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Abstract. Steps in scientific workflows often generate collections of results,
causing the data flowing through workflows to become increasingly nested. Be-
cause conventional workflow components (or actors) typically operate on simple
or application-specific data types, additional actors often are required to man-
age these nested data collections. As a result, conventional workflows become
increasingly complex as data becomes more nested. This paper describes a new
paradigm for developing scientific workflows that transparently manages nested
data collections. Collection-oriented workflows have a number of advantages
over conventional approaches including simpler workflow designs (e.g., requir-
ing fewer actors and control-flow constructs) that are invariant under changes in
data nesting. Our implementation within the Kepler scientific workflow system
enables the explicit representation of collections and collection schemas, concur-
rent operation over collection contents via multi-level pipeline parallelism, and
allows collection-aware actors to be composed readily from conventional actors.

1 Introduction

Scientists today require access to data from diverse sources. Nowhere is this need more
pressing than in the life sciences, where multiplying databases and rapidly growing data
repositories promise to provide researchers with a wealth of information relevant to the
systems they study. Effectively exploiting diverse sources of data requires a spectrum
of data integration approaches.

In the database community, data integration traditionally means resolving different
data structures that represent fundamentally the same kind of information [11]. This
information may be stored using heterogeneous schemas, and may use different repre-
sentations for data values (e.g., for identifying objects). In such cases, data integration
involves determining mappings between source schemas, and then transforming these
schemas into a common schema and corresponding integrated data set that can be used
for some other purpose. These mappings and transformations typically represent logi-
cally necessary relationships between different data sources.

In contrast, data integration in the life sciences often entails applying fundamen-
tally different kinds of information to answer scientific questions, make discoveries,
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Fig. 1. Scientific workflow components frequently produce lists of results: (a) typical bioinfor-
matics components; and (b) a hypothetical workflow composed from these components that leads
to increasingly nested data collections

and test theories. Such scientific data integration procedures necessarily invoke scien-
tific theories that cannot be inferred from schemas or data alone. For example, consider
a systematist who wishes to use both genomic sequence data and morphological data
in the process of inferring the evolutionary relationships among organisms. Instead of
simply mapping DNA sequences and morphological data into a uniform data format,
different processes may be applied to each data source to infer evolutionary (i.e., phy-
logenetic) trees. The systematist then may use the assumption that the organisms have
only one true set of evolutionary relationships, and that the phylogenetic trees inferred
from genomic and morphological data approximate the true relationships. By employ-
ing this theory, the researcher may “integrate” these distinct data sources by computing
a consensus tree that reflects commonalities in the distinct phylogenetic trees inferred
from the different data sources. These consensus trees (i.e., the resulting data product
of integration) can then be analyzed further or applied in other studies.

The challenge of integrating life-science data from multiple sources becomes even
more daunting as disciplines become increasingly specialized and as more diverse types
of scientific data are desired. Scientific workflow systems [12,13,15,20,22,4] aim at fa-
cilitating these types of integration and analysis.1 However, current scientific workflow
systems still offer little or no support for effectively managing (and hiding) the inherent
complexity of life-science data, leading to overly complex workflows that are hard to
create, reuse, and optimize.

As shown in Figure 1, scientific workflow components (or actors) frequently gener-
ate lists of results. When carried out one after the other, such operations naturally yield
increasingly nested collections of data that must be managed during workflow execu-
tion. This situation is further complicated by the fact that the steps in such workflows
in general operate on different nesting levels. For example, a query of a database map-
ping sequence motifs to known transcription factors might take a single motif as an
input, while the operation upstream of this step in the workflow might generate a list of
motifs to operate upon. Similarly, the collection of all transcription factors associated
with a number of different sequence motifs might be required as input to a downstream
component. As these examples demonstrate, scientific workflows must be able to main-

1 Figure 4 shows an implementation of a workflow for inferring and analyzing phylogenetic
trees using the Kepler system.



tain associations within and between nested lists of intermediate results throughout the
workflow, while at the same time presenting to each workflow component data inputs
of the correct type and granularity.

