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Abstract

A drawback of traditional default logic is that there is
no general mechanism for preferring one default rule
over another. To remedy this problem, numerous de-
fault logics augmented with priority relations have been
introduced. In this paper, we show how trust values, de-
rived from web-based social networks, can be used to
prioritize defaults. We provide a coupling between the
method for computing trust values in social networks
given in (Golbeck 2005) and the prioritized Reiter de-
faults of (Baader & Hollunder 1995), where specificity
of terminological concepts is used to prioritize defaults.
We compare our approach with specificity-based prior-
itization, and discuss how the two can be combined. Fi-
nally, we show how our approach can be applied to other
variants of prioritized default logic.

Introduction
A drawback of traditional default logic is that there is no
general mechanism for preferring one default rule over an-
other. To remedy this problem, numerous default logics aug-
mented with priority relations have been introduced.

Web-based Social Networks (WBSNs) have been grow-
ing dramatically in popularity, with hundreds of millions of
active users. Within those networks, users reveal much in-
formation about their relationships with one another, includ-
ing how much they trust their friends. The nature of trust
and the expression of trust values in WBSNs is such that it
is possible to compute inferred trust values, to recommend
how much users should trust other people that they do not
know. The direct and inferred trust values can, in turn, be
integrated into applications where the values are used as a
measure of users’ social preferences.

In this paper, we show how trust values, derived from
web-based social networks, can be used to prioritize de-
faults. We provide a coupling between the method for
computing trust values in social networks given in (Gol-
beck 2005) and the prioritized terminological defaults of
(Baader & Hollunder 1995), where specificity of concepts
is used to prioritize defaults. We compare our approach with
specificity-based prioritization, and discuss how the two can
be combined.
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Nonmonotonic Reasoning with Default Rules
When we reason, we often use various rules that are gener-
ally but not universally true. For example, we might infer
from (P1) The flight is scheduled to leave at 11:00 and (P2)
Flights usually leave on time, that we should: (C) Be at the
airport in time for an 11:00 flight. While it’s certainly not
true thateveryflight leaves on time, the premise that this is
typically true is what licensed our inference. We can for-
malize a statement such as (P2) usingdefault rules. Below
we briefly describe Reiter defaults and their simple exten-
sion to allow priorities. For the sake of simplicity, we have
chosen the account of prioritized defaults given in (Baader
& Hollunder 1995). However, our method for combining
trust with priorities can be applied to many other variants of
defaults−Section contains the details.

Reiter Defaults
A Reiter default(henceforth ’default’) is of the form:

α : β

γ

whereα, β andγ are formulae of first-order logic. The for-
mulaα is theprerequisite, β the justificationandγ thecon-
sequent. A default rule can be read intuitively as:if I can
prove the prerequisite from what I believe, and the justifica-
tion is consistent with what I believe, then add the conse-
quent to my set of beliefs.

Definition 1 (Default Theory) A default theoryT is a pair
〈W,D〉 whereW is a finite set of formulae representing the
initial world description (or initial set of beliefs), andD is
a finite set{δ1, ..., δn} of defaults. T is closed if no free
variables appear in eitherW or D.

We will assume for simplicity that free variables in de-
faults only stand for ground instances. We also, for the sake
of exposition, assume that every default has only one justifi-
cation formulaβ, though our approach does not rely on this
restriction. On these points, we follow (Baader & Hollunder
1995) where the reader may find the details.

The premise (P2) from our earlier example can be formal-
ized as follows:

δf =
Flight(x) : OnTime(x)

OnTime(x)



Suppose thatW = {Flight(flight714)} and D =
{δf}. Then W ` Flight(flight714), and W ∪
{OnTime(flight714)} is consistent, meaning the default
δf is active. Since δf is active, we apply it and obtain
W = W ∪ {OnTime(flight714)}. The setTh(W ∪
{OnTime(flight714)}) is called anextension, which we
characterize formally below.

Definition 2 (Reiter Extension) Given a set of closed for-
mulaeE and a closed default theory〈W,D〉, let E0 = W
and∀i ≥ 0 define:

Ei+1 = {γ | α : β

γ
∈ D,α ∈ Th(Ei) and¬β 6∈ E}

ThenE is an R-extension of〈W,D〉 iff E =
⋃

i≥0 Th(Ei)

The above theory has one extension, namelyTh(W ∪
{Flight(flight714)}). Contrast this with the case where
W is:

{Flight(flight714), Delayed(flight714), Delayed(x) →
¬OnTime(x)}

In this example,W ∪ {OnTime(flight714)} is
inconsistent and the inference thatOnTime(flight714)
is blocked. Thus, this theory has no extension where
OnTime(flight714) holds.

