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Abstract

Classical logical optimization techniques rely on
a logical semantics of the query language. The
adaptation of these techniques to XQuery is pre-
cluded by its definition as a functional language
with operational semantics. We introduce Nested
XML Tableaux which enable a logical foundation
for XQuery semantics and provide the logical plan
optimization framework of our XQuery processor.
As a proof of concept, we develop and evaluate
a minimization algorithm for removing redundant
navigation within and across nested subqueries.
The rich XQuery features create key challenges
that fundamentally extend the prior work on the
problems of minimizing conjunctive and tree pat-
tern queries.

1 Introduction
The direct applicability of logical optimization techniques
(such as rewriting queries using views, semantic opti-
mization and minimization) to XQuery is precluded by
XQuery’s definition as a functional language [30]. The
normalization module of the NEXT XQuery processor en-
ables logical optimization of XQueries by reducing them to
NEsted Xml Tableaux (NEXT)1, which are based on logical
semantics. NEXT extend tree patterns [3, 21] (which have
been used in XPath minimization and answering XPath
queries using XPath views) with nested subqueries, joins,
and arbitrary mixing of set and bag semantics.

As a proof-of-concept of NEXT’s applicability to
XQuery logical optimization, but also for its own impor-
tance in improving query performance, we developed and
evaluated a query minimization algorithm that removes re-
dundant navigation within and across nested subqueries.
Minimization is particularly valuable in an XQuery con-
text, since redundant XML navigation arises naturally and
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1Both the plural and singular form are “NEXT”.

unavoidably innestedqueries, where the subqueries per-
form navigation that is redundant relative to the query they
are nested in. A common case is that of queries that
perform grouping in order to restructure or aggregate the
source data. The grouping is typically expressed us-
ing a combination of self-join and nesting, in which the
navigation in the nested, inner subquery completely dupli-
cates the navigation of the outer query (see Examples 1.1
and 1.2). Another typical scenario pertains to media-
tor settings, where queries resulting from unfolding the
views [20, 17, 25] in the original client queries contain
nested and often redundant subqueries (when the naviga-
tion in two view definitions overlaps). Finally query gener-
ation tools tend to generate non-minimal queries [31].

EXAMPLE 1.1 Consider the following query that groups
books by authors (it is a minor variation of query Q9 from
W3C’s XMP use case [27]). Thedistinct-values func-
tion eliminates duplicates, comparing elements by value-
based equality [30].

let $doc :=document (“input.xml”)
for $a in distinct-values ($doc//book/author)
return 〈result〉 { $a, (X1)

for $b in $doc//book
where some $bain $b/authorsatisfies $baeq $a
return $b}
〈/result〉

Notice that thefor loop binding$a (from now on called the
$a loop) hassetsemantics, all others havebag semantics
i.e., duplicates are not removed.2

The straightforward nested-loop execution of this query
is wasteful since the nested loops (the$b for loop and the
$ba some loop) are redundant: the$a loop has already
navigated to the corresponding book and author elements.
In this case, we say that the redundant navigation appears
acrossnested subqueries, where nesting is w.r.t. thereturn
clause. The NEXT XQuery processor performs a more
efficient execution (inspired by the OQL groupby opera-
tor [8]): eliminate the redundant navigation by scanning
books and authors just once and then apply a group-by op-
eration. ⋄

2The query can be expressed in a shorter form by replacing itswhere
clause with “where $a = $b/author” or by replacing the innerfor
with “$doc//book[author = $a]”. It is well known [19] how to reduce
such syntactic sugar (use of “=” or use of predicates in paths) to the basic
XQuery constructs we use (see Figure 3).
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〈b; bibliography〉

〈b1; book〉 〈b2; book〉

〈a11; author〉 〈a12; author〉 〈t1; title〉 〈y1; year〉 〈a21; author〉 〈a22; author〉 〈t2; title〉 〈y2; year〉

〈v11;Elvis〉 〈v12;Tony〉 〈v13;Rock〉 〈v14; 1958〉 〈v21; Elvis〉 〈v22; Tim〉 〈v23;Roll〉 〈v24; 1958〉

Figure 1: Data of Running Example

It turns out that, when attempting to perform grouping
by more than one variable, the resulting XQueries contain
redundant navigation both across and within subqueries.

EXAMPLE 1.2 The following nested XQuery groups on
two variables: book titles are grouped by author and year
of publication.

for $a in distinct-values ($doc//book/author) (X2)
$y in distinct-values ($doc//book/year)

where some $b3 in $doc//book,$a3 in $b3/author,
$y3 in $b3/year

satisfies $a eq $a3 and $y eq $y3

return 〈result〉 {$a, $y,
for $b′ in $doc//book
where some $a′ in $b′/author, $y′ in $b′/year

satisfies $a′eq $a and $y′eq $y
return $b′/title}
〈/result〉

The$doc variable is defined as in the first line of (X1) and
its definition will be omitted from now on. Notice the use of
join equality conditions onauthor andyear in thesome
of the $b′ loop. Once again, the navigation of the outer-
most subquery (the$a and$y loops) is duplicated by the
nested subquery. In addition, redundant navigation occurs
also within the outermost subquery: thesome loop bind-
ing $b3 navigates tobook, author andyear elements, all
of whom are also visited by the$a and$y loops. ⋄

The combined effect of the normalization and minimiza-
tion modules of the NEXT XQuery processor removes the
redundant navigation from the above examples. This min-
imization is beneficial regardless of the query execution
model. In many XQuery processors, including our own,
the matching of paths and equality conditions is performed
by joins that outperform brute force loops. Minimization
reduces the number of joins in such cases.

Section 2 describes the system architecture and NEXT
and highlights NEXT’s key logical optimization enabling
feature: NEXT consolidate all navigation of the original
query in the XTableaux tree pattern structure, regardless
of whether navigation originally appeared in thewhere
clause, within non-path expressions in thein clause, or
even within subqueries that are within adistinct-values
and hence follow set semantics.

Section 3 describes the normalization algorithm that re-
duces a wide set of XQueries, called OptXQuery, to NEXT.
All example XQueries appearing in this paper fall in this
class. Due to space limitations we only briefly discuss in
Appendix D the processing of non-OptXQuery XQueries.

