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Abstract

In the multi-armed bandit problem, an online algorithm must choose
from a set of strategies in a sequence of n trials so as to minimize the
total cost of the chosen strategies. While nearly tight upper and lower
bounds are known in the case when the strategy set is finite, much less is
known when there is an infinite strategy set. Here we consider the case
when the set of strategies is a subset of R

d, and the cost functions are
continuous. In the d = 1 case, we improve on the best-known upper and
lower bounds, closing the gap to a sublogarithmic factor. We also con-
sider the case where d > 1 and the cost functions are convex, adapting a
recent online convex optimization algorithm of Zinkevich to the sparser
feedback model of the multi-armed bandit problem.

1 Introduction

In an online decision problem, an algorithm must choose from among a set of strategies in
each of n consecutive trials so as to minimize the total cost of the chosen strategies. The
costs of strategies are specified by a real-valued function which is defined on the entire
strategy set and which varies over time in a manner initially unknown to the algorithm.
The archetypical online decision problems are the best expert problem, in which the entire
cost function is revealed to the algorithm as feedback at the end of each trial, and the multi-
armed bandit problem, in which the feedback reveals only the cost of the chosen strategy.
The names of the two problems are derived from the metaphors of combining expert advice
(in the case of the best expert problem) and learning to play the best slot machine in a casino
(in the case of the multi-armed bandit problem).

The applications of online decision problems are too numerous to be listed here. In ad-
dition to occupying a central position in online learning theory, algorithms for such prob-
lems have been applied in numerous other areas of computer science, such as paging and
caching [6, 14], data structures [7], routing [4, 5], wireless networks [19], and online auc-
tion mechanisms [8, 15]. Algorithms for online decision problems are also applied in a
broad range of fields outside computer science, including statistics (sequential design of
experiments [18]), economics (pricing [20]), game theory (adaptive game playing [13]),
and medical decision making (optimal design of clinical trials [10]).

Multi-armed bandit problems have been studied quite thoroughly in the case of a finite
strategy set, and the performance of the optimal algorithm (as a function of n) is known
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up to a constant factor [3, 18]. In contrast, much less is known in the case of an infinite
strategy set. In this paper, we consider multi-armed bandit problems with a continuum of
strategies, parameterized by one or more real numbers. In other words, we are studying
online learning problems in which the learner designates a strategy in each time step by
specifying a d-tuple of real numbers (x1, . . . , xd); the cost function is then evaluated at
(x1, . . . , xd) and this number is reported to the algorithm as feedback. Recent progress on
such problems has been spurred by the discovery of new algorithms (e.g. [4, 9, 16, 21])
as well as compelling applications. Two such applications are online auction mechanism
design [8, 15], in which the strategy space is an interval of feasible prices, and online
oblivious routing [5], in which the strategy space is a flow polytope.

Algorithms for online decisions problems are often evaluated in terms of their regret, de-
fined as the difference in expected cost between the sequence of strategies chosen by the
algorithm and the best fixed (i.e. not time-varying) strategy. While tight upper and lower
bounds on the regret of algorithms for the K-armed bandit problem have been known
for many years [3, 18], our knowledge of such bounds for continuum-armed bandit prob-
lems is much less satisfactory. For a one-dimensional strategy space, the first algorithm
with sublinear regret appeared in [1], while the first polynomial lower bound on regret ap-
peared in [15]. For Lipschitz-continuous cost functions (the case introduced in [1]), the
best known upper and lower bounds for this problem are currently O(n3/4) and Ω(n1/2),
respectively [1, 15], leaving as an open question the problem of determining tight bounds
for the regret as a function of n. Here, we solve this open problem by sharpening the up-
per and lower bounds to O(n2/3 log1/3(n)) and Ω(n2/3), respectively, closing the gap to a
sublogarithmic factor. Note that this requires improving the best known algorithm as well
as the lower bound technique.