Cases of Conflict
Default rules can conflict. A simple abstract example is
when two defaults,δ1 andδ2 are applicable (i.e. their jus-
tifications are consistent with our knowledge) yet the con-
sequent ofδ1 is inconsistent with the consequent ofδ2. We
then typically end up withtwo extensions; one where the
consequent ofδ1 holds, and one where the consequent of
δ2 holds. The case of two conflicting defaults is illustrated
below, although it is possible to have arbitrarily many con-
flicting extensions with a larger set of defaults.

Definition 1 (Chomsky Diamond) Let T = 〈W,D〉 and
W = {Professor(chomsky), Activist(chomsky)}, D =
{δ1, δ2}, where:

δ1 =
Professor(x) : Passive(x)

Passive(x)

δ2 =
Activist(x) : ¬Passive(x)

¬Passive(x)

Note thatT has two extensions,E1 andE2. In one,

¬Passive(chomsky) ∈ E1

while in the other,

Passive(chomsky) ∈ E2.

It is often desirable to resolve conflicting defaults likeδ1

andδ2. This can be done by introducingpriorities. Given a
priority relation>, we interpretδ2 > δ1 to mean thatδ2 has
higher priority thanδ1.

Definition 3 (Prioritized Default Theory) A prioritized
default theoryT is a triple 〈W,D, <〉, whereW,D are as
usual, and< is a partial ordering onD.

A prioritized version ofT would beT = 〈W,D, <〉. It is
easy to see that ifδ1 > δ2, thenE2 should not be an exten-
sion ofT . The reason is that sinceδ2 has higher priority, it
should be applied first, which in turns blocks the application
of δ1. The definition formalizing this intuition, following
(Baader & Hollunder 1995) again, is given below.

Definition 4 Let T = 〈W,D, <〉 be a prioritized default
theory, andE a set of formulae. LetE0 = W, and∀i ≥ 0
define:

Ei+1 = Ei ∪ {γ | d =
α : β

γ
∈ D, α ∈ Th(Ei),¬β 6∈ E ,

and everyd′ > d is not active inEi}

ThenE is a P-extension of〈W,D, <〉 iff E =
⋃

i≥0 Th(Ei)

It is easy to see now that in the above example, ifδ1 > δ2,
thenE2 is not an extension. Similarly, ifδ2 > δ2 were true,
thenE1 would not be an extension.

There have been many other approaches to prioritized de-
fault logic, where a priority relation is introduced in either
the object or the meta language. We refer the reader to (Del-
grande & Schaub 2000) for an extensive survey.

Regardless of the specifics of a given approach, some
kinds of priority relations are undesirable. In particular, it
is unrealistic to require the priority relation to be a total or-
dering over the defaults, especially if we are dealing with
a large and changing collection of defaults. We follow the
more common and flexible approach which only requires the
priority relation to be a partial ordering.

In previous approaches, the priority relation was usually
taken as a given, and sometimes compiled into the object
language and reasoned over. In contrast, our priorities are
based on the trust rating of the sources of the defaults−i.e.
their creators−in a web-based social network. The next sec-
tion introduces the concept of trust in web-based social net-
works, and a corresponding algorithm for computing trust
ratings. In section we apply this work to the case of priori-
tizing defaults.

Trust in Web-based Social Networks
Web-based social networks (WBSNs) are online commu-
nities where users maintain lists of friends and colleagues.
Other users can browse those connections, and access con-
tact and profile information about people in the network.
The popularity of WBSNs has grown dramatically over the
last few years, with hundreds of networks that have hundreds
of millions of members (Golbeck 2005).

The purpose of these networks range widely, from sites
focused on dating, religion, and social entertainment, to oth-
ers that support business networking. While the majority of
WBSNs are very general online communities, divorced from
real-world social networks, there are a growing number of
networks being established that bring together real profes-
sional communities. For example, the Child Health and Nu-
trition Research Initiative (CHNRI) Network maintains an
online community at http://chnri.spartasocialnetworks.com
that brings together medial professionals who are part of the



organization, in order to support collaboration and interac-
tion. These sorts of networks that represent coherent groups
of users are particularly suited for our application.