Section 4 describes a minimization algorithm that, given
a NEXT, fully removes redundant navigation, in a formally

Normalization
Rewriting

XQuery ∈ OptXQuery

Functional-to-Logical

Functional NEXT

(Logical) NEXT

CCC Minimization

Optimization & 
Translation to Physical Plan

Plan Execution Engine

Physical Plan

Minimized NEXT

Figure 2: The NEXT XQuery Processor Architecture

defined sense. The expressiveness of OptXQuery raises the
following novel challenges that fundamentally change the
nature of the minimization problem, such that previous al-
gorithms for the minimization of conjunctive queries [5, 2]
and XPath queries [3, 23, 11], do not apply:

1. OptXQueries are nested (as opposed to conjunctive
queries and tree patterns).

2. OptXQueries perform arbitrary joins (in contrast to
tree patterns, which correspond to acyclic joins [12]).

3. OptXQueries freely mix bag and set semantics (as op-
posed to allowing either pure bag or pure set seman-
tics in relational queries, and only set semantics in tree
patterns).

Section 5 discusses the implementation of the minimiza-
tion algorithm. Though the problem is NP-hard, as is the
case for minimization of relational queries, the implemen-
tation reduces the exponentiality to an approximation of the
query tree width [12] and results in fast minimization even
for very large queries, as proven by our experimental re-
sults. We summarize the contributions of this work and
provide future directions in Section 6. Related work is de-
scribed in Section 7.

2 Framework and Architecture
XML We model an XML documentD as a labeled tree
of nodesNXML, edgesEXML, a functionλ : NXML →
Constantsthat assigns a label to each node, and a function
id : NXML → IDs that assigns a unique id to each node.
We ignore node order. The tree of Figure 1 serves as our
running example.
OptXQuery The paper focuses on the OptXQuery subset
of XQuery, which follows the syntax of Figure 3 and also
satisfies the constraints described below. Notice that Op-
tXQuery allows navigation along the children (/) and de-
scendant (//) axes of XPath, existential quantification us-
ing some , arbitrary conjunctive conditions (as opposed to
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XQ ::= 〈n〉{XQ1, . . . , XQm}〈/n〉

| XQ1, XQ2

| for (V in XQ) + (where CList)?

return XQ

| (document (“constant′′)|Var)((/|//)Constant) ∗

| Constant

| distinct-values (XQ)

CList ::= Cond(and Cond)∗

Cond ::= Var1 eq (Var2|Constant)

| some (V in XQ) + satisfies CList

Figure 3: OptXQuery

acyclic conditions only [12]), element creation that may in-
clude nested queries (as opposed to tree conditions that re-
turn a single element or tuples of variable bindings, and
duplicate elimination using thedistinct-values function
(which allows both bags and sets). The grammar can be
trivially extended with additional constructs that have an
obvious reduction to OptXQuery, such as predicates in path
expressions.

OptXQuery’s constraints rule out (i) queries that directly
or indirectly test the equality of constructed sets (ii) implicit
disjunctive conditions (aside from the explicit absence of
or). Appendix C provides sufficient conditions for ruling
out (i) and (ii). We limited the syntax and included the first
constraint in order to be able to guarantee full minimiza-
tion, as explained in Section 4, since it is well known from
both relational and object-oriented query processing that
minimization and containment problems become undecid-
able once set equality, negation and universal quantification
are allowed. On the contrary, there is no theoretical reason
against disjunctions and we can extend NEXT to incorpo-
rate them, but for simplicity we focus on purely conjunc-
tive queries. Though only OptXQueries are guaranteed to
be fully minimized, the processor may also input arbitrary
XQueries and optimize them using minimization, as briefly
discussed in Appendix D. The main body of the paper as-
sumes that the input query is in OptXQuery.
Normalization and NEXT The normalization module of
the NEXT processor (see Figure 2) inputs an OptXQuery,
applies a series of rewriting rules, discussed in Section 3,
and produces afunctional NEXT, whose syntax (see Fig-
ure 4) extends a subset of OptXQuery with an OQL-
inspired group-by construct [4].
Functional NEXT The functional NEXT syntax allows
only path expressions in thefor clause, while OptXQuery
also allowed nested subqueries. Also, NEXT allows only
variables in the condition, while OptXQuery also allowed
some, which include existential navigation. It is the use
of group-by that has enabled us to move all navigation to
the path expressions of thein clauses. TheFunctional-to-
Logical module performs a straightforward translation of
its input into alogical NEXT, whose syntax extends tree

XQ ::= 〈n〉{XQ1, . . . , XQm}〈/n〉 (P1)
| V (P2)
| for V1 in Path1, . . . , Vn in Pathn (P3)
(where CList)?
groupby (V ′

1 |[V
′
1 ]) . . . (V ′

k|[V
′

k])(into P )?
return XQ1

Path ::= (document (“Constant′′)|Var)((/|//)Constant) (P4)
CList::= Cond(and Cond)∗ (P5)
Cond::= V1 eq (V2|Constant) (P6)

Figure 4: Functional NEXT Syntax

patterns [21, 3, 23] to capture nesting, cyclic joins, and
mixed set and bag semantics. There is an 1-1 correspon-
dence between functional and logical NEXT expressions.
Group-By The arguments of group-by are a list ofgroupby
variablesG1, . . . , Gk, the name of an optionalpartition
variableP , and the result expression. A group-by inputs
the tuples of variable bindings produced by thefor and
where clauses and outputs a tuple set that has exactly one
tuple for every set of tuples that have equal groupby vari-
able bindings. Equality is identity-based if the groupby
variable appears as[Gi] or value-based if the variable ap-
pears asGi. In OQL fashion, a new variable binding is
created for the variableP and binds to a table that has
the tuples that belong to this group. However, in order to
stay within the XML data model, we emulate the nested
table with a specialpartition element that containstuple
elements, which in turn contain elements named after the
names of the aggregated variables, excluding$.

