
Test-Sequence Generation with HOL-TestGen
With an Application to Firewall Testing

Achim D. Brucker and Burkhart Wolff

Information Security, ETH Zurich, ETH Zentrum, CH-8092 Zürich, Switzerland.
{brucker, bwolff}@inf.ethz.ch

Abstract HOL-TestGen is a specification and test case generation en-
vironment extending the interactive theorem prover Isabelle/HOL. Its
method is two-staged: first, the original formula is partitioned into test
cases by transformation into a normal form called test theorem. Second,
the test cases are analyzed for ground instances (the test data) satisfying
the constraints of the test cases. Particular emphasis is put on the control
of explicit test hypotheses which can be proven over concrete programs.
Although originally designed for black-box unit-tests, HOL-TestGen’s
underlying logic and deduction engine is powerful enough to be used in
test-sequence generation, too.
We develop the theory for test-sequence generation with HOL-TestGen
and describe its use in a substantial case-study in the field of computer
security, namely the black-box test of configured firewalls.
Key words: symbolic test case generations, test sequence generation,
black box testing, theorem proving, Isabelle/HOL, computer security

1 Introduction

Today, essentially two software validation techniques are used: software verifi-
cation and software testing. As far as symbolic verification methods and model-
based testing techniques are concerned, the interest among researchers in the
mutual fertilization of these fields is growing.

From the verification perspective, testing offers:
– experiences on test-adequacy criteria [12], which can be viewed as new ab-

straction techniques reducing infinite models to finite and checkable ones,
– new approaches to generate counter-examples, and
– new application scenarios for verification, since black-box testing can be

used as a systematic experimentation method for reverse engineering speci-
fications for legacy systems.
From the testing perspective, symbolic verification offers:

– ways to cope with the state space explosions inherent to test case generation
techniques, and

– ways to log the implicit testing hypothesis underlying a test and to make
them explicit.
The HOL-TestGen system [5, 4, 3] is designed to explore and exploit these

complementary assets. Built on top of a widely-used interactive theorem prover,

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff/

2 Achim D. Brucker and Burkhart Wolff

it provides automatic procedures for test case generation and test-data selection
as well as interactive means to perform logical massages of the intermediate
results by derived rules. The core of HOL-TestGen is a test case generation
procedure that decomposes a test specification (TS), i. e., test-property over a
program under test, into a semantically equivalent test theorem of the form:

!TC1; . . . ; TCn; THYP H1; . . . ; THYP Hm" =⇒ TS

where the TCi are the test cases and THYP is a constant (semantically defined
as identity) used to mark the explicit test hypotheses Hj that are underlying this
test. Thus, a test theorem has the following meaning:

If the program under test passes the tests with a witness for all TCi
successfully, and if it satisfies all test hypothesis, it is correct with

respect to TS.

In this sense, the test theorem bridges the gap between test and verification.
Testing can be viewed as systematic weakening of specifications.

HOL-TestGen has been applied to unit-tests; for example, [5] discusses tests
of insert and delete operations for library implementations of red-black trees. In
this paper, however, we show that the procedure can also be used for sequence
testing of locally non-deterministic reactive systems as well: instead of using an
automaton, we build a test-specification based on its input traces. We apply this
technique to a substantial case study in the field of computer security, namely
the black-box test of a configured network firewall. As firewalls are part of today’s
IT security infrastructure, testing their correct behavior is a rewarding task and,
and as we will see, a challenging application for specification based testing.

This paper consists of two parts: In part one, we introduce HOL-TestGen, its
explicit test hypothesis generation and its potential for sequence test generation
conceptually. In part two, we outline the firewall problem domain, present formal
test plans based on these concepts for a concrete configuration, and evaluate
them by some empirical data.

2 Foundations

2.1 Isabelle

Isabelle [10] is a generic theorem prover. New object logics can be introduced
by specifying their syntax and natural deduction inference rules. Among other
logics, Isabelle supports first-order logic, Zermelo-Fraenkel set theory and HOL,
which we choose as framework for HOL-TestGen.

While Isabelle/HOL is usually coined as “proof assistant,” we use it as sym-
bolic computation environment. Implementations on Isabelle/HOL can re-use
existing powerful deduction mechanisms such as higher-order resolution and
rewriting, and the overall environment provides a large collection of compo-
nents ranging from documentation generators and code-generators to (generic)
decision procedures for datatypes and Presburger Arithmetic.

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff/

Test-Sequence Generation with HOL-TestGen 3

Isabelle can easily be controlled by a programming interface on its imple-
mentation level in SML in a logically safe way, as well as in the Isar level, i. e., a
tactic proof language in which interactive and automated proofs can be mixed
arbitrarily. Documents in the Isar format, enriched by the commands provided
by HOL-TestGen, can be processed incrementally within Proof General (see
Section 3) as well as in batch mode. These documents can be seen as formal and
technically checked test plan of a program under test.