Within WBSNs, a variety of features are available to al-
low users to annotate their relationship; trust is one of these.
Users indicate how much they trust people to whom they
are connected, either in general or with respect to a specific
topic. Trust can be assigned as a binary rating (trust or no
trust), or as a numeric value. When trust values are present,
it is possible to compute inferred trust ratings, suggesting
to one user (thesource) how much to trust another user (the
sink), even when there is no direct connection between them.

In this section, we present a description of and algorithm
for inferring trust values, and show how the results can be
applied.

Background and Related Work
We present an algorithm for inferring trust relationships in
social networks, but this problem has been approached in
several ways before. Here, we highlight some of the major
contributions from the literature and compare and contrast
them with our approach.

The EigenTrust algorithm (Kamvar, Schlosser, & Garcia-
Molina May 20 24 2004) is used in peer-to-peer systems and
calculates trust with a variation on the PageRank algorithm
(Pageet al. 1998), used by Google for rating the relevance of
web pages to a search. EigenTrust is designed for a peer-to-
peer system while ours is designed for use in humans’ social
networks, and thus there are differences in the approaches
to analyzing trust. In the EigenTrust formulation, trust is a
measure of performance, and one would not expect a single
peer’s performance to differ much from one peer to another.
Socially, though, two individuals can have dramatically dif-
ferent opinions about the trustworthiness of the same person.
Our algorithms intentionally avoid using a global trust value
for each individual to preserve the personal aspects that are
foundations of social trust.

Raph Levin’s Advogato project (Levin & Aiken 1998)
also calculates a global reputation for individuals in the net-
work, but from the perspective of designated seeds (author-
itative nodes). His metric composes certifications between
members to determine the trust level of a person, and thus
their membership within a group. While the perspective
used for making trust calculations is still global in the Ad-
vogato algorithm, it is much closer to the methods used in
this research. Instead of using a set of global seeds, we let
any individual be the starting point for calculations, so each
calculated trust rating is given with respect to that person’s
view of the network.

Richardson et. al.(Richardson, Agrawal, & Domingos
2003) use social networks with trust to calculate the belief a
user may have in a statement. This is done by finding paths
(either through enumeration or probabilistic methods) from
the source to any node which represents an opinion of the
statement in question, concatenating trust values along the
paths to come up with the recommended belief in the state-
ment for that path, and aggregating those values to come up
with a final trust value for the statement. Current social net-
work systems on the Web, however, primarily focus on trust

Figure 1: An illustration of direct trust values between nodes
A and B (tAB), and between nodes B and C (tBC). Using
a trust inference algorithm, it is possible to compute a value
to recommend how much A may trust C (tAC).

values between one user to another, and thus their aggrega-
tion function is not applicable in these systems.

Issues for Inferring Trust

When two individuals are directly connected in the network,
they can have trust ratings for one another. Two people who
are not directly connected to not have that trust information
available by default. However, the paths connecting them
in the network contain information that can be used to infer
how much they may trust one another.

For example, consider that Alice trusts Bob, and Bob trust
Charlie. Although Alice does not know Charlie, she knows
and trusts Bob who, in turn, has information about how trust-
worthy he believes Charlie is. Alice can use information
from Bob and her own knowledge about Bob’s trustworthi-
ness to infer how much she may trust Charlie. This is illus-
trated in Figure 1.

To accurately infer trust relationships within a social net-
work, it is important to understand the properties of trust
networks. Certainly, trust inferences will not be as accurate
as a direct rating. There are two questions that arise which
will help refine the algorithm for inferring trust: how will
the trust values for intermeidate people affect the accuracy
of the inferred value, and how will the length of the path
affect it.

We expect that people who the user trusts highly will tend
to agree with the user more about the trustworthiness of oth-
ers than people who are less trusted. To make this compari-
son, we can select triangles in the network. Given nodesni,
nj , andnk, where there is a triangle such that we have trust
valuestij , tik, andtkj , we can get a measure of how trust of
an intermediate person can affect accuracy. Call∆ the dif-
ference between the known trust value fromni to nk (tik)
and the value fromnj to nk (tik). Grouping the∆ values by
the trust value for the intermediate node (tij) indicates on
average how trust for the intermediate node affects the accu-
racy of the recommended value. Several studies (Ziegler &
Golbeck 2006),(Golbeck 2005) have shown a strong corre-
lation between trust and user similarity in several real-world
networks.