For example, consider the functional NEXT (X3), which
groups book titles by author and year (indeed, it is the mini-
mized form of XQuery (X2), and the corresponding logical
NEXT will be seen in Figure 8(c)).

for $b3 in $doc//book,$a1 in $b3/author,$y1 in $b3/year
groupby $a1, $y1 into $L return (X3)
〈result〉{ $a1, $y1

for $b′in $L/tuple/b3 groupby [$b′] return
for $t in $b′/title groupby [$t] return $t }

〈/result〉

The first table below illustrates the tuples generated by
the outermostfor clauses of (X3) when run on the data of
Figure 1 and the next table illustrates the output of its first
group-by. For illustration purposes, the bindings of the par-
tition variable are also shown in nested table format. The
notation(x) stands for the tree rooted at the node with idx.
Notice that grouping by value results into creating copies
for the bindings of the group-by variables in the result. For
example, notice that the first binding

$a1 $y1 $b3

(a11) (y1) (b1)
(a12) (y1) (b1)
(a21) (y2) (b2)
(a22) (y2) (b2)

of $a1 is neither(a11) nor (a21)
but is a new object(n1) that
has equal value with(a11) and
(a21). Efficient implementations
of group-by can avoid to physi-
cally produce copies.
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$a1 $y1 $L

〈n1; author〉

〈n2; Elvis〉

〈n3; year〉

〈n4; 1958〉

〈p1; partition〉

〈t11; tuple〉 〈t12; tuple〉

〈b11; b3〉 〈b12; b3〉

(b1) (b2)

$b3

(b1)
(b2)

〈n5; author〉

〈n6; Tony〉

〈n7; year〉

〈n8; 1958〉

〈p2; partition〉

〈t21; tuple〉

〈b21; b3〉

(b1)

$b3

(b1)

〈n9; author〉

〈n10; Tim〉

〈n11; year〉

〈n12; 1958〉

〈p3; partition〉

〈t31; tuple〉

〈b31; b3〉

(b2)

$b3

(b2)

Logical Next The Functional-to-Logical module creates
the logical NEXT that corresponds to its input. Figure 5
illustrates the functional and the logical NEXT that corre-
spond to query (X2).

Logical NEXT reflect the nesting of group-by expres-
sions using agroupby tree (see tree on the left side
of the logical NEXT of Figure 5). Each node of the
groupby tree corresponds to afor expression of the func-
tional NEXT and the immediate nesting of twofor ex-
pressions is represented by an edge between their nodes.
We label a nodeN with N(X; Gi; Gv; f) (for example,
N1(X1; ; $a1, $y1; f1($a1, $y1, N2))), where:
⇒ theXTableauX = (F, EQval, EQid) consists of a for-
est F of tree patterns, which captures navigation, a set
of value-based equality conditionsEQval (represented by
bubble-ended dotted lines) and a set of id-based equalities
EQid (represented by arrow-ended dotted lines). The three
shaded sections of the pattern in Figure 5 correspond to the
Xtableaux ofN1, N2, N3. The formal XTableau semantics
extend the tree pattern semantics of [21] to account for the
equality conditions and specify the set of bindings for the
variables of the tree patternX. An alternate (and shorter)
route towards specifying the bindings of the variables of
the XTableaux is based on the 1-1 correspondence between
logical and functional NEXT: Each node in the XTableau
of group-by tree nodeN corresponds to a variable in the
for expression that corresponds toN . Each edge corre-
sponds to a navigation step to a child (graphically repre-
sented by a single edge) or a descendant (represented by
a double edge). Nodes are labeled with the corresponding
tag name tests, or∗ if no such test is performed. Similarly,
the equality conditions in thewhere clause correspond to
the equalities of the XTableau. The set of variable bind-
ings delivered by the XTableau is the set of bindings deliv-
ered for the variables of the correspondingfor expression
in the functional NEXT. In addition to prior tree pattern
formalisms, we accommodate free and bound variables:
since the nested queries may refer to variables bound in
outer queries. For example, variable$b′ is bound inN2 and
free inN3. Tree patterns of a groupby node may be rooted
at variable nodes bound in the tree pattern of an ancestor
groupby node. Similarly, equalities may involve variables
that are bound at ancestor groupby nodes. The equality

$a1 eq $a′ belongs toX2 despite$a1 being free inX2.
Also, $b′ belongs toX2 (where it is bound), and it is free
in X3.
⇒ Gi and Gv are the vectors of groupby-id variables
and groupby-value variables. For example,N1 has an
empty groupby-id list and its groupby-value variable list
“$a1, $y1” specifies that the result expressionf1 will be
invoked once for each unique pair of values of$a1, $y1,
where uniqueness is based on value comparison. The vari-
able list corresponds to the groupby list of the functional
NEXT.
⇒ theresultfunctionf inputs the group-by variables’ bind-
ings and the results of the nested queries and outputs an
XML tree. The result function may be the identity function
or it may involve concatenation and/or new element cre-
ation. The functionf1 creates an element namedresult that
contains$a1, $y1 and the result ofN2 (in this order). The
functionf2 returns the result ofN3 andf3 returns$t. The
specifics of the function are unimportant for minimization
purposes, since it cannot be minimized; hence in the rest of
the paper we refer to the result functions asf1, f2, . . ..
Normalization Benefit Normalization reduces queries into
the NEXT form, where all selections and navigations are
consolidated in the XTableaux, regardless of whether navi-
gation initially appeared insome loops, withindistinct-
values functions, or within subqueries nested in thein
clause (see following example). This consolidation enables
minimization to detect the opportunities for eliminating re-
dundant navigation, regardless of the context in which nav-
igation originally appeared. Normalization is crucial for
maximizing the minimization opportunities and guarantee-
ing full minimization for the queries of OptXQuery. Ex-
ample 2.1 below illustrates the need for the consolidation
achieved through normalization. It shows a query that is se-
mantically equivalent to (X2) but involves a more complex
in clause. The combined action of normalization and min-
imization reduces it to the same minimal form with (X2).
We will see how this query is normalized in Section 3.