We address this problem by proposing a framework for representing and manag-
ing nested collections in scientific workflows (Section 2). Our approach is inspired by
flow-based programming [18] and techniques used in collection-based [3] and func-
tional programming languages. We represent nested data collections as “flat” sequences
of data tokens embedded with special control tokens for delimiting the beginning and
end of each collection. We previously have described [17] how our implementation of
this approach within the Kepler scientific workflow system provides convenient high-
level operations for managing nested collections; facilitates highly pipelined execution
of actors operating at different levels of collection nesting; simplifies workflow design;
enables context-dependent, dynamic configuration of actors; and supports robust work-
flow exception handling.

In this paper we define an abstract data model for collection-oriented workflows
(Section 3). Using this abstract data model, we then define a lightweight schema lan-
guage for restricting collection-oriented structures. Collection schemas can be used for
a number of purposes. They allow developers to “publish” reusable collection defini-
tions. Schemas are also used in defining scope parameters (Section 4), which declare the
type of data an actor operates over, and how the actor should be invoked over that data.
In general, scope parameters are declarative expressions used to configure collection-
aware actors and to simplify actor development. Finally, we introduce an approach that
allows collection-aware actors to be composed readily from conventional Kepler actors,
and show how this approach can simplify the development of new collection-aware ac-
tors and further facilitate reusability in scientific workflows.

2 The Collection-Oriented Workflow Approach

2.1 The Kepler Scientific Workflow System

The Kepler scientific workflow system [1,12] is being developed jointly by a collabora-
tion of application-oriented scientific research projects.2 Kepler extends the Ptolemy II3

system (hereafter, Ptolemy) with new features and components for scientific workflow
design and for efficient workflow execution using distributed computational and ex-
perimental resources. Ptolemy was originally developed as a modeling and simulation
environment, e.g. to study complex computation models and embedded system appli-
cations.

In Kepler, users develop workflows by selecting appropriate components (called
actors) and placing them on the design canvas. Once on the canvas, components can
be “wired” together to form the desired dataflow graph, e.g., as shown in Figure 4.
Actors have input ports and output ports that provide the communication interface to
other actors. Workflows can be hierarchically defined, using composite actors to contain
subworkflows. Control-flow elements such as branches and loops are also supported.

2 http://www.kepler-project.org/
3 http://ptolemy.eecs.berkeley.edu/



In Kepler, actors can be written directly in Java or can wrap external components.
For example, Kepler provides mechanisms to create actors from web services, C/C++
applications, scripting languages, R4 and Matlab, database queries, SRB5 commands,
and so on.

In Kepler, data is represented as a sequence of tokens, which are passed from one
actor to another via actor connections. Kepler differs from other scientific workflow
systems in that the overall execution and component interaction semantics of a work-
flow is not determined by actors, but instead is defined by a separate component called a
director. This separation allows actors to be reused in workflows having different mod-
els of computation. Kepler (via Ptolemy) includes directors that specify, e.g., process
network (PN), synchronous dataflow (SDF), continuous time (CT), discrete event (DE),
and finite state machine (FSM) computation models.

Most scientific workflows defined using Kepler use the PN director (based on [9]),
or SDF, a restricted version of PN. The PN director executes each actor in a workflow as
a separate process (or thread). Actors communicate asynchronously in process networks
through buffered channels implemented as queues of effectively unbounded size. The
PN director can be used to pipeline data tokens through scientific workflows, enabling
highly concurrent execution. In SDF, actors a priori define fixed token consumption and
production rates. This allows the SDF director to statically schedule actors [10], while
guaranteeing certain properties of workflows. Ptolemy’s support for composite actors
allow multiple computing models to be used within a single workflow by optionally
specifying distinct directors for particular subworkflows, e.g., the PaupHSearch com-
posite actor employs the SDF director (Figure 8), but may be used within a workflow
based on the PN director (Figure 4).

2.2 Managing Nested Data Collections in Kepler

Kepler currently does not provide explicit support for managing nested collections, and
workflow authors use a variety of approaches to add this support to Kepler workflows.
The general approach used to support nested collections in Kepler is shown in Figure 2.
Figure 2 (a) shows two conventional Kepler actors A and B, where the output of A is
connected to the input of B. Here, A produces singleton data items of type β (where
individual items are denoted β1, β2, etc.), which are directly consumed by B. Figure 2 (b)
shows a similar workflow, but where actor A has been replaced by actor A′, which
produces lists of items of type β instead of only singleton β values. The block labeled CF
indicates where special control-flow actors are used to unpack and repack list elements.6

Figure 2 (c) uses the same underlying workflow; in this case however, actor A′ receives
a list of input values, introducing additional control-flow blocks. Figure 2 (d) shows the
case where an actor A′′ produces pairs of items of type (δ, β), the β items are routed
using a control-flow bock to the B actor (which expects only β items), and the δ items
are routed downstream where they are paired with B’s output (again, using a control-
flow block) and passed as input to the C actor.