Isabelle processes rules and theorems of the form A1 =⇒ . . . =⇒ An =⇒
An+1, also denoted as !A1; . . . ;An" =⇒ An+1. They can be understood as a rule
of the form “from assumptions A1 to An, infer conclusion An+1.” Further, Isabelle
provides a built-in meta-quantifier:

∧
x1, . . . , xm. !A1; . . . ;An" =⇒ An+1 for

representing “fresh free variables not occurring elsewhere” thus avoiding the
usual provisos on logical rules. In particular, the presentation of sub-goals uses
this format. We will refer to assumptions Ai also as constraints in this paper.

2.2 Higher-order Logic

Higher-order logic (HOL) [6, 2] is a classical logic with equality enriched by total
polymorphic1 higher-order functions. It is more expressive than first-order logic,
since e. g., induction schemes can be expressed inside the logic. Pragmatically,
HOL can be viewed as a combination of a typed functional programming language
like SML or Haskell extended by logical quantifiers. Thus, it often allows a very
natural way of specification.

Isabelle/HOL provides also a large collection of theories like sets, lists, mul-
tisets, orderings, and various arithmetic theories. Furthermore, it provides the
means for defining data types and recursive function definitions over them in a
style similar to a functional programming language.

3 The HOL-TestGen System: An Overview

HOL-TestGen is an interactive (semi-automated) test tool for specification
based tests. Its theory and implementation has been described elsewhere [5, 3];
here, we briefly review main concepts and outline the standard workflow. The
latter is divided into four phases: writing the test specification TS, generation of
test cases TC along with a test theorem for TS, generation of test data TD, i. e.,
constraint-free instances of TC, and the test execution (result verification) phase
involving runs of the “real code” of the program under test. (See Figure 1 for the
overall workflow.) Once a test theory is completed, documents can be generated
that represent a formal test plan. The test plan containing test theory, test spec-
ifications, configurations of the test data and test script generation commands,
possibly extended by proofs for rules that support the overall process, is written
in an extension of the Isar language [11]. It can be processed in batch mode, but
also using the Proof General interface interactively, see Figure 2. This interface
1 to be more specific: parametric polymorphism

4 Achim D. Brucker and Burkhart Wolff

program under test

test harness

test script

(Test Result)
Test Trace

test data

test cases
test specification HOL-TestGen

Isabelle/HOL

SML-systemtest executable

Figure 1: Overview of the Standard Workflow of HOL-TestGen

allows for interactively stepping through a test theory in the upper sub-window
while the sub-window below shows the corresponding system state. This may be
a proof state in a test theorem development, a list of generated test data or a list
of test hypothesis. After test data generation, HOL-TestGen produces a test

Figure 2: A HOL-TestGen Session Using Proof General

script driving the test using the provided test harness. The test script together
with the test harness stimulate the code for the program under test built into
the test executable. Executing the test executable runs the test and yields a test
trace showing errors in the implementation (see lower window in Figure 2).

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff/

Test-Sequence Generation with HOL-TestGen 5

4 Test Case Generation with Explicit Test-Hypothesis

In this section, we describe the test case generation procedure of HOL-TestGen.
It is driven by an exhaustive backward-application of the tableaux calculus pre-
sented in Section A combined with certain normal-form computations elimi-
nating certain forms of redundancy. Interleaved with this partitioning process
(similar to the DNF of Dick and Faivre [7]), test hypothesis rules are generated
on the fly and applied to certain subgoals in a backward manner. In the fol-
lowing, we only present two well-known kinds of test hypothesis. Following the
terminology of Gaudel [9], these are called uniformity and regularity hypothesis.

4.1 Inserting Uniformity Hypothesis

Uniformity hypothesis have the form:

THYP(∃x1 . . . xn. P x1, . . . , xn → ∀x1 . . . xn. P x1 . . . xn)

where THYP is a constant defined as the identity; this constant is used as marker
to protect this type of formulae from other decomposition steps in the generation
procedure. Semantically, this kind of hypothesis expresses that whenever there
is a successful test for a test case, it is assumed that the program will behave
correctly for all data of this test case.

The derived rule in natural deduction format expressing this kind of test
theorem transformation reads as follows:
P ?x1 . . .?xn THYP(∃x1 . . . xn. P x1 . . . xn → ∀x1 . . . xn. P x1 . . . xn)

∀x1 . . . xn. P x1 . . . xn

where the ?xi are just meta variables, i. e., place-holders for arbitrary terms. This
rule can also be applied for arbitrary formulae just containing free variables since
universal quantifiers may be introduced for them aforehand.

Tactically, these hypothesis were introduced at the end of the test case gen-
eration process, i. e., when all other rules can no longer be applied. Using a
uniformity hypothesis for each (non-THYP) clause allows for the replacement
of free variables by meta-variables which can be instantiated by ground terms
during the test data selection phase later. This transformation is logically sound.
For example, for a test specification if x ≤ 0 then ioprg x else ioprg −x, the
test case generation produces for the program ioprg under test the test theorem:

test : if 0 ≤ x then ioprg x else ioprg −x
1. 0 ≤?x =⇒ ioprg ?x
2. THYP((∃x.0 ≤ x→ ioprg x)→ (∀x.0 ≤ x→ ioprg x))
3. ?y < 0 =⇒ ioprg −?y
4. THYP((∃x. x < 0→ ioprg −x)→ (∀x. x < 0→ ioprg −x))

The test-data selection phase will easily generate the instances of the test cases
ioprg 3 and ioprg (−(−4)) (satisfying the constraints) to be used in a black-box

6 Achim D. Brucker and Burkhart Wolff

test. If we have the implementation of ioprg in our hands, we could also verify
the test-hypothesis; provided that execution paths in the concrete program cor-
respond to test classes, we gain knowledge from the test for the verification.