EXAMPLE 2.1 While apparently more complicated than
the query (X2), query (X5) below is what an XQuery ex-
pert would write, since it results in a more efficient execu-
tion plan, that avoids redundant navigation within the same
subquery. In fact this is the most efficient way to perform
grouping by multiple variables in XQuery.

for $p in distinct-values (
for $b1 in $doc//book,

$a1 in $b1/author, $y1 in $b1/year
return 〈pair〉〈a〉{$a1}〈/a〉〈y〉{$y1}〈/y〉〈/pair〉),

$a in $p/a/author, $y in $p/y/year (X5)
return 〈result〉 {$a}{$y}

{ for $b′ in $doc//book
where some $a′ in $b′/author, $y′ in $b′/year
satisfies $a′ eq $a and $y′ eq $y
return $b′/title}

〈/result〉

The outermostfor binds the variable$p to distinct pairs of
author andyear subelements ofbook elements. For each
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for $b1 in $doc//book, $a1 in $b1/author,
$b2 in $doc//book, $y1 in $b2/year,
$b3 in $doc//book, $a3 in $b3/author, $y3 in $b3/year

where $a1 eq $a3 and $y1 eq $y3

groupby $a1, $y1 return
〈result〉{$a1, $y1,

N2



























for $b′ in $doc//book, $a′ in $b′/author,
$y′ in $b′/year (X4)

where $a1 eq $a′ and $y1 eq $y′

groupby [$b′]return

N3

{

for $t in $b′/title
groupby [$t] return $t

}〈/result〉

$doc

book
$b1

book
$b2

book
$b3

author
$a1

author
$a3

year
$y3

year
$y1

book
$b'

author
$a'

year
$y'

title
$t

N1(X1; ;$a1, $y1 ;f1($a1,$y1,N2))

N2(X2; $b' ; ;f 2($b',N3))

N3(X3;$t ; ; f 3($t))

X1 X2 X3

f1($a1,$y1,N2) = 
<result>{ $a1, $y1, N2}</result>

f2($b’, N3) = N3               f3($t) = $t

Figure 5: Logical and Functional NEXT corresponding to query (X2)

pair, the nested$b′ loop retrieves the corresponding book
elements. This loop is the unavoidable redundant naviga-
tion across subqueries. ⋄

Minimization Module Normalization does not solve the
minimization problem by itself, as we still have to identify
whichnavigations are reusable. The CCC algorithm mini-
mizes the redundant navigation in a given NEXT query and
provably finds the minimal equivalent XTableaux of its in-
put NEXT. This requires detecting and eliminating redun-
dant navigationwithin andacrossnested XTableaux.

For example, the NEXT of Figure 8(c) and its corre-
sponding functional NEXT (X3) are the minimized form of
XQueries (X2) and (X5). We navigate to books just once
and the inner subqueries utilize the navigation of the outer
level. Notice that the minimized NEXT of Figure 8(c) has
fewer nodes and edges than the original NEXT of Figure
5(b). Indeed it is the minimum possible number of nodes
and edges.
Executing NEXT Finally, the minimized NEXT is reduced
to a physical plan, similar to the algebraic plans of [14, 15]
and is executed. Our logical optimization steps can be
easily incorporated in other implementations of XQuery
as well by attaching a groupby clause to FLWR, i.e., by
having the ability to execute the groupby of the functional
NEXT. One can improve performance by removing trivial
groupby ’s, such as those of the innerfor loops of (X3),
and keeping only the essential ones, such as only the outer-
mostgroupby of (X3).

3 Normalization into NEXT
Figure 6 presents a set of rewrite rules which provably nor-
malize any OptXQuery to a NEXT query (as shown by
Theorem 3.1 below). Some of these rules are known sim-
plification rules of XQuery; they are used extensively both
in reducing XQuery to its formal core [29] as well as in
query optimization [19]. We focus the presentation on the
rules that are particular togroupby , such as Rules (G1),
(G3), (G4) and (G5) and leave out the trivial standard nor-
malization rules. Notice that, for simplicity of presenta-
tion, all rules are shown usingfor andsome expressions
that define exactly one variable. The extension to multiple
variables is obvious.

The normalization process is stratified in two stages.
First, all standard XQuery rewriting rules are applied in
any order. Next, thegroupby -specific rules are used. Rule
(RG1) may be applied in both stages. In Appendix A we
prove:

Theorem 3.1 The rewriting of any XQueryQ with the
rules in Figure 6 terminates regardless of the order in which
rules are applied, i.e. we reach a queryT for which no
more rewrite rule applies. IfQ is an OptXQuery, thenT is
guaranteed to be a NEXT query. ⋄

EXAMPLE 3.1 Recall query (X2) from Example 1.2. In
the first phase of the normalization of (X2), Rules (R1),
(R13), (R14) and (R8) apply, yielding the query (X6).

for $a in distinct-values ( (X6)
for $b1 in $doc//book return for $a1 in $b1/author
return $a1)

return for $y in distinct-values (
for $b2 in $doc//book return for $y1 in $b2/year return $y1)
where some $b3 in $doc//booksatisfies

some $a3 in $b3/authorsatisfies some $y3 in $b3/year
satisfies $a eq $a3 and $y eq $y3

return 〈result〉 {$a, $y,
for $b′ in $doc//book
where some $a′ in $b′/authorsatisfies
some $y′ in $b′/yearsatisfies $a′ eq $a and $y′ eq $y
return for $t in $b′/title return $t}

〈/result〉

The second phase of the normalization applies
groupby rewriting rules to (X6). A rewrite step with
Rule (G1) applied to the outermostfor replaces the
distinct-values function with agroupby clause which
groups by the value of variable$a. Similarly, Rule (G3)
turns the innerfor expression, which does not involve
distinct-values , into a for expression that involves
grouping by identity. By applying Rule (G4) thesome
structures are eliminated. Notice that the variables defined
in some do not participate in the groupby variable lists.
Rule (G5) removes nested subqueries from generator ex-
pressions. Rule (G6) substitutes$a1 for $a and$y1 for $y.
Rule (G10) collapsesgroupby ’s. The transformations re-
duce the query (X2) to the NEXT (X4). ⋄
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Standard XQuery Rewriting Rules

(R1) for $V1 in E1, . . . , $Vn in En where C return E
7→ for $V1 in E1 return for $V2 in E2 return . . . for $Vn in En where C return E

(R2) for $V in (for $V1 in E1 return E2) return E3 7→ for $V1 in E1 return for $V in E2 return E3

(R3) for $V in 〈e〉E1〈/e〉 return E2 7→ θ$V 7→〈e〉E1〈/e〉(E2) (* θ$V 7→E1
(E2) substitutesE1 for $V in E2 *)

(R4) for $V1 in $V2 return E 7→ θ$V1 7→$V2
(E) (*if $V2 is not defined bylet *)