Recently, and independently, Eric Cope [11] considered a class of cost functions obeying
a more restrictive condition on the shape of the function near its optimum, and for such
functions he obtained a sharper bound on regret than the bound proved here for uniformly
locally Lipschitz cost functions. Cope requires that each cost function C achieves its op-
timum at a unique point θ, and that there exist constants K0 > 0 and p ≥ 1 such that for
all x, |C(x)− C(θ)| ≥ K0‖x− θ‖p. For this class of cost functions — which is probably
broad enough to capture most cases of practical interest — he proves that the regret of the
optimal continuum-armed bandit algorithm is O(n−1/2), and that this bound is tight.

For a d-dimensional strategy space, any multi-armed bandit algorithm must suffer regret
depending exponentially on d unless the cost functions are further constrained. (This is
demonstrated by a simple counterexample in which the cost function is identically zero
in all but one orthant of R

d, takes a negative value somewhere in that orthant, and does
not vary over time.) For the best-expert problem, algorithms whose regret is polynomial
in d and sublinear in n are known for the case of cost functions which are constrained to
be linear [16] or convex [21]. In the case of linear cost functions, the relevant algorithm
has been adapted to the multi-armed bandit setting in [4, 9]. Here we adapt the online
convex programming algorithm of [21] to the continuum-armed bandit setting, obtaining
the first known algorithm for this problem to achieve regret depending polynomially on
d and sublinearly on n. A remarkably similar algorithm was discovered independently
and simultaneously by Flaxman, Kalai, and McMahan [12]. Their algorithm and analysis
are superior to ours, requiring fewer smoothness assumptions on the cost functions and
producing a tighter upper bound on regret.

2 Terminology and Conventions

We will assume that a strategy set S ⊆ R
d is given, and that it is a compact subset of R

d.
Time steps will be denoted by the numbers {1, 2, . . . , n}. For each t ∈ {1, 2, . . . , n} a cost



function Ct : S → R is given. These cost functions must satisfy a continuity property
based on the following definition. A function f is uniformly locally Lipschitz with constant
L (0 ≤ L < ∞), exponent α (0 < α ≤ 1), and restriction δ (δ > 0) if it is the case that
for all u, u′ ∈ S with ‖u− u′‖ ≤ δ,

|f(u)− f(u′)| ≤ L‖u− u′‖α.

(Here, ‖ · ‖ denotes the Euclidean norm on R
d.) The class of all such functions f will be

denoted by ulL(α,L, δ).

We will consider two models which may govern the cost functions. The first of these
is identical with the continuum-armed bandit problem considered in [1], except that [1]
formulates the problem in terms of maximizing reward rather than minimizing cost. The
second model concerns a sequence of cost functions chosen by an oblivious adversary.

Random The functions C1, . . . , Cn are independent, identically distributed random sam-
ples from a probability distribution on functions C : S → R. The expected cost
function C̄ : S → R is defined by C̄(u) = E(C(u)) where C is a random sample
from this distribution. This function C̄ is required to belong to ulL(α,L, δ) for
some specified α,L, δ. In addition, we assume there exist positive constants ζ, s0

such that if C is a random sample from the given distribution on cost functions,
then

E(esC(u)) ≤ e
1
2
ζ2s2 ∀|s| ≤ s0, u ∈ S.

The “best strategy” u∗ is defined to be any element of arg minu∈S C̄(u). (This
set is non-empty, by the compactness of S.)

Adversarial The functions C1, . . . , Cn are a fixed sequence of functions in ulL(α,L, δ),
taking values in [0, 1]. The “best strategy” u∗ is defined to be any element of
arg minu∈S

∑n
t=1 Ct(u). (Again, this set is non-empty by compactness.)

A multi-armed bandit algorithm is a rule for deciding which strategy to play at time t, given
the outcomes of the first t − 1 trials. More formally, a deterministic multi-armed bandit
algorithm U is a sequence of functions U1, U2, . . . such that Ut : (S × R)t−1 → S. The
interpretation is that Ut(u1, x1, u2, x2, . . . , ut−1, xt−1) defines the strategy to be chosen at
time t if the algorithm’s first t − 1 choices were u1, . . . , ut−1 respectively, and their costs
were x1, . . . , xt−1 respectively. A randomized multi-armed bandit algorithm is a proba-
bility distribution over deterministic multi-armed bandit algorithms. (If the cost functions
are random, we will assume their randomness is independent of the algorithm’s random
choices.) For a randomized multi-armed bandit algorithm, the n-step regret Rn is the ex-
pected difference in total cost between the algorithm’s chosen strategies u1, u2, . . . , un and
the best strategy u∗, i.e.