4.2 Inserting Regularity Hypothesis
In the following, we address the problem of test case generation for quantifiers
(or, equivalently: free variables) ranging over recursive datatypes such as lists or
trees. As an introductory example, we consider the membership predicate of an
element in a list defined by the following recursive rules:

x mem [] = false
x mem (y#ys) = if y = x then true else x mem ys (1)

which occurs as “precondition” in the example test specification:

x mem S → ioprg x S

For testing recursive data structures, Gaudels [9] suggested the introduction of
a regularity hypothesis as one possible form of a test hypothesis:

[|x| < k]··
P x

P x

This rule formalizes the hypothesis: assuming that a predicate P is true for all
data x whose size (denoted by |x|) is less than a given depth k, P is always
true. The original rule can be viewed as a meta-notation: In a rule for a concrete
datatype, the premises |x| < k can be expanded to several premises enumerating
constructor terms.

Instead of this unsound rule, HOL-TestGen derives on-the-fly a special data-
type exhaustion theorem; its form depends on k and the structure of the datatype
of x. For the user-defined value k = 3 and for the type α list, we have:
[
x = []

]
··
P (x)

∧
a.

[
x = [a]

]
··
P (x)

∧
a b.

[
x = [a, b]

]
··
P (x) THYP

(
3 ≤ |x|→ P (x)

)

P (x)
The equalities introduced by this rule lead together with the simplification rules
shown in Equation 1 of the predicate mem to the following result of the test case
generation (we omit the uniformity hypothesis insertion here):

test : x mem S → ioprg x S
1. ioprg x [x]
2.
∧
b. ioprg x [x, b]

3.
∧
a. a '= x =⇒ ioprg x [a, x]

4. THYP(3 ≤ |S|→ x mem S → ioprg x S)

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff/

Test-Sequence Generation with HOL-TestGen 7

and, again, it is an easy game for a random-based test-data-selection method to
provide constraint free instances of the test cases.

4.3 Principles of Test-Sequence-Generation in HOL-TestGen

Considering the previous subsection more closely, one easily recognizes that
it also holds the key for the principles of test sequence generation in HOL-
TestGen: since a finite automaton can be converted into (mutual) recursive
acceptance predicate accept on input lists, this scheme of a test specification
can also be used for specifying the test of a transition function ioprg :: α⇒ σ ⇒
σ option under test, which takes some input of type α and some state of type σ
and can produce a successor state (the α option type contains the constructors
Some a and None). Together with the recursively defined Mfold-combinator:

Mfold [] σ ioprg = Someσ

Mfold (in#H) σ ioprg =
{

Mfold H σ′ ioprg if ioprg(in,σ) = Someσ′,
None otherwise.

it is now possible to lift an individual (partial) function ioprg to be run in a
complete sequence by using the following scheme of a test specification:

accept S → P (Mfold S σ0 ioprg)

where σ0 is the initial state. After HOL-TestGen synthesized a trace S and
suitable input for variables occurring in P , a test driver running the test se-
quence can be generated. Note that the function ioprg can in particular log the
complete run of a system and make the test verdict depending on this log, i. e.,
the complete history of inputs and outputs in the real system trace.

4.4 An Infra-Structure for Reactive Sequence Test

This concept is also powerful enough to cover situations where the program
under test produces output that changes the input of later runs of ioprg, i. e., in
situations where the test-driver and the external program under test represent
a communicating system.

In the following, we describe a special instance of the overall scheme dis-
cussed in Section 4.3. As fundamental modeling assumption of this instance,
we require that the test-driver can be built upon an “i/o stepping function”
ioprg :: ι ⇒ σ′ ⇒ (o × σ′) option. This function takes an input of type ι, an in-
ternal state of type σ′ only managed by itself, and returns the observable output
of type o plus the result state of one step of the system under test. We allow
ioprg to fail, depending on the concrete realization inside the test harness. This
could represent timeouts or other forms of misbehavior of the system under test.
Further, we assume a function: post :: σ × σ′ ⇒ ι ⇒ o ⇒ bool that, depending
on the observer state, the ioprg state, the (concrete) input and the (concrete)

8 Achim D. Brucker and Burkhart Wolff

output decides that the behavior of ioprg conforms to the specification in this
step. We assume ioprg to be a function in the mathematical sense, so identical
runs with the same inputs will produce the same outputs; which outputs were
chosen is unimportant as long as post remains satisfied. The choice of the output
and the successor state is non-deterministic in this sense, and even the stimula-
tion sequence automaton may be non-deterministic. We call these assumptions
on non-determinism occurring in the system under test local non-determinism,
in contrast to deep non-determism occurring in testing theories such as [8] and
at least partially in their test system implementation.