(R5) for $V1 in E1 return for $V2 in 〈e〉E2〈/e〉 where C return E3 7→ θ$V2 7→〈e〉E2〈/e〉(for $V1 in E1 where C return E3)
(R6) for $V1 in E1 return for $V2 in $V3 where C return E3 7→ θ$V2 7→$V3

(for $V1 in E1 where C return E3)
(R7) for $V in (E1, E2) return E3 7→ (for $V in E1 return E3), (for $V in E2 return E3)
(R8) some $V1 in E1, . . . , $Vn in En satisfies C

7→ some $V1 in E1 satisfies some $V2 in E2 satisfies . . . some $Vn in En satisfies C
(R9) some $V in (for $V1 in E1 return E2) satisfies C 7→ some $V1 in E1 satisfies some $V in E2 satisfies C
(R10) some $V in 〈e〉E1〈/e〉 satisfies C 7→ θ$V 7→〈e〉E1〈/e〉(C)
(R11) some $V1 in $V2 satisfies C 7→ θ$V1 7→$V2

(C) (* if $V2 is not defined bylet *)

(R12) some $V in distinct-values (E) satisfies C 7→ some $V in E satisfies C
(R13) $V (/|//)C 7→ for $V1 in $V (/|//)C return $V1 (* if $V/C does not appear in “$X in $V/C”*)

(R14) $V (/|//)C1 . . . (/|//)Cn 7→ for $V1 in $V (/|//)C1 return . . . for $Vn in $Vn−1(/|//)Cn return $Vn (* for n ≥ 2 *)

(R15) distinct-values ($V |〈e〉E1〈/e〉|distinct-values (E)) 7→ $V |〈e〉E1〈/e〉|distinct-values (E) (*if $V is not defined bylet *)

(RG1) 〈e〉E1, . . . , En〈/e〉/c 7→ σc(E1), . . . , σc(En)
σc(〈c〉E〈/c〉) 7→ 〈c〉E〈/c〉 σc(〈a〉E〈/a〉) (∗a 6= c∗) 7→ () σc($V ) 7→ $V (∗if(tagName($V ) = c)∗) () (∗else∗)
σc(for $V1 in E1 return E2) 7→ for $V1 in E1 return σc(E2) σc(E(/|//)c) 7→ E(/|//)c σc(E(/|//)a) 7→ ()(∗a 6= c∗)
σc(E1, E2) 7→ σc(E1), σc(E2) σc(distinct-values (E)) 7→ distinct-values (σc(E))

Group-By Rewriting Rules
(G1) for V in distinct-values (E1) return E2 7→ for V in E1 groupby V return E2

(G2) distinct-values (E1) 7→ for V in E1 groupby V return V (*for distinct-values (E1) which does not appear in “$X in distinct-values (E1)”*)

(G3) for V in E1 return E2 7→ for V in E1 groupby [V ] return E2

(G4) for V1 in E1where some V2 in E2 satisfies C groupby G return E3

7→ for V1 in E1, V2 in E2 where C groupby G return E3

(G5) for V2 in (for V1 in E1 groupby G1 return E2) groupby V2 return E3

7→ for V1 in E1, V2 in E2 groupby V2 return E3

(G6) for X in (X ′ | 〈c〉E〈/c〉)groupby G return Er 7→ θX 7→(X′ | 〈c〉E〈/c〉)(Er)
(G7) for V in E groupby G1 return for X in (X ′ | 〈c〉E2〈/c〉)where C groupby G2 return Er

7→ θX 7→(X′ | 〈c〉E2〈/c〉)(for V in E where C groupby G1 return Er)
(G8) for V1 in E1, X in (X ′ |〈c〉E〈/c〉) groupby G return Er 7→ θX 7→(X′ |〈c〉E〈/c〉(for V1 in E1 groupby Greturn Er)
(G9) for V in 〈e〉E1, . . . , En〈/e〉/c groupby [V ] return Er

7→ (for V in σc(E1) groupby [V ] return Er), . . . , (for V in σc(En) groupby [V ] return Er)
(G10) for V1 in E1, . . . , Vnin En groupby G1 return for V ′

1 in E′
1, . . . , V

′
k in E′

k groupby G2 return Er

7→ for V1 in E1, . . . , Vn in En, V ′
1 in E′

1, . . . , V
′

k in E′
k groupby G1, G2 return Er (*if G1 andG2 only contain grouping by value variables*)

(G11) groupby E 7→ groupby strip(E)
strip(〈tag〉E〈/tag〉) 7→ strip(E) strip(E1, E2) 7→ strip(E1), strip(E2)
strip([E]) 7→ [strip(E)] strip($V, $V ) 7→ strip($V ) 7→ $V

Figure 6: Rules for rewriting OptXQuery into NEXT

Example 3.2 illustrates the normalization of (X5), which
is the efficient variant of query (X2).

EXAMPLE 3.2 Recall from Section 1 (X5), the expert’s
choice of writing query (X2). Standard XQuery normaliza-
tion rules (R1),(R13), (R14), (R8) and (R2) are applied.
Then groupby -specific rules (G1,G3, G4, G5, G6, G8,
G11) and RG1 are applied and the final result is the NEXT
query shown below.

for $b1 in $doc//book,$a1in $b1/author, $y1in $b1/year
groupby $a1, $y1return

〈result〉{$a1, $y1,
for $b′ in $doc//book, $a′ in $b′/author,$y′ in $b′/year
where $a′ eq $a1and $y′ eq $y1

groupby [$b′] return
for $t in $b′/title groupby [$t] return $t }

〈/result〉

⋄

4 Minimization of NEXT Queries
The minimization algorithm focuses on the Xtableaux,
which describe the navigation part of NEXT queries, in or-
der to eliminate redundant navigation. The algorithm we
present here does not incorporate knowledge about the se-
mantics of the result functions, treating them as uninter-
preted symbols.3 It is easy to see that under this assump-
tion, two equivalent NEXT queries must have isomorphic
group-by trees, where the corresponding (according to the
isomorphism) nodes of the two group-by trees have identi-
cal (up to variable renaming) groupby lists and result func-
tions. However, this does not constrain the Xtableaux asso-
ciated with the corresponding group-by nodes in any other
way than having to deliver the same set of bindings for their
variables.