4 http://www.r-project.org/
5 Storage Resource Broker, http://www.sdsc.edu/srb/
6 Control-flow blocks are implemented in a number of ways in practice, but are typically mod-

eled using multiple low-level actors possibly placed within a composite.



Fig. 2. Conventional scientific workflows with control-flow constructs for handling complex data
(top), and corresponding collection-oriented workflows (bottom) in which the control-flow is
managed explicitly by the framework

As Figure 2 demonstrates, a significant weakness of using special actors to manage
collections is that the resulting workflows must be modified to handle changes in (up-
stream) data nesting. In principle, one could tailor variants of actors A–C to support par-
ticular collection structures, e.g., by embedding the logic represented by the CF blocks
within custom code in each actor. This approach, however, limits the ability to reuse
these actors in other workflows and contexts. In general, ad hoc approaches for man-
aging nested collections in scientific workflows leads to code duplication and tightly
couples actor implementations with workflow designs; hampers rapid prototyping of
workflows and associated data structures; makes comprehension, reuse, and refactoring
of existing workflows difficult; and limits reuse of actors designed for these workflows.

Our solution is to provide explicit support for developing “collection-aware” actors.
These actors employ a common framework for managing nested collections efficiently
and transparently. Moreover, workflows composed from collection-aware actors do not
suffer from the reuse limitations inherent in ad hoc approaches to managing nested col-
lections. The lower panel of Figure 2 shows collection-oriented workflows equivalent to
the conventional workflows in the upper panel. Note that introducing additional levels of
data nesting does not change the collection-oriented workflow definitions. Collection-
oriented workflows and actors are by design immune to such changes and thus far more
reusable. In this example, each collection-aware actor defines their input of interest
using a scope expression (e.g., α for A and β for B). The framework automatically per-
forms the necessary control-flow functions for providing each actor with their data of
interest. In addition, input data outside of an actor’s scope is automatically forwarded
downstream.



Fig. 3. Collection-oriented workflows represent nested data collections as flat token streams,
where collection-aware actors can concurrently process collections

Figure 3 illustrates our approach for streaming nested collections through work-
flows. Data streams are “flattened” into a sequence of tokens by denoting nested collec-
tions via pairs of explicit opening and closing delimiter tokens. Delimited collections
may contain data tokens (labeled di in Figure 3), explicit metadata tokens (labeled mj

in Figure 3), and other sub-collections (denoted using embedded control tokens, e.g.,
bstart and bend). Metadata tokens are used to carry information that applies to the col-
lections or data items that follow them in the stream. As shown in Figure 3, a series
of actors may operate concurrently on the contents of collections. For example, in Fig-
ure 3, Actors 1-4 all simultaneously process parts of collection a, Actors 2 and 3 each
simultaneously process a part of collection c, and so on.

Figure 4 shows a collection-oriented workflow implemented within Kepler for in-
ferring phylogenetic trees. The AddData actor is used to specify a list of files contain-
ing input data in the Nexus file format [14]. The ReadFile actor reads these Nexus files
from disk and outputs a generic TextFile collection for each; ParseNexus transforms
these text collections into corresponding Nexus collections. The PaupHSearch actor
executes the PAUP* [21] external application (as a separate system process) on each
Nexus collection it receives, adding the phylogenetic trees it infers to the collection.
The PhylipConsense actor applies the CONSENSE7 external application to the trees
inferred by the PaupHSearch actor, adding a consensus tree (reflecting commonalities
in the trees inferred by PAUP*) to each Nexus collection. The ExceptionCatcher actor
discards Nexus collections that triggered exceptions in upstream actors. The TreeRe-
porter actor displays each tree and associated statistics for each tree in a web-browser
interface. Finally, the ComposeNexus and WriteFile actors save the results of analyz-
ing each Nexus collection back to disk in the Nexus file format.