The key element for the instantiation of the scheme of Section 4.3 lies in the
generic definition of an adapter function that builds a stepping function from this
i/o stepping function. As a suitable abstraction over a history log, we integrate
into this adapter an environment of type σ that keeps track of values exchanged
at runtime of a test which were bound to symbolic variables occurring in abstract
traces. The latter were gained from standard protocols by replacing values which
were only known at runtime; thus, we will be able to tackle with a quite common
class of reactive systems.

As a prerequisite, we need the two functions rebind :: σ ⇒ o ⇒ σ and
subst :: σ ⇒ ι⇒ ι. The former extracts from a concrete output a new binding for
corresponding variables occurring in abstract output; the latter replaces variables
occurring in abstract input to the corresponding values exchanged in the previous
system run. Wiring everything together, we get the following definition:

observer rebind subst post ioprg in (σ,σ′) ≡ let in′ = subst σ in in
case ioprg ioprg′ σ′ of None⇒ None

| Some(out,σ′′′)⇒ letσ′′ = rebind σ out in
if post(σ′′,σ′′′) in′ out
then Some(σ′′,σ′′′) else None

The adapter function observer essentially runs ioprg on its state and on the in
resulting from subst; the resulting out leads to an update of the observer state.
Occurring errors were propagated. The function observer is fully executable and
is compiled to a part of the test driver.

4.5 An Example

As an example of a reactive system, we assume a client/server situation where
the client sends a server a communication request and specifies a “port-range” X
(for simplicity, just an upper bound). The server non-deterministically chooses
a port Y which is within the specified range. The client sends a sequence of data
(abstracted away in our example to just one constant Data) on the port allocated
by the server. The communication is terminated by the client with a stop event.
Figure 3 shows the abstract protocol (containing variables and constraints over
them) and its sub-protocol containing just the input stimulation sequence.

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff/

Test-Sequence Generation with HOL-TestGen 9

port?X[Y<=X]

C A

F

A C FA
req?X stop

send?D!Y

req?X

ack

send?D!Y
ack

stop

D

B

Figure 3: An abstract protocol automaton and the resulting stimulation sequence
automaton

In the following, we describe the necessary infra-structure of our model in
HOL-TestGen. We define the explicit variables occurring in this protocol:

vars = X | Y

and specify the combined type of abstract and concrete input and output events:

InEvent = req chan | reqA vars | send data chan | sendA data vars | stop
OutEvent = port chan | portA vars | ack

The definition of subst is now straight-forward:

subst env (req n) = req n
subst env (reqA v) = req(lookup env v)
subst env (send d n) = send d n
subst env (sendA d v) = send d(lookup env v)
subst env stop = stop

as well as defining rebind

rebind env(portn) = env(Y *→ n)
rebind env ack = env

and the definition of the post-condition:

post′ (env, x, req n,portm) = (n ≤ m)
post′ (env, x, send z n, ack) = true
post′ (env, x, stop, ack) = true
post′ (env, x, y, z) = false

post :: (vars⇀ int)× unit⇒ InEvent⇒ OutEvent⇒ bool
post x y z ≡ post′(fstx, sndx, y, z)

Here, α ⇀ β denotes partial functions and is just a synonym for α⇒ β option.
The predicate post checks the constraint that the server must return a port

within a previously communicated range. The abstract inputs like sendA Data X

10 Achim D. Brucker and Burkhart Wolff

will be converted to concrete input send Data 23 if 23 has been communicated
previously by the server under test; the explicit variable management is done
once-and-for-all in the observer adapter.

The automaton for the set of stimulation traces results from a direct trans-
lation of the diagram above:

stimTrace′ (A, (reqA X)#S) = stimTrace′(C, S)
stimTrace′ (C, (sendA d Y)#S) = stimTrace′(C, S)
stimTrace′ (C, [stop]) = true
stimTrace′ (x, y) = false

stimTrace :: InEvent⇒ listbool
stimTrace s ≡ stimTrace′(A, s)

Finally, we state the test specification for a reactive sequence test. Note that
its pattern is an instance of the sequence test (see Section 4.3) which is again
an instance of the pattern post x→ post x (ioprg x) in Section 4.2:

stimTrace trace −→
success(Mfold trace((X *→ init), ())(observer rebind subst post ioprog))

where success :: α option ⇒ bool is an auxiliary function that yields true for
values of the form Some E. Applying our test case generation and test data
generation procedures takes only a few seconds, including the generation of the
test script containing the abstract input sequences plus the test program run
over them; this test program also contains the compiled versions of observer,
subst, rebind, etc.

For the test depth k = 4 of the test case-generation procedure we already
reach path coverage in the stimulation protocol automaton and therefore implic-
itly on the protocol automaton shown in Figure 3.

5 Case-Study: Testing Firewall Configurations

In many institutions, an unrestricted connection of the internal network to he
Internet is classified as a security risk. Firewalls as means to restrict network
traffic are therefore widely used in todays IT infrastructures. As security infras-
tructure crucially depend on them, testing their correct behavior is an important
and rewarding task. As we will see, it is also an interesting application for spec-
ification based testing. The complete specification is part of the HOL-TestGen
distribution [1].