We say that NEXT queryQ is minimal, if for any other

3Which means thatf1(x, y) is equal tof2(u, v) iff f1 andf2 are the
same function symbol andx = u andy = v. Exploiting the semantics of
the result functions in minimization is a future work direction.
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NEXT query Qo equivalent toQ, and for any group-by
nodeN of Q, the nodeNo of Qo corresponding toN via
the isomorphism has at least as many variable nodes in its
Xtableau. Clearly, minimality rules out redundant naviga-
tion: if NEXT queryQ performs redundant navigation, this
can be removed, yielding an equivalent query with strictly
less navigation steps, hence strictly less variables, soQ is
not minimal.

Theorem 4.1 Any NEXT query with uninterpreted result
functions has a unique minimal form (up to variable re-
naming).4 ⋄

We present theCollapse and Check Containment (CCC)
algorithm, which searches for this minimal form and is
guaranteed to find it. Note that Theorem 4.1 implies that no
other algorithm can further minimize CCC’s output with-
out manipulating the result functions. As a matter of fact,
we conjecture that in the absence of any schema informa-
tion, no manipulation of the result function can generate
additional minimization opportunities. This conjecture and
Theorem 4.1 imply that the CCC algorithm fully minimizes
any NEXT query, regardless of its result function.

The CCC algorithm is shown in Figure 7. It minimizes a
NEXT queryQ by invokingmin query on the empty con-
text andQ. min query visits the group-by tree ofQ in a
top-down fashion. LetT be a subtree ofQ’s groupb-by
tree and denote withN the root ofT . T may have free
variables whose bindings are provided by thecontextC,
whereC is the list ofN ’s ancestors inQ’s group-by tree.
min query(C, T ) returns a minimized equivalent ofT in
contextC as follows. First, the XtableauX of N is mini-
mized in contextC by themin tableau function (described
shortly), which returns a minimized XtableauXmin and a
variable mappingθ. θ maps eliminated variables ofX into
retained variables – potentially variables provided by an-
cestor groupby nodes. This variable mapping is applied to
the groupby lists and the arguments of the result function of
N , yielding a new group-by tree nodeN ′. The children of
N ′ are set to the result of recursively applyingmin query
to each child ofN under the appropriate context. Finally,
the new group-by tree rooted atN ′ is returned.
Tableau Minimization The tableau minimization algo-
rithm min tableau is based on two key operations: collaps-
ing variable nodes, and checking that this rewriting pre-
serves equivalence.
The collapse step.Consider two variablesx, y in the in-
put tableauX . Assume thatx is bound inX , while y may
be either bound or free. Thencollapsingx into y means
substitutingy for x in X . Notice that after a sequence of
collapse steps, we may end up with two /-edges between

4Contrast this with the uniqueness problem for nested OQL queries,
which is open, as a consequence of the open problem of deciding their
equivalence [18]. We have developed a decision procedure for equiv-
alence of NEXT queries with arbitrary nesting depth and uninterpreted
result functions. This procedure is not needed in minimization, but its
existence is crucial for the proof of minimal form uniqueness. Checking
equivalence of NEXT queries is of independent interest for their optimiza-
tion.

CCC(Q: NEXT query) :=min query(empty context, Q)

min query (Context: group-by tree,
N(X ; Gi; Gv; f)
T1 . . . Tn

: group-by tree)

returns group-by tree

(Xmin, θ)← min tableau(Context, X, Gi, Gv)
if Contextis empty

NewCtxt← N ′(Xmin; θ(Gi); θ(Gv); θ(f))
else /*Contextis of the formNa

1 (. . .)− . . .−Na
m(. . .) */

NewCtxt←
Context
|

N ′(Xmin; θ(Gi); θ(Gv); θ(f))
return

N ′(Xmin; θ(Gi); θ(Gv); θ(f))

min query(NewCtxt, θ(T1)) . . . min query(NewCtxt, θ(Tn))

Figure 7: The CCC Minimization Algorithm

the same pair of variable nodes. In this case, we remove
one /-edge. We also remove any //-edgee = (s, t) such
that there exists a path froms to t in X which does not
includee. Clearly, the removed edges correspond to redun-
dant navigation steps.

EXAMPLE 4.1 We illustrate the minimization of the
NEXT of Figure 5. First we applymin tableau to tableau
X1 of the rootN1 of the groupby tree. Since there is no
ancestor context, it collapses only variables bound inX1:
$b1 into $b3, $b2 into $b3, then$y3 into $y1 and finally$a3

into $a1, to obtain the minimized groupby nodeN ′
1 in Fig-

ure 8 (a). Using the algorithm described later,min tableau
verifies thatX1 andX ′

1 (the Xtableau ofN ′
1) are equiva-

lent. Coincidentally, the variable mappingθ1 = [$b1 7→
$b3, $b2 7→ $b3, $y3 7→ $y1, $a3 7→ $a1] does not affect
the groupby lists and result function ofN1.

Next, N2 is minimized under the context ofN ′
1. Now

we can also collapse nodes across Xtableaux: we map
$b′ (from N2) into $b3 (from N ′

1) to get the temporary
XtableauX ′

2 shown in Figure 8 (b). We continue collaps-
ing $y′ into $y1 and $a′ into $a1 to obtain the groupby
nodeN ′′

2 shown in Figure 8 (c). Notice thatN ′′
2 has the

empty XtableauX ′′
2 , which means that it performs no new

navigation. Instead, it reuses the navigation inN ′
1 to get the

bindings of$b3, on whose identity it then groups. It turns
out that the above collapse steps are equivalence preserv-
ing, i.e.,X2 is equivalent toX ′′

2 in the context ofN ′
1.