Note that each Nexus collection created by the ParseNexus actor pass through five
downstream actors. These actors operate on the Nexus collections in turn, assembly-
line style, reading data from the collections, and adding new information back to the
collections. In particular, PaupHSearch expects to find data representing a character
matrix in each Nexus collection, and PhylipConsense expects to find the phylogenetic
trees inferred by PaupHSearch. The TreeReporter actor requires access to both the
character matrix and the trees. As described in detail in the next section, each actor
in a collection-oriented workflow declares what collection types (e.g., Nexus) and data

7 http://evolution.gs.washington.edu/phylip.html



Fig. 4. A Kepler collection-oriented workflow for inferring phylogenetic trees

types (e.g., CharacterMatrix) it operates on using a scope expression. As previously
mentioned, the framework transparently passes any data not required by an actor to
downstream actors, i.e., an actor is never made aware of data it does not declare interest
in. The result is that composing collection-oriented workflows simply entails stringing
together actors in an intuitive order (e.g., it makes sense to run TreeReporter after
PaupHSearch and PhylipConsense), without regard to the details of the data structures
flowing between actors at runtime.

3 Abstract Data Model for Collection-Oriented Workflows

In this section we describe an abstract data model and syntax for representing collection-
oriented structures (instances and schemas). Our model represents nested data collec-
tions as node-labeled ordered trees that are “flattened” into sequences of underlying
data tokens.

3.1 Collection Instances

A collection instance in our abstract data model denotes a node-labeled ordered tree
(similar to XML). Tree order represents the serialization order of a collection. In gen-
eral, the order of items within a collection may or may not be “scientifically” mean-
ingful. Node labels are applied to collections, metadata, and data values. Syntactically,
a collection is denoted l[ . . . ], a metadata value is denoted @l:d, and a data value is
denoted l:d, where l is a label and d a data value. A data (or metadata) value is either
an atomic value such as a string or int, or a complex value represented by an object
identifier.

A collection-oriented sequence can consist of labeled collections, labeled metadata
values, and labeled data values. We require each label within a particular metadata



sequence to be unique. The abstract syntax for sequences is defined by the following
grammar. Note that in the abstract syntax, a collection defines a tree by encapsulating a
collection-oriented sequence, where each item represents a child of the collection.

s ::= υ | υ, s (Sequence)
υ ::= l:d | @l:d | l[s] (Data, Metadata, or Collection Value)

We convert collection-oriented sequences into Kepler token sequences as follows. Each
nested data collection is represented as a flat sequence of tokens within Kepler(see
Figure 3), such that each collection instance is enclosed by special opening and closing
delimiter tokens (representing the ‘[’ and ‘]’ collection symbols). Delimiter tokens carry
the label of the associated collection. Tokens are also used to store metadata and data
items, and to provide actors with explicit access to item labels and to atomic and object-
based values.

Nested data collections are often used to model the physical structure of a system
under study. The following example, taken from structural biology, represents a portion
of a protein structure described in a Protein Data Bank8 (PDB) file. The PDB collection
contains a protein-chain collection that in turn contains two atom objects o1 and o2.

PDBCollection[ ProteinChain[ Atom:o1, Atom:o2 ] ].

The next example defines a Nexus collection nested within a project collection, along
with associated metadata.

Project[ @FilePath:‘/myproject/aquatic/turtles.nex’,
Nexus[CharacterMatrix:o1, @CI:0.88, Tree:o2, @CI:0.82, Tree:o3 ] ]

This Nexus collection has a file-path metadata value, and each tree within the collection
has a CI (consistency index) metadata value. Note that the character matrix and trees
inherit the file-path metadata value of the Nexus collection.

In the abstract model, we require metadata values for a given data or collection item
to directly precede the item in a sequence. This restriction guarantees that as a data
item is received by an actor, the actor has seen the item’s associated metadata values.
Metadata values are automatically cached for an actor in the Kepler implementation
of collection-oriented workflows. In general, this approach simplifies the processing of
metadata, and for many cases limits the amount of data that must be cached, maximizing
the performance of pipelining.

The function descendents(c) returns the contents of a collection c as a sequence
of items, given by a top-down, left-to-right traversal of c. The function metadata(υ)
returns, as a sequence, the metadata values directly associated with a data or collection
item υ. Metadata values “cascade” to the descendents of a collection, unless otherwise
overridden by an item. Thus, the function metadata∗(υ) returns all metadata values, as
a sequence, for data and collection items υ.