If we have the implementation of ioprg in our hands, we could also verify
that it represents an automaton; the minimal path length covering all vertexes
in this automaton gives a bound for k.

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff/

Test-Sequence Generation with HOL-TestGen 11

5.1 A Bluffers Guide to Firewalls

In a computer network, e. g., based on TCP/IP, a message from A to B is en-
capsulated in one or more packets which contains the content of the message
and routing information. The routing information of a packet mainly contains
its source address (where does the packet come from), its destination address
(where should the packet go to) and the protocol (e. g., http, smtp) used on top
of transport layer (e. g., TCP/IP).

In its simplest form, a firewall is just a stateless packet filter which just
filters (i. e., rejects or accepts it) traffic from one network to another based
on the destination address, source address and the protocol, the policy used.
The policy is the specification (or configuration) of the firewall which describes
which packets should be denied and which should be rejected. In some cases,
stateless filtering is not enough, some application protocols, like ftp or most
of the protocols used for Internet telephony such as Voice over IP (VoIP) have
an internal state of which the firewall must be aware of. For example, some
connections are only allowed within a specific state of the protocol.

Figure 4 illustrates a simple and common setup of a firewall, separating three

Internet (extern)

DMZ

Intranet (intern)

Figure 4: A simple firewalling scenario.

networks: the external (potentially dangerous) Internet, the internal network
that has to be protected (intranet) and a network that is somewhat in-between,
the demilitarized zone (DMZ). The DMZ is usually used for servers (e. g., the
Web server and the Mail server) that should be accessible both from the outside
(Internet) and the internal network (Intranet) and thus underlie, a more relaxed
policy than the intranet. An example for a simple firewall policy is shown in Ta-
ble 1 in an informal way. Such a policy uses a first-fit pattern matching strategy,
i. e., the first match overrides later ones. For example, a packet from the Internet
to the intranet is rejected (it only matches the last line of the table) whereas a
http-packet from the Intranet to the Web server is accepted (second line of the
table. The lines of such a table are also called rules; together, they build the
policy of a firewall.

In the remainder of this section, we will briefly introduce a formal HOL model
of networks and policies; it will turn out that these concepts can be used uni-
formly both for stateless packet filters and statefull application level firewalls.
This model forms the basis for several test case generation scenarios that validate
a firewall implementation against its specified policy.

12 Achim D. Brucker and Burkhart Wolff

source destination protocol action
DMZ Intranet any deny

Intranet Webserver http accept
Internet Webserver https accept
Intranet Mailserver smtp accept
Intranet Mailserver imap accept
Intranet Mailserver imaps accept

any any any deny

Table 1: A simple Firewall Policy

5.2 A Formal Firewall Model
Packets and Networks. As a prerequisite, we need a formal models of proto-
cols, packets and nets. We model protocols as an abstract data types, e. g., the
most common ones are declared by:

protocol := ftp | http | https | voip | smtp | imap | imaps | unknown .

As we do not want to depend on a specific representation of addresses and
package content, we introduce the abstract types α src and α dest for the source
and destination address and β content for the content. Moreover, we introduce
an unique identifier id for each packet. Thus, the type of a package defined
straight-forward as:

(α,β) packet := id×protocol×α src×α dest×β content

Further, we define projectors, e. g., getId, getSrc, for accessing the different com-
ponents of packet directly.

As a next step, we model networks, or just nets, and parts thereof (subnets).
To be as abstract as possible at this stage, we model nets as an axiomatic type
class [10]. For the purpose of this paper, it suffices to know that a net is a set of
sets of addresses, i. e.,

α subnet = (α :: net) set set

where (α :: net) requires that the types we use to instantiate α are members of
the type class net. This definition allows us to model firewall policies that restrict
the traffic between sub-networks and also between single hosts (addresses). For
checking, if a given address is part of a subnet, we define the following operator:

a ! S ≡ ∃s ∈ S. (a ∈ s) with type α adr⇒ α subnet⇒ bool.

The Firewall Policy. From an abstract point of view, a policy is a partial
mapping of packets to decisions, e. g., deny or accept. The datatype:

α out := r acceptα | deny

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff/

Test-Sequence Generation with HOL-TestGen 13

for decisions allows for modeling the modifications of return packages; Thus, our
model can capture address-translation techniques (network address translation
(NAT)) realized by some firewalls as well.2 The type of a policy follows directly
from this:

(α,β) policy := (α,β) packet⇀ ((α,β) packet) out

where α ⇀ β denotes the partial mapping (i. e., type synonyms to α⇒ β option;
cf. Section 4.2). In our model, rules and policies have the same type, i. e., we can
introduce a type synonym:

(α,β) policy := (α,β) rule

for rules. Moreover, the override operator for partial mappings (_ ++ _) allows
for nicely combining several rules to a policy. For example, r2 ++ r1 combines
the rules r1 and r2 where r1 overrides (has higher precedence) r2. We can define
several generic rules combinators at this abstract level (without concrete format
of addresses) that substantially simplify the formalization of a concrete policies.
For example, the usual two “catch-all” rules for accepting or denying all traffic
were expressed as:

allowAll p ≡ Some(accept p) with type (α,β) rule, and
denyAll p ≡ Some(deny) with type (α,β) rule.