It is also necessary to understand how the paths that con-
nect the two individuals in the network affect the potential
for accurately inferring trust relationships. The length of a
path is determined by the number of edges the source must
traverse before reaching the sink. For example, source-sink
has length two. Does the length of a path affect the agree-



Figure 2: This figure illustrates the social network in the
FilmTrust website. There is a large central cluster of about
450 connected users, with small, independent groups of
users scattered around the edges.).

Table 1: Minimum∆ for paths of various lengths containing
the specified trust rating.

Trust Value Path Length
2 3 4 5

10 0.953 1.52 1.92 2.44
9 1.054 1.588 1.969 2.51
8 1.251 1.698 2.048 2.52
7 1.5 1.958 2.287 2.79
6 1.702 2.076 2.369 2.92

ment between individuals? Specifically, should the source
expect that neighbors who are connected more closely will
give more accurate information than people who are further
away in the network?

In previous work (Golbeck 2005),(Golbeck 2006) this
question has been addresses using several real networks.
The first network is part of the Trust Project, a Seman-
tic Web-based network with trust values and approximately
2,000 users. The FilmTrust network1, see Figure 2, is a net-
work of approximately 700 users oriented around a movie
rating and review website. We will use FilmTrust for several
examples in this paper. Details of the analysis can be found
in the referenced work, but we present an overview of the
analysis here.

To see the relationship between path length and trust, we
performed an experiment. We selected a node,ni, and then
selected an adjacent node,nj . This gave us a known trust
valuetij . We then ignored the edge fromni tonj and looked
for paths of varying lengths through the network that con-
nected the two nodes. Using the trust values along the path,
and the expected error for those trust values, as determined
by the analysis of the correlation of trust and similarity de-
termined in (Golbeck 2005). Call this measure of error∆.
This comparison is repeated for all neighbors ofni, and for

1Available at http://trust.mindswap.org/FilmTrust

Figure 3: Minimum∆ from all paths of a fixed length con-
taining a given trust value. This relationship will be inte-
grated into the algorithms for inferring trust presented in the
next section.

all ni in the network.
For each path length, Table 1 shows the minimum

average∆ (∆). These are grouped according to the mini-
mum trust value along that path.

In Figure 3, the effect of path length can be compared to
the effects of trust ratings. For example, consider the∆ for
trust values of 7 on paths of length 2. This is approximately
the same as the∆ for trust values of 10 on paths of length
3 (both are close to 1.5). The∆ for trust values of 7 on
paths of length 3 is about the same as the∆ for trust values
of 9 on paths of length 4. A precise rule cannot be derived
from these values because there is not a perfect linear rela-
tionship, and also because the points in Figure 3 are only the
minimum∆ among paths with the given trust rating.

TidalTrust: An Algorithm for Inferring Trust
The effects of trust ratings and path length described in the
previous section guided the development of TidalTrust, an
algorithm for inferring trust in networks with continuous rat-
ing systems. The following guidelines can be extracted from
the analysis of the previous sections: 1. For a fixed trust rat-
ing, shorter paths have a lower∆. 2. For a fixed path length,
higher trust ratings have a lower∆. This section describes
how these features are used in the TidalTrust algorithm.

Incorporating Path Length The analysis in the previ-
ous section indicates that a limit on the depth of the search
should lead to more accurate results, since the∆ increases
as depth increases. If accuracy decreases as path length in-
creases, as the earlier analysis suggests, then shorter paths
are more desirable. However, the tradeoff is that fewer nodes
will be reachable if a limit is imposed on the path depth.
To balance these factors, the path length can vary from one
computation to another. Instead of a fixed depth, the short-
est path length required to connect the source to the sink
becomes the depth. This preserves the benefits of a shorter
path length without limiting the number of inferences that
can be made.



Incorporating Trust Values The previous results also in-
dicate that the most accurate information will come from the
highest trusted neighbors. As such, we may want the algo-
rithm to limit the information it receives so that it comes
from only the most trusted neighbors, essentially giving no
weight to the information from neighbors with low trust. If
the algorithm were to take information only from neighbors
with the highest trusted neighbor, each node would look at
its neighbors, select those with the highest trust rating, and
average their results. However, since different nodes will
have different maximum values, some may restrict them-
selves to returning information only from neighbors rated
10, while others may have a maximum assigned value of 6
and be returning information from neighbors with that lower
rating. Since this mixes in various levels of trust, it is not an
ideal approach. On the other end of possibilities, the source
may find the maximum value it has assigned, and limit ev-
ery node to returning information only from nodes with that
rating or higher. However, if the source has assigned a high
maximum rating, it is often the case that there is no path with
that high rating to the sink. The inferences that are made
may be quite accurate, but the number of cases where no in-
ference is made will increase. To address this problem, we
define a variablemax that represents the largest trust value
that can be used as a minimum threshold such that a path
can be found from source to sink.