The abstract data model for nested data collections is similar to XML. In particular,
data and collection items correspond to XML elements, where data “elements” con-
tain only simple content, collection “elements” contain complex content (i.e., subele-
ments), and metadata items correspond to attributes. Our model is simpler in that it

8 http://www.rcsb.org



Schema

PDBCollection [

Header [ ] ?, ProteinChain [

Atom with @name + ] +

]

Instance

PDBCollection [

Molecule [ 

ProteinChain [

Residue [ @name:N, Atom:A, @name:C, Atom:B, … ],

Residue [ …] ], 

ProteinChain […] ], 

Molecule […] ]

PDBCollection

ProteinChain +

Atom +

Header ?

@name
Atom A

PDBCollection

Molecule A Molecule B

ProteinChain A ProteinChain B

Residue BResidue A

Atom B
…

@name:N @name:C

…

…

…

Fig. 5. A collection schema (left) shown as both a tree pattern and using the abstract schema
language, and a conforming instance (right) shown both as a nested collection and using the
abstract collection language

does not have constructs corresponding to XML documents, identifiers (IDs), references
(IDREFs), or mixed content. Also, we treat nesting explicitly as denoting “part-of” re-
lationships, with the result that metadata is inherited by contained “parts.” Because of
the similarity to XML, we can use standard XML languages over nested collections
such as XPath expressions, e.g., to retrieve portions of collection-oriented sequences.9

3.2 Collection Schemas

Collection schemas are similar to regular tree grammars [19]. However, our approach
is tailored to collection-oriented workflows, in that: (1) we do not assume a “closed”
schema model by default, and instead allow conforming instances to contain additional
information; (2) we do not restrict the particular nesting levels of sub-collections, and
allow conforming instances to contain unspecified intermediate collections; and (3) we
do not restrict the ordering of sub-items (collections or data items).

A simple example of a collection schema and conforming instance are given in Fig-
ure 5. The schema, shown on the left, defines a PDB collection of interest as containing
an optional header collection and one or more protein chain collections, where each
protein chain contains one or more atoms having a name metadata value. A conforming
instance of the schema is shown on the right of Figure 5. The PDB collection instance
does not directly contain a protein chain, and instead contains multiple “molecule” col-
lections. Similarly, each protein chain does not directly contain an atom data item, and
instead the atoms are nested within residue collections. Thus, unlike with XML Schema
or XML DTDs, collection schemas allow instances to have additional items including
intermediate collections (e.g., matching PDBCollection//ProteinChain//Atom instead
of PDBCollection/ProteinChain/Atom).

A sequence type specifies the kinds of items expected within a given sequence. In
addition to expected item types, one can also specify item types that are not permissible

9 With the caveat that metadata values, treated as attributes, “cascade” to nested items.



υ :: τυ, (¬∃υ′ ∈ s) υ′ :: τυ
v, s :: τυ

υ :: τυ, (¬∃υ′ ∈ s) υ′ :: τυ
v, s :: τυ?, s :: τυ?

υ :: τυ
v, s :: τυ+

s :: τυ∗
¬ (s :: τυ)
s :: not τυ

(∀τ ∈ τs) s :: τ
s :: τs

Fig. 6. Typing rules for occurrence definitions and sequences

in conforming sequences (via the not expression as shown below). An item type is either
a data type or a collection type (itself a sequence type). Data and collection types can
have occurrence qualifiers restricting the number of times an item may occur within a
sequence. The occurrence qualifiers are zero or one (?), one or more (+), zero or more
(*), or exactly one (the default). Data and collection types also can have associated
metadata types.

A collection type can specify a label and a sequence type. A data or metadata type
can specify a label and a value type. Value types (denoted ω) are given by their type
names. We do not further specify value structures for complex objects. As for collection
instances, metadata types given for a data or collection type “cascade” to nested items.

τs ::= τq | not τυ | τs, τs (SequenceType)
τq ::= τv { + | * | ? } (QualifiedType)
τυ ::= τd { with m } | τc { with m } (ItemType)
τd ::= data | l | :ω | l:ω (DataType)
τc ::= { l } [ { τs } ] (CollectionType)
m ::= τm | m, m (MetadataSet)
τm ::= @ { l } { :ω } (MetadataType)

Given a sequence s and a sequence type τs, we write s :: τs if s conforms to the type
τs. Figure 6 defines the typing rules for occurrence definitions and general sequences.
Note that the zero-or-many occurrence qualifier, as shown, does not restrict collection
contents. However, this qualifier is useful for defining collection-oriented actors, which
we discuss in more detail in the next section. The last rule of Figure 6 defines the
general case for matching entire sequences. Figure 7 gives the typing rules for data
items, collections, and metadata items.