The minimization ofN3 results in an identicalN ′
3. The

overall effect is that the NEXT query (X4) has been opti-
mized into the NEXT query of Figure 8 (c). ⋄

While not needed in the above example, there is one
more case in which we try to collapse pairs of variables
x, y, namely when they are both free in the XtableauX .
Collapsing them inX means adding the id-based equality
x is y to X . The reason we consider such collapse steps on

7



$doc

book
$b3

author
$a1

year
$y1

book
$b'

author
$a'

year
$y'

title
$t

X'1 X2 X3

N'1(X'1; ;$a1, $y1 ;
f1($a1,$y1,N2)

)

N2(X2; $b'; ;
f2($b',N3)

)

N3(X3;$t ; ; f 3($t))

$doc

book
$b3

author
$a1

year
$y1

author
$a'

year
$y'

title
$t

X'1

X'2X3

N'1(X'1; ;$a1, $y1;f1($a1,$y1,N'2))

N'2(X'2; $b3; ;f 2($b3,N3))
N3(X3;$t ; ; f 3($t))

$doc

book
$b3

author
$a1

year
$y1

title
$t

X'1

X''2X'3

N'1(X'1; ;$a1, $y1;f1($a1,$y1,N''2))

N''2(X''2; $b3; ;
f2($b3,N'3)
)N'3(X'3;$t ; ; f 3($t))

(a) (b) (c)

Figure 8: (a) after minimization ofQ1 (b) after collapsing$b′, $b3 in Q2 (c) the minimal form

free variables is subtle. The fact thatX has a non-empty
set of bindings may say something about the structure of
the XML document which in turn may render the bindings
of variablex reusable to obtain those ofy. However, for
documents whereX has no bindings, the bindings ofx and
y may be unrelated. Therefore we need a way to say that
x and y have related bindingsprovidedX has bindings.
The solution is to add the equalityx is y to X (see Exam-
ple 4.4).

Equivalence of group-by nodes in a context.After
a collapse step ofmin tableau has reduced the Xtableau
X of a groupby nodeN(X ; Gi; Gv; f) into an Xtableau
X ′ by deriving a mappingθ, it checks the equivalence
of N(X ; Gi; Gv; f) to N ′(X ′; θ(Gi); θ(Gv); θ(f)) in the
contextC provided by the ancestors ofN . This means ver-
ifying thatX andX ′ produce the same sets of bindings for
the variables of the groupby lists when the bindings of their
free variables are provided by the contextC. The func-
tion min tableau reduces the problem to checking contain-
ment of nodes without free variables (i.e., to equivalence
of nodes in the absence of any context) and then solves the
latter.

The reduction proceeds as follows: Let the contextC be
the listNa

1 , . . . , Na
m of N ’s ancestors. LetNC,N be a new

groupby node. Its groupby-id and groupby-value variables
are the list of all group-by variables ofNa

1 , . . . , Na
m, N . Its

result function is the same asN ’s. Its Xtableau is obtained
by merging the Xtableaux ofNa

1 , . . . , Na
m, N (put together

all nodes and edges). Analogously, defineNC,N ′ . Then the
following holds:

Proposition 1 Group-by nodesN and N ′ are equivalent
in contextC if and only if the sets of bindings of the
groupby variables ofNC,N and NC,N ′ are contained in
one another.

EXAMPLE 4.2 By Proposition 1, the correct-
ness of the collapse step of$b′ into $b3 in Ex-
ample 4.1 reduces to the equivalence of groupby
nodes NN ′

1
,N2

(N ′
1#N2; $b′; $a1, $y1; f2($b′, N3))

and NN ′
1
,N ′

2
(N ′

1#N ′
2; $b3; $a1, $y1; f2($b3, N3)). Here

N ′
1, N2, N

′
2 refer to Figure 8, andX#Y denotes the

Xtableau obtained by merging XtableauxX andY . ⋄

While the reducibility of equivalence to containment is
self-understood for conjunctive queries and tree patterns,

it is a pleasant surprise for NEXT queries, as this is not
true in general for nested OQL queries [18].5

Containment Mappings. Next we show how to check the
containment ofNC,N in NC,N ′ and vice versa. We will
show in Proposition 2 below that containment is equiva-
lent to finding acontainment mapping, defined as follows.
Let N, N ′ be two groupby nodes with identical result func-
tions, with associated XtableauxX, X ′, groupby-id vari-
able listsGi, G

′
i and groupby-value variable listsGv, G′

v.
We omit the result functions from the discussion since they
are identical (modulo variable renaming). A containment
mapping fromN to N ′ is a mappingh from the pattern
nodes and constants ofX to those ofX ′ such that

1. h is the identity on constant values.

2. for any noden in X , n’s tag is the same as that of
h(n).

3. for any /-edgen → m in X , there is a /-edgeu → v
in X ′ such that the conditions inX ′ imply the value-
based equality ofh(n) with u and ofh(m) with v (by
reflexivity, symmetry, transitivity, and the fact that id-
equality implies value-equality).6

4. for any //-edgen → m in X , there are edges (regard-
less of their type)s1 → t1, . . ., sn → tn in X ′, such
that the conditions inX ′ imply the value-based equal-
ity of ti with si+1 (for all 1 ≤ i ≤ n− 1), of s1 with
h(n), and oftn with h(m).

5. for each equality conditionx eq y in X (x, y are vari-
ables or constants)h(x) eq h(y) is implied by the
conditions ofX ′. Analogously forx is y.

6. the value-based equality of vectorsh(Gv) andG′
v is

implied by the conditions inX ′.

7. the id-based equality of vectorsh(Gi) andG′
i is im-

plied by the conditions inX ′.

5[18] does show however that equivalence reduces to containment for
nested OQL queries whose output is a VERSO relation [1]. It turns out
that there is a close relationship between VERSO relations and NEXT
queries: If we neglect the result functions of the groupby nodes and sim-
ply output tuples of bindings, the resulting nested relation is a VERSO
relation.

6Checking that a certain equality is implied by the conditions in X′

can be done in PTIME. It simply involves checking the membership of the
equality in the reflexive, transitive closure of the equalities inX′ (which
is PTIME-computable).
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The difference between the tree pattern containment
mappings from [21] and the ones defined in this work is
that the latter were designed to help reasoning about equal-
ity conditions, which are not allowed in tree patterns. For
example, the intuition behind clauses 3. and 4. is that
whenever two XML nodes are equal (by value or id), so
are the subtreesT1, T2 rooted at them, so any path inT1

has a correspondent inT2.

EXAMPLE 4.3 Continuing Example 4.2, the mapping
defined ash = {$b3 7→ $b′, $a1 7→ $a′, $y1 7→
$y′, $a′ 7→ $a′, $y′ 7→ $y′} is a containment map-
ping from NN ′

1
,N ′

2
(N ′

1#N ′
2; $b3; $a1, $y1; f2($b3, N3))

into NN ′
1
,N2

(N ′
1#N2; $b′; $a1, $y1; f2($b′, N3)). Here the

equalityh($a1) eq h($a′) becomes$a′ eq $a′, which is
trivially implied by the reflexivity of equality. ⋄

Proposition 2 NC,N is contained inNC,N ′ if and only if
there is a containment mapping fromNC,N ′ to NC,N .

