ARR1 and ARR2 are not satisfied, which gives rise to the minimal
R-conflicts C1 and C2. With f = 10 and g = 14, ARR1, ARR2 and ARR3 are
not satisfied, which gives rise to the minimal R-conflicts C1, C2 and C3.

Let us now analyze the relationship between potential R-conflicts
and R-conflicts. From the computational point of view, the main dif-
ference between the FDI and DX approaches is that in FDI most of
the work is done off-line. Using just the knowledge of observed vari-
ables, i.e. sensor locations, modeling knowledge is compiled: ARRs
are obtained by combining model constraints and eliminating unob-
served variables. The only thing that has to be done on-line, i.e. when
a given OBS is acquired, is to compute the falsity value (w.r.t. OBS)
of each ARR and to compare the observation signature obtained with
the fault signatures. In terms of R-conflicts, this means that potential

3 A hitting set for a collection of sets is a set that intersects any set of the
collection.



R-conflicts are compiled and that, for any OBS, R-conflicts are ex-
actly those potential R-conflicts which are supports of those ARRs
which are not satisfied by OBS.

4.2 The matrix framework

The FDI approach uses the signature matrix crossing ARRs in rows
and sets of components in columns. It was shown in section 2 that,
given an observation OBS, diagnosis is achieved by identifying those
columns which are identical (or closest w.r.t. a distance function) to
the observation signature column.

In the DX approach, it has been seen in section 3 that minimal
diagnoses are obtained as minimal hitting sets of the collection of
(OBS-) R-conflicts. From proposition 4.1 above, such R-conflicts can
be viewed as the supports of those ARRs which are not satisfied by
OBS, i.e. by looking at the corresponding set of rows I. A minimal
hitting set of the collection of R-conflicts is then a minimal set J of
singleton columns such that each of the rows of I intersects at least
one column of J (i.e. has a non zero element in this column).

It is thus quite natural to adopt this matrix framework as a for-
mal basis on which to compare the two approaches. The following
notations are used:

� Let R = fARRi / i = 1 . . . ng be the set of ARRs and COMPS
= fCj / j = 1 . . . mg the set of components of the system. FS =
[sij]i = 1. . . n, j = 1. . . m is the signature matrix. The jth column of
FS is the signature of a fault in Cj and is noted FSj. For J = fj1,
...,jk g � f1,...,mg, let us note CJ the subset fCj / j 2 Jg, and siJ
the element of the extended matrix FS at line i and column J.

� Any observation OBS splits the set R into two subsets:

– the subset Rfalse of ARRs it is inconsistent with, i.e. Rfalse =
fARRi �(ri = 0) / val(ri,OBS) 6= 0g.

– the subset Rtrue = ARR – Rfalse of ARRs it is consistent with,
i.e. Rtrue = fARRi �(ri = 0) / val(ri,OBS) = 0g.

OBS is thus described through its signature OS, which is the bi-
nary column vector defined by: for all i = 1 . . . n, OSi = 1 if ARRi
2 Rfalse and OSi = 0 if ARRi 2 Rtrue .

The FDI theory compares the observation signature to the fault signa-
tures whereas DX considers separately each line corresponding to an
ARR in Rfalse, isolating R-conflicts before searching for a common
explanation. In the following, these approaches are called column
view and line view respectively.

4.3 Exoneration and no-compensation assumptions

The originality and the power of both the FDI and DX approaches
result from the fact that they are based only on the correct behavior
of the components: no model of faulty behavior is needed. Never-
theless, different assumptions concerning the manifestations of the
faults through observations are adopted by default by each approach,
leading to different computations of the diagnoses, which explains
the different results obtained on the example. These assumptions
concern: 1) the manifestations of the faults through observations and
2) the case of simultaneous faults and of their interaction.

In addition to the obvious fact that a fault cannot affect an ARR
in which it is not involved, which is the direct form of the reasoning
used in DX, the idea used in FDI is that a fault necessarily manifests
itself by affecting the ARRs in which it is involved, causing them not
to be satisfied by any given OBS. Hence not only, as in DX, is any

column involved in a not satisfied row a fault candidate, but also any
column involved in a satisfied ARR is implicitly exonerated (satis-
fied rows are thus also used in the reasoning). In fact this result is
not sound but rests on an exoneration assumption which is implic-
itly made in the FDI approach and has to be considered explicitly in
order to compare the FDI approach with the DX approach.