Using schema expressions, it is possible to define standard representations for use in
collection-oriented workflows. In particular, a given schema description can be “pub-
lished,” allowing it to be reused by actors. These published schemas also can enable
certain forms of static type checking, i.e., to ensure that a given collection instance sat-
isfies the target schema within a workflow. Schema expressions also form the basis for
scope expressions, as described in the next section.

4 Scope Expressions for Collection-Oriented Actors

Collection-oriented actors are typically designed to process data within a particular
scope, as opposed to entire streams of heterogeneous data collections. Here we intro-
duce scope parameters for explicitly defining the portion of an incoming data stream



l:d :: data l:d :: l
d :: ω

l:d :: :ω
d :: ω

l:d :: l:ω

l[s] :: [ ] l[s] :: l[ ]
decendents(l[s]) :: τs

l[s] :: [τs]
decendents(l[s]) :: τs

l[s] :: l[τs]

@l:d :: @ @l:d :: @l
d :: ω

@l:d :: @ :ω
d :: ω

@l:d :: @l:ω

υ :: τq, @l:d′ � metadata(υ)
@l:d, υ :: τq

υ :: τq, υ
′ ∈ metadata∗(υ), υ′ :: τm

υ′, υ :: τυ with τm

Fig. 7. Typing rules for data, collection, and metadata items

that is relevant to a collection-aware actor. Scope parameters can significantly reduce
the effort of developing collection-oriented actors. For example, all data that falls out-
side of an actor’s scope specification can be automatically “passed through” the actor
unchanged. The use of scope parameters in this way also facilitates actor reusability,
allowing actors to be used on selected portions of complex data streams, and without
the actors needing to understand the structure or contents of the entire stream. Workflow
designers also can more readily configure a collection-aware actor to work over partic-
ular subsets of data by specializing scope parameters, allowing actors to be flexibly
reused in distinct workflows. We have found the following types of scope parameters to
be useful in practice.

– Read Scope. A read scope specifies the portion of an incoming data sequence that is
relevant to an actor. Typically, the read scope is used to identify the items generally
required for an actor to execute. For example, consider an actor A whose read scope
is given as a Nexus collection. Here, each particular Nexus collection within an
input stream “triggers” A to execute.

– Write Scope. A write scope specifies where output data is placed within a given
stream. For example, actor A may add new data items within each input Nexus
collection. Alternatively, the actor may add a new collection as a sibling of the
Nexus collection, or even replace the Nexus collection with an altogether new type
of collection.

– Iteration Scope. An iteration scope extends a read scope and describes in more
detail (1) what specific data items within the read scope are used by an actor for
processing, and (2) how the actor should be invoked over those data items. For
example, using an iteration-scope parameter, actor A may state that it should be
invoked once for each phylogenetic tree in a collection. Alternatively, the actor
may state that it should be invoked once over all trees within a collection.

– Scope Filter. A scope filter further specializes a read scope. Scope filters are typ-
ically used by workflow developers to control processing within a scientific work-
flow. For example, one might specialize the read scope of actor A by adding a meta-
data restriction (i.e., that a particular metadata value is required) or by requiring the
Nexus collection to be nested within another type of collection (e.g., a particular
kind of sub-project collection).



Here we focus on read and iteration scope parameters. Our approach is to use col-
lection schemas for expressing read scopes (i.e., for stating the type of incoming data
of interest), and to model iteration scopes as queries over schema instances. The result
obtained from applying an iteration-scope query to a read-scope instance is then used
to control the iteration of the actor (for the particular read-scope instance). We give a
simple query language for specifying iteration scopes, where parts of the read scope of
an actor are embedded with variable bindings. Both read and iteration scopes are used
to facilitate the construction of collection-aware composite actors that wrap traditional
actors and subworkflows, as we discuss further in the following section.

The following is an example of a read scope for the PaupHSearch actor of Figure 4.