Many other combinators for restricting traffic based on its source, destination or
protocol can already be defined on this abstraction level. A rule restriction all
packets coming from subnet s can be defined as

allowAllFrom s ≡ Some allowAll "{
p|(getSrc p)!s

}

with type (α :: net) subnet ⇒ (α,β) rule, and where _ "_ is the restriction
operator on partial mappings.

IPv4. At this point, we make the packet address format more concrete. We
specify the underlying transport protocol, e. g., IPv4 or IPv6. For our example,
we use tcp combined with ip version 4. In this setting, an address consists out
of an unique 32 bit number, represented as four-tuple and a port:

ipv4Ip := int× int× int× int
port := int
ipv4 := ipv4Ip×port

Based on these definitions, we can define further combinators (rules) that are
specific to tcp/ip addresses, i. e., they can accept or reject packages based on an
ip address and a port.
2 However, in reality, a firewall policy can describe more fine-grained how packets are

denied, e. g., some packages could be silently discarded (this is often called drop) or
the packet could be rejected, causing an error message is send to the origin.

14 Achim D. Brucker and Burkhart Wolff

5.3 Testing Stateless Firewalls
Our abstract firewall model, presented in the last section, allows for the direct
formalization of the informal policy given in Table 1. First we have to define the
subnets of type ipv4 subnet, based on their ip address ranges, e. g.:

intranet ≡
{{(

(a, b, c, d), p
)∣∣∣ (a = 192) ∧ (b = 168)

}}

webserver ≡
{{(

(a, b, c, d), p
)∣∣∣ (a = 172) ∧ (b = 16) ∧ (c = 70) ∧ (d = 4)

}}

Grouping the rules of our informal policy with the same source and same desti-
nation, define:

DmzIntranet ≡ denyAllFromTo dmz intranet
toWebserver ≡ allowProtFromTo http intranet webserver
toMailserver ≡ allowProtFromTo smtp intranet mailserver

++ allowProtTo imap mailserver
++ allowProtTo imaps mailserver

The test specification for the stateless firewall case is now within reach: we just
state that the firewall under test (fut) has the same filtering function behavior
as our given combined policy:

fut(x) = (denyAll ++ DmzIntranet ++ toWebserver ++ toMailserver)(x)

Applying our test case generation and test data generation procedures results,
after 72 hours running time on a modest equipped workstation, in 828 test cases,
among them:

fut(9, smtp, ((6, 2, 8, 5), 0), ((7, 3, 8, 1), 1), content) = Some deny
fut(8,http, ((6, 6, 10, 3), 6), ((4, 7, 5, 9), 1), content) = Some deny

fut(2, imaps, ((6, 2, 10, 7), 9), ((172, 16, 70, 5), 3), content)
= Some(accept(2, imaps, ((6, 2, 10, 7), 9), ((172, 16, 70, 5), 3), content))

fut(6, imaps, ((9, 7, 9, 10), 9), ((172, 16, 70, 5), 0), content)
= Some(accept(6, imaps, ((9, 7, 9, 10), 9), ((172, 16, 70, 5), 0), content))

Overall, testing stateless packet filters is quite similar to classical unit testing of
stateless software. The test-data selection is trivial in this example.

5.4 Testing Statefull Firewalls
The well-known file-transfer protocol file transfer protocol (ftp) is based on a
dynamic negotiation of a port number which is then used as channel to com-
municate the file content between the sender and the receiver. Thus, a stateless

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff/

Test-Sequence Generation with HOL-TestGen 15

firewall can only provide a very limited form of network protection if ftp is in-
volved, whereas a statefull firewall that observes the inner state of the ftp session
can open the negotiated port dynamically. Testing statefull firewalls, where the
filter functions change over time, requires test-sequence generation.

A Statefull Firewall Model. First we model the internal state of a statefull
firewall as a tuple of a store and the current policy (that can change during a
transition):

(α,β, γ) FwState = α× (β, γ) Policy

One possibility is, to model the store as the list of accepted packages:

(β, γ) history = (β, γ) packet list

A transition from state to state is a mapping from the packet that fired the
transition, the current state to the new state:

(α,β, γ) FwStateTrans = (β, γ) packet×(α,β, γ) FwState⇀ (α,β, γ) FwState

Moreover, for combining state transitions, we define two combinators: orelse
takes the first defined transitions

f orelse g ≡
{

Some y if f x = Some y,
None otherwise,

and repeat repeats as long as the transitions is defined:

f repeat g ≡
{

Some z if f x = Some y and f y = Some z
None otherwise.