Definition 4.2 (ARR-based exoneration assumption) A set of faulty
components necessarily shows its faulty behavior, i.e. causes any
ARR in which it is involved not to be satisfied by any given OBS.
Or, equivalently, given OBS, any set of components involved in a
satisfied ARR is exonerated, i.e. each component of its support is
considered to be behaving correctly.

Note that this exoneration assumption is made up of 1) a single fault
exoneration assumption (each individual component shows its faulty
behavior) and 2) a no-compensation assumption (the individual ef-
fects of faulty components never compensate each other).

From the matrix viewpoint, the fact that ARRi exonerates Cj will
appear as usual (cf. section 2) in FS as s ij = 1, whereas we have cho-
sen to represent the fact that Cj is in the support of ARRi but that the
exoneration is not assumed by s ij = X. The elements of FS can thus
take their values in f0,1g, f0,Xg or f0,X,1g. The semantics of sij =
X is: a fault in Cj can explain why ARRi is not satisfied, but ARRi
may happen to be satisfied even when C j is faulty. The semantics
of sij = 1 is: a fault in Cj forces ARRi not to be satisfied (hence if
ARRi is satisfied then Cj is not faulty - which explains the term ”ex-
oneration”). The generalized use of an exoneration assumption for
each component will be called the exoneration and no-compensation
case (exo/no-comp) and corresponds to the assumption by default in
the FDI approach, while the total lack of exoneration will be called
the no-exoneration and compensation case (no-exo/comp) and corre-
sponds to the assumption by default in the DX approach.

4.4 Equivalence in the exo/no-comp case

In this case, fault signatures involve only 0 and 1. As seen in sec-
tion 2, the signature of the column CJ of the extended matrix is
given by the following fault interaction law which expresses the no-
compensation assumption:

siJ = supfsij / j 2 Jg for the order 0<1 (FIenc)

Let Support(ARRi) = fCJ / siJ = 1g and Scope(CJ ) = fARRi / siJ =
1g. The column view searches for a perfect match of a fault signature
with the observation signature. A set CJ is a diagnosis if and only if:
Rfalse = Scope(CJ). (CVenc)

In the line view, the diagnoses are subsets CJ of COMPS such that:
8i (ARRi2 Rfalse ) 9j2 J, Cj 2 Support(ARRi)) ^ (LVenc)
8i (ARRi 2 Rtrue) 8j 2 J, Cj 2 COMPS – Support(ARRi))

Due to(Flenc) this is equivalent to: 8i (ARRi 2 Rfalse , CJ
2 Support(ARRi)) which is itself equivalent to (CVenc), which
proves the equivalence of the column and line views.

Example: With f = 10 and g = 12, i.e. observation signature [1, 0, 1]T, there
are 2 minimal single fault diagnoses fA1g and fM1g and one superset diag-
nosis fA1, M1g (the components A2, M2 and M3 are exoneratedas members
of the support of the satisfied ARR2). With f = 10 and g = 10, i.e. observa-
tion signature [1, 1, 0]T, the only diagnosis is fM2g (the components A1,
A2, M1 and M3 are exonerated as members of the support of the satisfied
ARR3). With f = 10 and g = 14, i.e. observation signature [1, 1, 1]T, there are
8 minimal double fault diagnoses (those found in section 3) and 16 superset
diagnoses (exoneration plays no role here).



4.5 Equivalence in the no-exo/comp case

In this case, which is the common one in DX, fault signatures involve
only 0 and X, and X matches both 0 and 1. From the semantics of X
seen in 4.3, it results that columns of the extended matrix are built
according to the following rule: a multiple fault can explain that a
given ARR is not satisfied if and only if at least one of its faults can
explain it, i.e. several faults never produce more than the combina-
tion of their separate effects; on the other hand, it is admitted that a
faulty component does not necessarily affect an ARR in which it is
involved (single fault no-exoneration) and that several faults may al-
ways compensate each other (compensation), resulting in a satisfied
ARR. The fault interaction law can thus be stated as:
siJ = supfsij j j 2 Jg for the order 0<X (FInec)

Let WeakSupport(ARRi) = fCJ j siJ 6= 0g and WeakScope(CJ) =
fARRi j siJ 6= 0g.