Rn = E

[

n
∑

t=1

Ct(ut)− Ct(u
∗)

]

.

Here, the expectation is over the algorithm’s random choices and (in the random-costs
model) the randomness of the cost functions.

3 Algorithms for the one-parameter case (d = 1)

The continuum-bandit algorithm presented in [1] is based on computing an estimate Ĉ of
the expected cost function C̄ which converges almost surely to C̄ as n→∞. This estimate
is obtained by devoting a small fraction of the time steps (tending to zero as n → ∞)
to sampling the random cost functions at an approximately equally-spaced sequence of
“design points” in the strategy set, and combining these samples using a kernel estimator.



When the algorithm is not sampling a design point, it chooses a strategy which minimizes
expected cost according to the current estimate Ĉ. The convergence of Ĉ to C̄ ensures that
the average cost in these “exploitation steps” converges to the minimum value of C̄.

A drawback of this approach is its emphasis on estimating the entire function C̄. Since the
algorithm’s goal is to minimize cost, its estimate of C̄ need only be accurate for strategies
where C̄ is near its minimum. Elsewhere a crude estimate of C̄ would have sufficed, since
such strategies may safely be ignored by the algorithm. The algorithm in [1] thus uses
its sampling steps inefficiently, focusing too much attention on portions of the strategy
interval where an accurate estimate of C̄ is unnecessary. We adopt a different approach
which eliminates this inefficiency and also leads to a much simpler algorithm. First we
discretize the strategy space by constraining the algorithm to choose strategies only from
a fixed, finite set of K equally spaced design points {1/K, 2/K, . . . , 1}. (For simplicity,
we are assuming here and for the rest of this section that S = [0, 1].) This reduces the
continuum-armed bandit problem to a finite-armed bandit problem, and we may apply one
of the standard algorithms for such problems. Our continuum-armed bandit algorithm is
shown in Figure 1. The outer loop uses a standard doubling technique to transform a
non-uniform algorithm to a uniform one. The inner loop requires a subroutine MAB
which should implement a finite-armed bandit algorithm appropriate for the cost model
under consideration. For example, MAB could be the algorithm UCB1 of [2] in the
random case, or the algorithm Exp3 of [3] in the adversarial case. The semantics of MAB
are as follows: it is initialized with a finite set of strategies; subsequently it recommends
strategies in this set, waits to learn the feedback score for its recommendation, and updates
its recommendation when the feedback is received.

The analysis of this algorithm will ensure that its choices have low regret relative to the best
design point. The Lipschitz regularity of C̄ guarantees that the best design point performs
nearly as well, on average, as the best strategy in S.

ALGORITHM CAB1
T ← 1
while T ≤ n

K ←
⌈

(

T
log T

)
1

2α+1

⌉

Initialize MAB with strategy set {1/K, 2/K, . . . , 1}.
for t = T, T + 1, . . . ,min(2T − 1, n)

Get strategy ut from MAB.
Play ut and discover Ct(ut).
Feed 1− Ct(ut) back to MAB.

end
T ← 2T

end

Figure 1: Algorithm for the one-parameter continuum-armed bandit problem

Theorem 3.1. In both the random and adversarial models, the regret of algorithm CAB1

is O(n
α+1

2α+1 log
α

2α+1 (n)).

Proof Sketch. Let q = α
2α+1 , so that the regret bound is O(n1−q logq(n)). It suffices to

prove that the regret in the inner loop is O(T 1−q logq(T )); if so, then we may sum this
bound over all iterations of the inner loop to get a geometric progression with constant
ratio, whose largest term is O(n1−q logq(n)). So from now on assume that T is fixed and
that K is defined as in Figure 1, and for simplicity renumber the T steps in this iteration of



inner loop so that the first is step 1 and the last is step T . Let u∗ be the best strategy in S,
and let u′ be the element of {1/K, 2/K, . . . , 1} nearest to u∗. Then |u′ − u∗| < 1/K, so
using the fact that C̄ ∈ ulL(α,L, δ) (or that 1

T

∑T
t=1 Ct ∈ ulL(α,L, δ) in the adversarial

case) we obtain

E

[

T
∑

t=1

Ct(u
′)− Ct(u

∗)

]

≤ T

Kα
= O

(

T 1−q logq(T )
)

.