Modeling the file transfer protocol (ftp). During an ftp session, the server
(normally located in the Internet) opens a data connection to the client (e. g., lo-
cated in the intranet) using a port that is negotiated: Figure 5 shows an abstract

init

portRequest port

data

close

Server Client

Figure 5: A sample trace of an file transfer protocol (ftp) run

16 Achim D. Brucker and Burkhart Wolff

trace of an ftp session: the client initializes the session by sending a init message
to the server, the client answers with a port request containing a dynamic port
for the data connection and then the server sends the data to the client using this
dynamic port. Eventually, the client will close the connection and the firewall
has to close the data port. We model the communication as follows:

ftpMsg = init | portRequest port | data | close | other

Further, we will use the id part of a package to distinguish several ftp-sessions.
We model state transitions of the ftp protocol as recursive predicates. First we
define a generic state transition for messages that do not change the policy and
special transition for the portRequest (that opens the data port) and close (that
closes the data port). As an example, we present the simple generic transition
(see [1] for the remaining details) that is defined recursively based on the defi-
nitions:

ftpStf((a, ftp, c, d, e), (in, policy)) ≡ if accept(a, ftp, c, d, e)policy
then Some((a, ftp, c, d, e)#in, policy)
else Some(in, policy)

ftpStf(x, (in, policy)) ≡ None

The state machine modeling ftp can be defined using the orelse combinator for
combining the singe transitions:

ftpSt ≡ ftpStportRequest orelse ftpStclose orelse ftpStf

Using the repeat combinator, we can easily model arbitrary runs of the protocol.

Testing ftp. We have to clarify the test purpose first: for example, one could
aim for testing one or more correct protocol runs (with or without interleavings),
or for illegal protocol runs. Here, we show a test for single, legal protocol runs.
We define a recursive acceptance predicate isFtp testing for legal ftp traces. We
assume a simple test scenario with a initial policy only allowing ftp sessions
(initiated using port 21, the control port of the ftp protocol) from the intranet
to the Internet:

ftpPolicy ≡ allowAll ++ allowProtFromToPort ftp intranet internet 21

The accept-predicate for traces in the sense of Section 4.3 is defined on the basis
of the ftp protocol machine together with some additional constraints:

accept(t) = t ∈ {x | isFtp c s i x}
∧ isInIntranet c ∧ isInInternet s ∧ getPort s = 21

using predicates (isInIntranet and isInInternet) for checking if an address is
within a specific subnet. The key stone of our test section is the test specification:

accept(t)→ fut t = Mfold (rev t) ([], ftpPolicy) ftpSt

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff/

Test-Sequence Generation with HOL-TestGen 17

which is an instance of the test specification scheme discussed in Section 4.3.
Using our test method, we receive four test cases which each represent different
ftp traces. The test case generation took about 5 minutes. For space reasons,
we omit the quite involved code of the generated test script here; the interested
reader is referred to [1]).

6 Conclusion

It comes perhaps as a surprise that conceptually—viewed from a strict datatype
centric angle and using a powerful logic—sequence testing is just a special case of
unit testing. Instead of one input to be send to the system under test to receive
one output, a list of input is generated to receive a list of outputs; the rest is
the usual monadic trickery to represent i/o in a functional setting and the use
of abstract test traces instead of concrete ones.

One might question the practical relevance of this observation since the length
of the considered sequences is fairly small in the firewall study (k = 4 in our ftp
example, and k = 8 in experiments with VoIP protocols, where the slow-down
was already considerable). However, the example in Section 4.5 can easily be
blown up to protocol-lengths of 100; test case generation including test script
generation still takes less than a minute (see HOL-TestGen example suite). It
is therefore the combination between richness of data-structures, the branching-
factor in the automaton, and the length of the protocol, which may represent
a fundamental barrier to our approach, not the length alone. So far, we do
not see that this is different from any other tool-supported test case generation
approach.

The combination of theorem proving and test data generation is a fruitful
one, in particular to control the state-space explosion which is in our case an
explosion of test cases for testing the filter-function of firewalls. Using theorem
proving techniques for simplifying firewall policies can reduce dramatically both,
the overall time for generating test cases as well as the number of generated test
data. For example, within HOL-TestGen, we can formally prove the following
equality which formalizes the fact, that a global allow-all rule will override a
direct predecessor with the more specific allow rule:

(allowAll ++ allowAllFromTo x y) = allowAll

Thus, proving equalities and using them for the “logical massage” of policies in
test-specifications will eliminate redundant test cases by computing a semanti-
cally equivalent, but “simpler” policy with respect to time and space consump-
tion.

Our integrated approach to unit and sequence testing also paves the way for
combined scenarios: it is straight-forward to formulate test specifications that
“guide” a statefull firewall in a specific state and to compute test cases that test
the specific filter-function in this state.

Finally, there is the possibility to verify test-hypothesis generated through-
out the test theorem generation phase. In our view, a specification-based test is

18 Achim D. Brucker and Burkhart Wolff

clearly an approximation to verification. A test has the advantage to be poten-
tially based on more abstract data than the concrete program. Once generated,
test data can be used for fast checks that a (complex, black-box) program con-
forms to the test specification. Such fast checks can be of crucial importance
in a software development process, e. g., when checking in a new version of a
program into the version management system of a development project. In later
stages, a full review and even a verification of the test hypothesis might be in
order; depending on the degree of abstraction of the test specification with re-
spect to the concrete program, the test cases can help to structure and simplify
this code-verification task.

Acknowledgment

We thank Lukas Brügger for valuable discussions on the subject of firewall testing
and the work he did during his semester thesis.