PaupHSearch.read-scope := Nexus[ CharacterMatrix, WeightVector ? ]

The PaupHSearch works over Nexus collections that contain exactly one character ma-
trix data item and zero-or-one weight vector. The iteration scope of the PaupHSearch
actor is straightforward. For each Nexus collection, the actor consumes the character
matrix and weight vector (if it exists), and produces a set of phylogenetic trees. The
PaupHSearch iteration scope is given by the following expression.

PaupHSearch.iteration-scope ($c, $v) :=
Nexus[ CharacterMatrix {$c}, WeightVector {$v} ].

This iteration expression is shorthand for the following Datalog query.

R(c, v) :- Collection(n), Label(n, Nexus), Descendents(n, c),
Label(c, CharacterMatrix), Descendents(n, v), Label(v, WeightVector).

The relations used in the body of the query access portions of a given instance of the
read-scope schema. For example, the Label relation associates a collection, data, or
metadata item with its label, the Collection relation contains the collection items within
the instance, and the Descendents relation relates collection items with their (transi-
tively) contained items.

The read scope of the TreeReporter actor of Figure 4 is given by the following
expression.

TreeReporter.read-scope := Nexus[ CharacterMatrix, Tree + ].

In this case, the TreeReporter actor displays a report for each tree in the nexus col-
lection using the given character matrix. Thus, for a given nexus collection, the actor
is repeatedly invoked, once for each tree. This invocation pattern is expressed by the
following scope iteration.

TreeReporter.iteration-scope ($c, $t) := Nexus[ CharacterMatrix {$c}, Tree {$t} ].

Finally, the read scope of the ComposeNexus actor of Figure 4 is given by the
following expression.

ComposeNexus.read-scope := Nexus[ CharacterMatrix ?, WeightVector ?, Tree *]



The ComposeNexus actor converts an optional character matrix, weight vector, and a
list of zero-or-more trees into a Nexus file. Note here that the actor is invoked exactly
once for each input Nexus collection, unlike the TreeReporter actor, which is invoked
once per tree. This invocation pattern is described by the following iteration scope.

ComposeNexus.iteration-scope ($c, $v, collect($t in $n)) :=
Nexus{$n}[ CharacterMatrix {$c}, WeightVector {$v}, Tree {$t} ]

The collect expression constructs a list of trees, where each tree is contained in the
given Nexus collection. Every collect expression in an iteration scope consists of a data
or metadata variable (in this case $t) combined with a collection variable (in this case
$n).

In general, an iteration scope defines a mapping from instances I of a collection
schema S to a relation R(x1, . . . , xn), for n ≥ 1. We call each xi of R an attribute of the
iteration scope. Let I be an instance of the read-scope S . We write R(I) to denote the
result of applying the iteration scope to I, where each xi attribute value for a tuple in
R(I) consists of either a metadata value, a data value, or a list of values resulting from
a collect expression. Further, the actor is invoked once for each tuple in R(I). We note
that R(I) can be “lazily” constructed (similar to a standard database iterator) such that
the actor is invoked immediately as each new tuple is obtained.

5 Developing Collection-Aware Actors

We provide two approaches for developing collection-aware actors in Kepler. The first,
which we discuss in more detail in [17], is to directly implement collection-aware actors
natively using a Java API. This API simplifies the implementation of collection-aware
actors by providing comprehensive support for streaming, managing, and operating on
nested data collections. However, we do not expect all actors to be developed in this
way. A large number of “legacy” conventional actors already exist and are in use, in-
cluding web-services and application components that are not designed to be collection
aware. Furthermore, it is often easier and more intuitive to implement conventional
Kepler actors, especially those actors that do not explicitly operate on collections. Ex-
amples include straightforward data-transformation actors that take a single input and
produce a single output, and actors that provide low-level functions for reading and
writing files.

Thus, the second approach for developing collection-aware actors, which we in-
troduce here, involves wrapping traditional actors, or entire subworkflows, within
collection-aware composite actors. This approach facilitates the use of Kepler itself for
specifying collection-aware actors, allows conventional actors to be reused within mul-
tiple collection-aware actors, and reduces the need for writing ad hoc, single-purpose
collection-aware actors from scratch.