It remains to show that E
[

∑T
t=1 Ct(ut)− Ct(u

′)
]

= O
(

T 1−q logq(T )
)

. For the adver-

sarial model, this follows directly from Corollary 4.2 in [3], which asserts that the regret
of Exp3 is O

(√
TK log K

)

. For the random model, a separate argument is required.
(The upper bound for the adversarial model doesn’t directly imply an upper bound for
the random model, since the cost functions are required to take values in [0, 1] in the ad-
versarial model but not in the random model.) For u ∈ {1/K, 2/K, . . . , 1} let ∆(u) =

C̄(u)− C̄(u′). Let ∆ =
√

K log(T )/T , and partition the set {1/K, 2/K, . . . , 1} into two
subsets A,B according to whether ∆(u) < ∆ or ∆(u) ≥ ∆. The time steps in which the
algorithm chooses strategies in A contribute at most O(T∆) = O(T 1−q logq(T )) to the
regret. For each strategy u ∈ B, one may prove that, with high probability, u is played
only O(log(T )/∆(u)2) times. (This parallels the corresponding proof in [2] and is omitted
here. Our hypothesis on the moment generating function of the random variable C(u) is
strong enough to imply the exponential tail inequality required in that proof.) This im-
plies that the time steps in which the algorithm chooses strategies in B contribute at most
O(K log(T )/∆) = O(T 1−q logq(T )) to the regret, which completes the proof.

4 Lower bounds for the one-parameter case

There are many reasons to expect that Algorithm CAB1 is an inefficient algorithm for the
continuum-armed bandit problem. Chief among these is that fact that it treats the strategies
{1/K, 2/K, . . . , 1} as an unordered set, ignoring the fact that experiments which sample
the cost of one strategy j/K are (at least weakly) predictive of the costs of nearby strategies.
In this section we prove that, contrary to this intuition, CAB1 is in fact quite close to the
optimal algorithm. Specifically, in the regret bound of Theorem 3.1, the exponent of α+1

2α+1

is the best possible: for any β < α+1
2α+1 , no algorithm can achieve regret O(nβ). This lower

bound applies to both the randomized and adversarial models.

The lower bound relies on a function f : [0, 1]→ [0, 1] defined as the sum of a nested fam-
ily of “bump functions.” Let B be a C∞ bump function defined on the real line, satisfying
0 ≤ B(x) ≤ 1 for all x, B(x) = 0 if x ≤ 0 or x ≥ 1, and B(x) = 1 if x ∈ [1/3, 2/3]. For
an interval [a, b], let B[a,b] denote the bump function B(x−a

b−a ), i.e. the function B rescaled
and shifted so that its support is [a, b] instead of [0, 1]. Define a random nested sequence
of intervals [0, 1] = [a0, b0] ⊃ [a1, b1] ⊃ . . . as follows: for k > 0, the middle third of
[ak−1, bk−1] is subdivided into intervals of width wk = 3−k!, and [ak, bk] is one of these
subintervals chosen uniformly at random. Now let

f(x) = 1/3 +
(

3α−1 − 1/3
)

∞
∑

k=1

wα
k B[ak,bk](x).

Finally, define a probability distribution on functions C : [0, 1] → [0, 1] by the following
rule: sample λ uniformly at random from the open interval (0, 1) and put C(x) = λf(x).

The relevant technical properties of this construction are summarized in the following
lemma.



Lemma 4.1. Let {u∗} =
⋂∞

k=1[ak, bk]. The function f(x) belongs to ulL(α,L, δ) for
some constants L, δ, it takes values in [1/3, 2/3], and it is uniquely maximized at u∗. For
each λ ∈ (0, 1), the function C(x) = λf(x) belongs to ulL(α,L, δ) for some constants
L, δ, and is uniquely minimized at u∗. The same two properties are satisfied by the function
C̄(x) = Eλ∈(0,1)

[

λf(x)
]

= (1 + f(x))−1.