References

[1] The HOL-TestGen Website. http://www.brucker.ch/projects/hol-testgen/.
[2] P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth

Through Proof. Academic Press, Orlando, May 1986.
[3] A. D. Brucker and B. Wolff. HOL-TestGen 1.0.0 user guide. Technical Report

482, ETH Zürich, Apr. 2005.
[4] A. D. Brucker and B. Wolff. Interactive testing using HOL-TestGen. In

W. Grieskamp and C. Weise, editors, Formal Approaches to Testing of Software
(FATES 05), LNCS 3997, pages 87–102. Springer-Verlag, Edinburgh, 2005.

[5] A. D. Brucker and B. Wolff. Symbolic test case generation for primitive recursive
functions. In J. Grabowski and B. Nielsen, editors, Formal Approaches to Testing
of Software, number 3395, pages 16–32. Linz, 2005.

[6] A. Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

[7] J. Dick and A. Faivre. Automating the generation and sequencing of test cases
from model-based specications. In J. Woodcock and P. Larsen, editors, Formal
Methods Europe 93: Industrial-Strength Formal Methods, volume 670, pages 268–
284, Apr. 1993.

[8] L. Frantzen, J. Tretmans, and T. Willemse. A symbolic framework for model-
based testing. In FATES/RV 2006, Sept. 2006.

[9] M.-C. Gaudel. Testing can be formal, too. In P. D. Mosses, M. Nielsen, and M. I.
Schwartzbach, editors, TAPSOFT’95: Theory and Practice of Software Develop-
ment, number 915, pages 82–96. Aarhus, Denmark, 1995.

[10] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283. 2002.

[11] M. M. Wenzel. Isabelle/Isar — a versatile environment for human-readable formal
proof documents. PhD thesis, TU München, München, Feb. 2002.

[12] H. Zhu, P. A. Hall, and J. H. R. May. Software unit test coverage and adequacy.
ACM Computing Surveys, 29(4):366–427, Dec. 1997.

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff/
http://www.brucker.ch/projects/hol-testgen/

Test-Sequence Generation with HOL-TestGen 19

A Tableaux Calculus for HOL

P ?x

∃x. P x

∧
x. P x

∀x. P x
(a) Quantifier Introduction Rules

t = t true

P Q

P ∧Q

[¬Q]
··
P

P ∨Q

[P]
··
Q

P → Q

[P]
··

false

¬P

[P]
··
Q

[Q]
··
P

P = Q

(b) Safe Introduction Rules

∀x. P x

[P ?x]
··
R

R

∀x. P x

[∀x. P x, P ?x]
··
R

R

(c) Unsafe Elimination Rules

false

P

P ∧Q

[P,Q]
··
R

R

P ∨Q

[P]
··
R

[Q]
··
R

R

P → Q

[¬P]
··
R

[Q]
··
R

R

∃x. P x
∧
x.

[P x]
··
Q

Q

P = Q

[P,Q]
··
R

[¬P,¬Q]
··
R

R

(d) Safe Elimination Rules

if P then A else B = (P → A) ∧ (¬P → B)

(e) Rewrites
Table 2: The Standard Tableaux Calculus for HOL

20 Achim D. Brucker and Burkhart Wolff

B A Sample Derivation

In the following, we show, how the test case generation procedure inside HOL-
TestGen synthesizes input data by a fully automatic symbolic constraint solu-
tion process. We pick the example of Section 4.2:

x mem S → ioprg x S

Since S is the only free variable of list type, the procedure picks it, derives a
datatype exhaustion theorem (as shown in Section 4.2) on the fly and applies it.
The following proof-state is the result:

1. S = [] =⇒ x mem S → ioprg x S
2.
∧
a. S = [a] =⇒ x mem S → ioprg x S

3.
∧
a b. S = [a, b] =⇒ x mem S → ioprg x S

4. THYP(3 ≤ |S|→ x mem S → ioprg x S)

Variable propagation, simplification with the rules of (1) in Section 4.2 and the
implication introduction rule from Table 2b yield the following state:

1. false =⇒ ioprg x []
2.
∧
a. if a = x then true else false =⇒ ioprg x [a]

3.
∧
a b. if a = x then true else if b = x then true else false

=⇒ ioprg x [a, b]
4. THYP(3 ≤ |S|→ x mem S → ioprg x S)

Thus, the constraints for the first test case are not satisfiable anymore and it
can be erased. In the sequel, we apply the simplification of the conditional of
Table 2e and the safe elimination rule for conjunction Table 2c.

1.
∧
a. ioprg x [x]

2.
∧
a b. !a = x→ true; a '= x→ (x = b→ true ∧ x '= b→ false)"

=⇒ ioprg x [a, b]
3. THYP(3 ≤ |S|→ x mem S → ioprg x S)

Now, the safe elimination rule for implication in Table 2c effectively produces a
series of case splits; variable propagation and elimination of contradictory clauses
simplify the proof state again. Thus, cascades of conditionals were eliminated.

Finally, the elimination of superfluous quantifiers result in the proof state
shown in Section 4.2.

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff/