Full Algorithm for Inferring Trust Incorporating the el-
ements presented in the previous sections, the final Tidal-
Trust algorithm can be assembled. The name was chosen
because calculations sweep forward from source to sink in
the network, and then pull back from the sink to return the
final value to the source.

tis =

∑
j ∈ adj(j) | tij ≥ max

tijtjs∑
j ∈ adj(j) | tij ≥ max

tij
(1)

The source node begins a search for the sink. It will poll
each of its neighbors to obtain their rating of the sink. Each
neighbor repeats this process, keeping track of the current
depth from the source. Each node will also keep track of the
strength of the path to it. Nodes adjacent to the source will
record the source’s rating assigned to them. Each of those
nodes will poll their neighbors. The strength of the path to
each neighbor is the minimum of the source’s rating of the
node and the node’s rating of its neighbor. The neighbor
records the maximum strength path leading to it. Once a
path is found from the source to the sink, the depth is set at
the maximum depth allowable. Since the search is proceed-
ing in a Breadth First Search fashion, the first path found
will be at the minimum depth. The search will continue to
find any other paths at the minimum depth. Once this search
is complete, the trust threshold (max) is established by tak-
ing the maximum of the trust paths leading to the sink. With
themax value established, each node can complete the cal-
culations of a weighted average by taking information from
nodes that they have rated at or above themax threshold.

Table 2: ∆ for TidalTrust and Simple Average recommen-
dations in both the Trust Project and FilmTrust networks.
Numbers are absolute error on a 1-10 scale.

Algorithm
Network TidalTrust Simple Average
Trust Project 1.09 1.43
FilmTrust 1.35 1.93

Accuracy of TidalTrust
As presented above, TidalTrust strictly adheres to the ob-
served characteristics of trust: shorter paths and higher trust
values lead to better accuracy. However, there are some
things that should be kept in mind. The most important is
that networks are different. Depending on the subject (or
lack thereof) about which trust is being expressed, the user
community, and the design of the network, the effect of these
properties of trust can vary. While we should still expect the
general principles to be the same−shorter paths will be bet-
ter than longer ones, and higher trusted people will agree
with us more than less trusted people−the proportions of
those relationships may differ from what was observed in
the sample networks used in this research.

There are several algorithms that output trust inferences,
but none of them produce values within the same scale that
users assign ratings. Some trust algorithms form the Public
Key Infrastructure (PKI) are more appropriate for compar-
ison. A comparison of this algorithm to PKI can be found
in (Beth, Borcherding, & Klein 1994), but due to space lim-
itations that comparison is not included here. One direct
comparison to make is to compare the∆ from TidalTrust to
the∆ from taking the simple average of all ratings assigned
to the sink as the recommendation. As shown in Table 2, the
TidalTrust recommendations outperform the simple average
in both networks, and these results are statistically signifi-
cant with p¡0.01. Even with these preliminary promising re-
sults, TidalTrust is not designed to be the optimal trust infer-
ence algorithm for every network in the state it is presented
here. Rather, the algorithm presented here adheres to the
observed rules of trust. When implementing this algorithm
on a network, modifications should be made to the condi-
tions of the algorithm that adjust the maximum depth of the
search, or the trust threshold at which nodes are no longer
considered. How and when to make those adjustments will
depend on the specific features of a given network. These
tweaks will not affect the complexity of implementation.

Basing Priority on Trust Values
Given a social network, an ordinary default theoryT , and a
source nodeSrc in the network, we can now now prioritize
the defaults according to trust values.