Theorem 4.2. For any randomized multi-armed bandit algorithm, there exists a probability
distribution on cost functions such that for all β < α+1

2α+1 , the algorithm’s regret {Rn}∞n=1

in the random model satisfies

lim sup
n→∞

Rn

nβ
=∞.

The same lower bound applies in the adversarial model.

Proof sketch. The idea is to prove, using the probabilistic method, that there exists a nested
sequence of intervals [0, 1] = [a0, b0] ⊃ [a1, b1] ⊃ . . ., such that if we use these intervals
to define a probability distribution on cost functions C(x) as above, then Rn/nβ diverges
as n runs through the sequence n1, n2, n3, . . . defined by nk = d 1

k (wk−1/wk)w−2α
k e.

Assume that intervals [a0, b0] ⊃ . . . ⊃ [ak−1, bk−1] have already been specified. Subdivide
[ak−1, bk−1] into subintervals of width wk, and suppose [ak, bk] is chosen uniformly at
random from this set of subintervals. For any u, u′ ∈ [ak−1, bk−1], the Kullback-Leibler
distance KL(C(u)‖C(u′)) between the cost distributions at u and u′ is O(w2α

k ), and it is
equal to zero unless at least one of u, u′ lies in [ak, bk]. This means, roughly speaking,
that the algorithm must sample strategies in [ak, bk] at least w−2α

k times before being able
to identify [ak, bk] with constant probability. But [ak, bk] could be any one of wk−1/wk

possible subintervals, and we don’t have enough time to play w−2α
k trials in even a constant

fraction of these subintervals before reaching time nk. Therefore, with constant probability,
a constant fraction of the strategies chosen up to time nk are not located in [ak, bk], and
each of them contributes Ω(wα

k ) to the regret. This means the expected regret at time nk is
Ω(nkwα

k ). From this, we obtain the stated lower bound using the fact that

nkwα
k = n

α+1

2α+1
−o(1)

k .

Although this proof sketch rests on a much more complicated construction than the lower
bound proof for the finite-armed bandit problem given by Auer et al in [3], one may follow
essentially the same series of steps as in their proof to make the sketch given above into
a rigorous proof. The only significant technical difference is that we are working with
continuous-valued rather than discrete-valued random variables, which necessitates using
the differential Kullback-Leibler distance1 rather than working with the discrete Kullback-
Leibler distance as in [3].

5 An online convex optimization algorithm

We turn now to continuum-armed bandit problems with a strategy space of dimension
d > 1. As mentioned in the introduction, for any randomized multi-armed bandit al-
gorithm there is a cost function C (with any desired degree of smoothness and bound-
edness) such that the algorithm’s regret is Ω(2d) when faced with the input sequence
C1 = C2 = . . . = Cn = C. As a counterpoint to this negative result, we seek interesting
classes of cost functions which admit a continuum-armed bandit algorithm whose regret is
polynomial in d (and, as always, sublinear in n). A natural candidate is the class of convex,
smooth functions on a closed, bounded, convex strategy set S ⊂ R

d, since this is the most

1Defined by the formula KL(P‖Q) =
R

log (p(x)/q(x)) dp(x), for probability distributions
P, Q with density functions p, q.



general class of functions for which the corresponding best-expert problem is known to
admit an efficient algorithm, namely Zinkevich’s greedy projection algorithm [21]. Greedy
projection is initialized with a sequence of learning rates η1 > η2 > . . .. It selects an
arbitrary initial strategy u1 ∈ S and updates its strategy in each subsequent time step t
according to the rule ut+1 = P (ut − ηt∇Ct(ut)), where ∇Ct(ut) is the gradient of Ct at
ut and P : R

d → S is the projection operator which maps each point of R
d to the nearest

point of S. (Here, distance is measured according to the Euclidean norm.)