To demonstrate the approach, Figure 8 shows how the PaupHSearch, TreeRe-
porter, and ComposeNexus composite actors of Figure 4 are defined. Each composite
actor contains a subworkflow employing an SDF director and one or more conventional
actors. The ComposeNexus subworkflow illustrates how a single conventional actor
may be wrapped in a composite to yield a collection-aware version of the actor. The



subworkflow input ports labeled CharacterMatrix?, WeightVector? and Tree* map to
attributes of the iteration scope parameter of the enclosing collection-aware compos-
ite actor. Like any other collection-oriented actor, the ComposeNexus subworkflow
is invoked each time a match is found for the iteration scope of the actor. On each
invocation, data values of the iteration-scope attributes are passed to the correspond-
ing subworkflow input ports, the actor within the subworkflow operates on these data,
and the outputs written by the enclosed actor are accumulated by the subworkflow out-
put port labeled String. The enclosing composite actor then inserts the output of the
subworkflow back into the data stream. The labels on the ports specify the types and
quantity of data consumed or produced by the subworkflow, and provide anchors for
mapping the iteration scope attributes to the ports.

The PaupHSearch and TreeReporter composite actors are more sophisticated.
Both create and destroy temporary file system directories for running external pro-
cesses, on each invocation, by employing the CreateProcessEnvironment and De-
stroyProcessEnvironment conventional actors. Both run external applications (PAUP*
and DRAWGRAM10), write temporary files for these external programs to read, and
parse output files created by these programs. Note that the ComposeNexus conven-
tional actor is used both in PaupHSearch and in the ComposeNexus composite actor.

Employing the SDF director in collection-aware composite actors, rather than the
PN director used to control the overall collection-oriented workflow, offers a number of
practical advantages. The use of SDF simplifies the specification of these subworkflows,
requiring each actor to have a well-defined token consumption and production rate. In
addition, these lower-level actors can benefit from the optimized static schedule com-
puted by the SDF director, since they typically perform a single function or are meant
to be executed only once per composite invocation. The ability to use multiple models
of computation in a single overall workflow is one of the main strengths of Kepler, and
is essential for supporting these SDF-based subworkflows in our collection-oriented
workflow framework.

6 Conclusion

Our collection-oriented framework shares a number of similarities to XML-based ap-
proaches. For example, the way in which collection-aware actors operate on pipelined
nested collections has similarities with some XML stream processing techniques [6].
The approach is also similar in spirit to list processing constructs in functional pro-
gramming [2] as well as dataflow programming [18]. Because the abstract model of
nested data collections is (essentially) a subset of XML, we can leverage and adapt
existing XML-based query processing [7] and optimization techniques [8] for manag-
ing nested collections. For example, algorithms for XML-based publish and subscribe
architectures [23] are relevant for applying actor scope parameters to incoming data
streams, and iteration-scope expressions can leverage work in XML query optimization
and on languages such as XPathLog [16].

Scientific workflows play an important role in a number of ongoing large research
projects dealing with scientific data management, and represent an emerging paradigm
10 http://evolution.gs.washington.edu/phylip.html
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Fig. 8. The PaupHSearch, TreeReporter, and ComposeNexus collection-aware actors defined
in terms of conventional actors

for analyzing and integrating biological data from diverse sources. The development of
“rigid” workflow modeling and design frameworks has recently been identified as a ma-
jor bottleneck for scientific workflow reuse and repurposing [5]. We have found that this
lack of flexibility is often due to the use of control-flow within workflows for managing,
integrating, and analyzing inherently complex life-science data. The collection-oriented
framework extends the capabilities of existing systems by facilitating the management
of scientific data within scientific workflows. In particular, collection-oriented work-
flows are often significantly simpler and more intuitive than their conventional counter-
parts, can support higher-levels of concurrency and pipelining, and allow flexible actor
configuration enabling greater levels of actor reuse. By additionally allowing collection-
aware actors to be composed from conventional actors and Kepler sub-workflows, our
approach can support the reuse and repurposing of a wide variety of actors and work-
flows.
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sible System for Design and Execution of Scientific Workflows. In SSDBM, 2004.

2. P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong. Principles of Programming with Complex
Objects and Collection Types. Theoretical Computer Science, 149(1), 1995.

3. S. Davidson, C. Hara, and L. Popa. Querying an Object-Oriented Database using CPL. In
Brazilian Symposium on Databases (SBBD), 1997.

4. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi, and
M. Livny. Pegasus: Mapping Scientific Workflows onto the Grid. In European Across Grids
Conference, 2004.

5. A. Goderis, C. Goble, U. Sattler, and P. Lord. Seven Bottlenecks to Workflow Reuse and
Repurposing. In ISWC, 2005.
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