Algorithm
The simple algorithm for generating extensions based on
trust values is given below. Note that our method does not
make any assumptions about the specifics of the base default
logic languagePL. We do, however, assume the following
are available:



1. A function ComputeExtensionsPL for computing the
extensions ofPL, which takes a prioritized default theory
as input.

2. A source node, which in our case is the node according to
which priorities will be generated. Intuitively, this can be
thought of as our ’viewpoint’ in the social network−we
reason from the perspective of the source node.

procedureTrustPrioritize(W, D, Src, Prov):
Input:

(1) A set of initial formulaeW
(2) A source nodeSrc
(3) A setD = {δ1, ..., δn} of defaults,
(4) A functionProv : D → Nodes

Return:
A set of extensions

P := ∅
for everyd, d′ ∈ D:
if TidalTrust(Src, Prov(d)) < TidalTrust(Src, Prov(d′)):
P = P ∪ {d < d′}

if Prov(d) = Src and Prov(d′) 6= Src:
P = P ∪ {d′ < d}

return ComputeExtensionsPL(W, D, P )

If restricted to normal form, any prioritized default theory
of (Baader & Hollunder 1995) is always guaranteed to have
an extension. In addition, every prioritized normal default
extension is also a Reiter extension. Since we have not in
any way changed the semantics of the prioritized defaults, it
is obvious that the same desirable properties hold true for our
approach. For this reason, we restrict ourselves to normal
defaults for the remainder of the paper.

Example: Using Trust for Choosing a Film
Suppose that we are dealing with a film knowledge base. A
group of friends−John, Mary, Dave, Jane and Alice−each
input their film preferences, such as preferred genre or
directors/actors, in the form of default rules. Their prefer-
ences are as follows:

W = {IndieF ilm(hce), SpanishF ilm(hce),
DirectedBy(hce,Almodovar)}

D = {δjohn, δdave, δjane}

δjohn =
Comedy(x)
¬Watch(x)

δjane =
IndieF ilm(x) ∧ SpanishF ilm(x)

¬Watch(x)

δdave =
IndieF ilm(x) ∧Directed(x,Almodovar)

Watch(x)

We assume that every Spanish film is a film, and similarly
that every film directed by anyone (in our case, Almodovar)
is also a film.

In our scenario, John, Mary, Dave and Alice are part of a
social network, shown in Figure 4. The direct trust values
between two nodes in the network are given in bold, while
inferred trust values are italicized and are shown as a dotted
edge. Also, the source node in the example, John, is high-
lighted.

Figure 4: The social network between John, Mary, Dave,
Jane and Alice

Suppose that John is trying to decide whether or not he
should watch the filmhce, the only film currently in our
knowledge base. John’s only preference is not to watch
comedies, which does not apply tohce. Simply looking at
the defaults inD, a conflict arises. According toδjane, John
should not watch the movie since it is a Spanish film. On the
other hand, according toδdave, John should watch the film
since it is directed by Almodovar.

Note that John did not directly rate Dave and Jane. John’s
only connection to the two is via Mary, who he highly trusts.
Mary does not have any film preferences, and so we can-
not use her to resolve the conflict. According to TidalTrust,
John’s inferred trust value for Dave and Alice is 8 and 6, re-
spectively. Thus, the relevant priority yielded in this case is
δjane < δdave, which allows John to conclude that he should
watchhce.

Consider the same scenario, except this time with Alice
as the source node. Unlike John, Alice has direct trust rat-
ings for Dave and Jane, and unlike Mary, she trusts Jane
more. Therefore, there will be an extension where Alice’s
conclusion, based on the generated prioritiesδdave < δjane,
is not to watchhce. Clearly, this extension is not possible
if we pick John as the source node, showing the difference
between the two nodes’s relation to the rest of the social net-
work.

Discussion and Conclusions
Priority of the Source Node
Cases can arise where the source node has a default that con-
flicts with another node’s default. In our approach, we chose
to prioritize the defaults of the source higher than the de-
faults of other nodes in the social network. This is reflected
in the algorithm, where we explictly add to the default the-
ory that the defaults associated with the source have higher
priority than all others. We believe this is the most appropri-
ate choice for the case when dealing with social networks.

If the choice to explicitly prefer the source’s defaults is
not made, then new cases of conflict can arise. Consider the
following abstract example. Suppose we have a root node
A with an edgeAB. Assume thatA has one default whose

consequent isϕ(x), i.e. δA =
>

ϕ(x)
, and thatB has one

defaultδB =
>

¬ϕ(x)
. Regardless of the valuetAB (or the



value of any other edgesA might have) we are guaranteed
to have an extension whereϕ(x) holds. The reason is that
A does not necessarily have an explicit trust rating for itself,
i.e. there is notAA value. Note that this is very different
from the usual reason for whyδA andδB would generate two
extensions in ordinary default logic. Therefore, in systems
where this value is not present or assumed, it seems there
is no way to determine the priority ofδA compared with
other defaults in the system. This issue will arise whenever
the source node has an applicable default whose consequent
might conflict with defaults of other nodes in the system.