In the column view, CJ is a diagnosis if and only if:
Rfalse� WeakScope(CJ ) (CVnec)

In the line view the diagnoses are the sets CJ such that:
8i (ARRi 2 Rfalse) 9j 2 J, Cj 2 WeakSupport(ARRi)) (LVnec)

Due to (FInec), this translates to: 8i (ARRi 2 Rfalse ) CJ
2 WeakSupport(ARRi)) which in turn is the same as Rfalse
� WeakScope(CJ), i.e. (CVnec). This proves the equivalence of di-
agnoses.

Example: The extended signature matrix is obtained from the usual one (see
section 2) by replacing each 1 by X. With f = 10 and g = 12, i.e. observation
signature [1, 0, 1]T, there are 4 minimal diagnoses: the 2 single fault diag-
noses fA1g and fM1g and the 2 double fault diagnoses fA2, M2g and fM2,
M3g, and 22 superset diagnoses. With f = 10 and g = 10, i.e. observation
signature [1, 1, 0]T, there are 5 minimal diagnoses: the single fault diagnosis
fM2g and the 4 double fault diagnoses fA1, A2g, fA1, M3g, fA2, M1g and
fM1, M3g, and 20 superset diagnoses. With f = 10 and g = 14, i.e. observation
signature [1, 1, 1]T, the results are the same that in 4.4.

4.6 Equivalence in the general case

It is now simple to provide an extension of the framework which
allows three-valued fault signatures, involving 0, X and 1. In this
case, exoneration applies to some components w.r.t. some ARRs, but
not to all. Equivalence can be proved in the same way as above [2].

5 Conclusion and prospects

The first goal of FDI was fault detection and associated decision pro-
cedures. Its main interest was to offer sophisticated techniques so
as to combine observations such as observers and filters. DX, on
the other hand, aimed at localization by recognizing subsets of the
system description that conflicted with the observation. Our study
proves that a significant part of the two theories fits into a common
framework which allows a precise comparison. When they adopt the
same hypotheseswith respect to how faults manifest themselves, FDI
and DX views agree on diagnoses. This opens the possibility of a
fruitful cooperation between these two diagnostic approaches, get-
ting the best from each one: compiling modeling knowledge under
ARRs form according to sensor locations before any observation has
been made, which is the main advantage of the FDI approach and,
thanks to explicit correctness assumptions, computing at the same
time potential R-conflicts (supports of ARRs) to give rise, given
an OBS, to R-conflicts on which the diagnoses generation is based,
which is the main advantage of the DX approach.

It is important to notice that the equivalence between the two ap-
proaches is obtained either by importing in DX the ARR-based ex-
oneration (enc) assumption implicitly used in FDI or by importing
in FDI the no-exoneration (nec) assumption used by default in DX.
But another way to express exoneration has been introduced in DX,
at the component model level, by assuming that, if the correct behav-
ior model of a component is satisfied by OBS, then this component
behaves correctly in the context given by OBS, i.e. by modeling com-
ponents behavior with bi-conditionals [10]. In [2] this model-based
exoneration (mbe), which is proved to be weaker than (enc) in the
single fault case, is thoroughly compared with (enc). An analog of
the proposition 4.1, which relates minimal alibis, i.e. defined Horn
AB-clauses entailed by SD

S
OBS, with supports of ARRs satisfied

by OBS, allows one to prove that any FDI diagnosis with (enc) is a
DX diagnosis with (mbe) when SD

S
OBS is Horn (but the converse

is false). Then the comparison is made between (mbe) and what turns
out to be the closest assumption in the FDI framework, i.e. fault ex-
oneration and multiple fault compensation (ec): most of the time the
diagnoses obtained are identical (this is the case for the example) but
this is not always true.

Some points need future investigation. There is presently no equiv-
alent in DX of the notion of noise and disturbance. Conversely, in the
consistency-based extended framework, DX makes a systematic use
of fault models, whose counterpart in FDI can be found in assump-
tions about the additive or multiplicative deviations which model
the faults. Fault models have been left out of the framework of the
present paper. The conclusions of this work remain valid in case
of temporal sequence of observations when the faults do not evolve
along time. Such a sequence only provides more observation signa-
tures or more conflicts, allowing diagnoses to be refined by reasoning
on each snapshot of the system (state-based approach). Conversely,
the incremental diagnosis problem (i.e. when faults occur and evolve
along time) is still open on each side: dealing with dynamic resid-
uals and temporal signatures on one side and with simulation-based
approach ([12]) on the other side. Further studies are needed to inte-
grate these aspects, which would be beneficial to both communities.
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