Note that greedy projection is nearly a multi-armed bandit algorithm: if the algorithm’s
feedback when sampling strategy ut were the vector ∇Ct(ut) rather than the number
Ct(ut), it would have all the information required to run greedy projection. To adapt this
algorithm to the multi-armed bandit setting, we use the following idea: group the timeline
into phases of d + 1 consecutive steps, with a cost function Cφ for each phase φ defined by
averaging the cost functions at each time step of φ. In each phase use trials at d+1 affinely
independent points of S, located at or near ut, to estimate the gradient ∇Cφ(ut).2

To describe the algorithm, it helps to assume that the convex set S is in isotropic position in
R

d. (If not, we may bring it into isotropic position by an affine transformation of the coordi-
nate system. This does not increase the regret by a factor of more than d2.) The algorithm,
which we will call simulated greedy projection, works as follows. It is initialized with a
sequence of “learning rates” η1, η2, . . . and “frame sizes” ν1, ν2, . . .. At the beginning of a
phase φ, we assume the algorithm has determined a basepoint strategy uφ. (An arbitrary
uφ may be used in the first phase.) The algorithm chooses a set of (d+1) affinely indepen-
dent points {x0 = uφ, x1, x2, . . . , xd} with the property that for any y ∈ S, the difference
y − x0 may be expressed as a linear combination of the vectors {xi − x0 : 1 ≤ i ≤ d}
using coefficients in [−2, 2]. (Such a set is called an approximate barycentric spanner, and
may computed efficiently using an algorithm specified in [4].) We then choose a random
bijection σ mapping the time steps in phase φ into the set {0, 1, . . . , d}, and in step t we
sample the strategy yt = uφ +νφ(xσ(t)−uφ). At the end of the phase we let Bφ denote the
unique affine function whose values at the points yt are equal to the costs observed during
the phase at those points. The basepoint for the next phase φ′ is determined according to
Zinkevich’s update rule uφ′ = P (uφ − ηφ∇Bφ(uφ)).3

Theorem 5.1. Assume that S is in isotropic position and that the cost functions satisfy
‖Ct(x)‖ ≤ 1 for all x ∈ S, 1≤ t≤n, and that in addition the Hessian matrix of Ct(x) at
each point x ∈ S has Frobenius norm bounded above by a constant. If ηk = k−3/4 and
νk = k−1/4, then the regret of the simulated greedy projection algorithm is O(d3n3/4).

Proof sketch. In each phase φ, let Yφ = {y0, . . . , yd} be the set of points which were
sampled, and define the following four functions: Cφ, the average of the cost functions in
phase φ; Λφ, the linearization of Cφ at uφ, defined by the formula

Λφ(x) = ∇Cφ(uφ) · (x− uφ) + Cφ(uφ);

Lφ, the unique affine function which agrees with Cφ at each point of Yφ; and Bφ, the affine
function computed by the algorithm at the end of phase φ. The algorithm is simply run-
ning greedy projection with respect to the simulated cost functions Bφ, and it consequently
satisfies a low-regret bound with respect to those functions. The expected value of Bφ(u)
is Lφ(u) for every u. (Proof: both are affine functions, and they agree on every point of

2Flaxman, Kalai, and McMahan [12], with characteristic elegance, supply an algorithm which
counterintuitively obtains an unbiased estimate of the approximate gradient using only a single sam-
ple. Thus they avoid grouping the timeline into phases and improve the algorithm’s convergence time
by a factor of d.

3Readers familiar with Kiefer-Wolfowitz stochastic approximation [17] will note the similarity
with our algorithm. The random bijection σ — which is unnecessary in the Kiefer-Wolfowitz algo-
rithm — is used here to defend against the oblivious adversary.



Yφ.) Hence we obtain a low-regret bound with respect to Lφ. To transfer this over to a low-
regret bound for the original problem, we need to bound several additional terms: the regret
experienced because the algorithm was using uφ + ηφ(xσ(t) − uφ) instead of uφ, the dif-
ference between Lφ(u∗) and Λφ(u∗), and the difference between Λφ(u∗) and Cφ(u∗). In
each case, the desired upper bound can be inferred from properties of barycentric spanners,
or from the convexity of Cφ and the bounds on its first and second derivatives.
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