In such cases, at least two simple resolutions are possible:

1. Make the assumption that the source node has “infinite”
credibility−i.e. one always trusts oneself over all others,
or alternatively,

2. Make the assumption that when getting a recommenda-
tion from other nodes, one should ignore one’s own pref-
erences.

In our approach, the first choice was made. We contrast
this with the case where specificity is used as a measure of
priority.

Priority and Specificity
In (Baader & Hollunder 1995), priorities between defaults
are induced by the specificity of their justifications. For ex-
ample, in the classic Tweety triangle example, the general
rule that penguins fly defeats the general rule that birds fly,
since a penguin is aa kindof bird. In other words, the class
of penguins are asubclassof the class of birds, and the more
specific rule is likely to be more accurate.

While this approach is useful, it cannot resolve every
case. In our first example where John is the source node,
a specificity-based approach will not decide between Dave’s
default rule and Alice’s. The reason is that a Spanish film is
not a type of film directed by Almodovar or vice versa. In
this case, our approach can be used tosupplementthe prior-
ities generated by specificity-based approach.

Going back to the issue raised by the preferences of the
source in the film example, we see that specificity might be
altogether inappropriate. For example, suppose that John is
the source node and we know that in general his preference
not to watch any film that is a comedy. Let’s assume that
we have one given film,c, and thatRomanticComedy(c)
andRomanticComedy(x) → Comedy(x). In this case, it
does not make sense for John’s choice to not watchc, based
on his preference, to be defeated by another nodeX, where

δX =
RomanticComedy(x)

Watch(x)
simply becauseδX is more

specific. John’s preference, while defined more generally
than that of nodeX, should still apply.

In the Tweety triangle, specificity clearly leads to the de-
sirable extension. In fact, whenever dealing with a set of de-
faults rule that are meant toclassifyobjects and their proper-
ties most accurately, it is hard to deny the specificity-based
approach. However, as we have shown, such an approach
may fail if we use a set of defaults to express user prefer-
ence.

In summary, we have presented a preliminary cou-
pling between traditional default logic with priorities and a
method for inferring trust in web-based social networks. We
argue that the latter provides a good way to generate prior-
ities for default rules. This approach makes it possible to
make use of the many large and readily available existing
web-based social networks, thus grounding the priorities in
real web data. Such an approach differs from the more tra-
ditional approaches to priority, where the priorites are taken
as specifically tailored to the set of defaults at hand.

While the more traditional approach is appropriate for
closed knowledge representation systems, our approach
reuses existing web data, which makes the introduction of
prioritized defaults into established web systems less de-
manding. Furthermore, we emphasize that in a system
where default rules use a different mechanism for priorities,
user preferences, encoded as a web-based social network,
can be used as an alternative. That is, when the first mech-
anism of priority might be incomplete, the priorities gener-
ated from the social network can be used to possibly fill the
gap. In addition, we have also highlighted a case where a
specificity-based approach is likely to be inappropriate, and
where a trust value based approach shows more promise.

Future Work
The quality of the results obtained by prioritizing with trust
can be determined empirically when they are applied within
applications. As described in Section , one of the main net-
works we have used for testing is part of the FilmTrust sys-
tem. Currently, FilmTrust uses inferred trust values to com-
pute predictive movie ratings customized to each user based
on who they trust. However, the current system does not
allow for users to specify any default rules about their pref-
erences. Such a default rule system fits well in the context
of films.

As part of our future work, we will be deploying a rule
system in the FilmTrust website. Users will be able to add
rules about their movie preferences. These defaults will be
used in two ways. First, they can help tailor recommenda-
tions for the user who asserted rules. However, they can also
be used to filter recommendations for others who trust the
user who asserted the rules. In this application, it will be
common for defaults to conflict. In such cases, trust is an
obvious option for determining which rules to apply.

This application will allow us to quantitatively and qual-
itatively measure the performance of using trust for priori-
tizing defaults. We can measure how well the recommen-
dations perform for each user with and without the priori-
tization in place. If we can show that the trust-prioritized
defaults improves performance, either by user preference
and/or statistically superior results, then it will be a valida-
tion of how our approach can be used to improve perfor-
mance of intelligent applications.
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