By Propositions 1 and 2, all the CCC algorithm has to do
to check the equivalence of nodesN andN ′ in contextC
is to find containment mappings in both directions between
NC,N andNC,N ′ . In fact, the nature of the collapse op-
eration guarantees the existence of a containment mapping
from NC,N to NC,N ′ . Hence only the opposite mapping
must be checked.

We prove the following result:

Theorem 4.2 Let Q be a NEXT query. Then (a) the CCC
algorithm finds the minimal formM , and (b)M is reached
regardless of the order of collapse steps. ⋄

Remarks. 1. Note that collapse steps are quite dif-
ferent and more complex than the basic step used in tree
pattern minimization, namely simply removing a variable
node. This complexity is unavoidable: see Example 4.4
for a non-minimal NEXT query for which, if instead of
collapsing nodes we only try removing them, no removal
is equivalence preserving and we cannot modify the orig-
inal query at all. Moreover, for the same query, if we do
not collapse variables that are both free in a groupby node,
confining ourselves to pairs with at most one free variable,
we cannot reach the minimal form, and for two distinct
sequences of collapse steps, we obtain two distinct, non-
minimal queries.

EXAMPLE 4.4 Consider the NEXT query in Figure 9 (a),
whereN2 is a child ofN1 in the groupby tree. The navi-
gation inN2 binding variable$b3 can reuse fromN1 ei-
ther the navigation for$b2 or that for$b1. We thus have a
choice of collapsing$b3 into $b2 and then$y3 into $y2 and
$p3 into $p2, obtaining the NEXT in Figure 9(b). Alterna-
tively, we can collapse$b3 into $b1 and then$a3 into $a1

and$y3 into $y1, obtaining the NEXT query in Figure 9(c).
In both cases, there are no more equivalence preserving col-
lapse steps that involve at least one free variable, and we get
“stuck” with either of the NEXT queries, depending on the
initial collapse choice. However, note that we can continue

by collapsing$b1 into $b2 in both versions ofN ′
2. Since

in both versions these variables are free inN ′
2, this means

adding the id-based equality$b1 is $b2 to N ′
2. This step

in turn enables the collapse of all remaining nodes from
N ′

2 into nodes fromN1, leading in both cases to the same
minimal NEXT query having a nodeN ′′

2 with an empty
Xtableau. ⋄

2. The CCC minimization algorithm applies directly
also to queriesQ containing∗-labeled pattern nodes or id-
based equality conditions. However, Theorem 4.2 fails in
this case, i.e. the algorithm may not fully minimizeQ, leav-
ing some residual redundant navigation. But so will any
other NP algorithm, unlessΠp

2 = NP , for the following
reason. The complexity of checking for the containment
mapping is NP-complete in the number of variable nodes
in the Xtableau. [10] shows that even for XQueries with-
out nesting, but allowing either navigation to descendants
and children of unspecified tag name, or id-based equality
checks, equivalence isΠp

2-complete. It follows that even
if NC,G, NC,G′ are equivalent, the existence of the con-
tainment mapping is not necessary, i.e. theonly if part
of Proposition 2 fails. Consequently, the CCC algorithm
might wrongly conclude that the collapse step leading to
Q′ is not equivalence preserving, and discard it.
From Logical NEXT to Functional NEXT. Notice that
the translation of the logical NEXT output by the minimiza-
tion algorithm into a functional NEXT must deal with a
subtlety that minimization may have introduced: the trans-
lation of a groupby nodeN with a free variable$r. Two
cases may arise. First,$r may be among the groupby vari-
ables of some ancestor groupby nodeNa (e.g. in the NEXT
query from Figure 8 (c),$b3 appears in the groupby list
of N ′′

2 , and free inN ′
3). Then in the translation ofN we

simply refer to$r, using it as a free variable. Second,$r
may not be in any groupby variable list (e.g. variable$b3

is free inN ′′
2 and not in any groupby list for the query in

Figure 8 (c)). Then denote withNa the groupby node in
which $r is bound (N ′

1 for $b3 in our example). The indi-
vidual bindings for$r are collected in the nested relations
created byNa’s groupby operation. To access these bind-
ings, we add to the groupby construct in the translation of
Na the clauseinto $L, with $L a fresh variable binding to
the list of bindings of$r. Now in the translation ofN we
add the loopfor $r in $L/tuple/r. The query in Figure 8
(c) translates to (X3).

5 Minimization Implementation Issues
The implementation of the minimization module sheds
light on the cost of applying minimization and on the ben-
efits of minimization in XQuery processing. The former
was not a priori clear, since the CCC algorithm is based on
repeatedly finding containment mappings, a step that is NP-
complete in the general case. Notice that, in special cases
when there are no equality conditions and no wildcard child
navigation is allowed, the pattern of a NEXT query degen-
erates to the simple tree patterns of [3] for which contain-
ment is in PTIME.
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Figure 9: Query with two distinct partial minimized forms
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We came up with an algorithm that behaves optimally
on every input. The algorithm is based on the key obser-
vation that finding a containment mapping from groupby
nodeN1 to groupby nodeN2 can be reduced to evaluat-
ing a booleanrelationalquery obtained fromN1 on a small
database computed fromN2. This allows us to exploit stan-
dard relational optimization techniques. In particular, the
relational query corresponding to a simple tree pattern is
acyclic. This class of queries can be evaluated in PTIME
in the size of bothN1 andN2 according to Yannakakis’
algorithm [12]. We illustrate the reduction on an example.

EXAMPLE 5.1 Consider two NEXT queriesQ1, Q2

whose groupby trees consist of one node each,N1 respec-
tively N2 shown in Figures 11 and 10. We do not specify
the result functionsf1, f2 as they are ignored when check-
ing for containment mappings. We representN2 internally
as the relational “frozen” databaseDN2

below, constructed
in the spirit of [26]: we create a special constantv repre-
senting the equivalence class of variable$v with respect to
the value-based equality conditions inN2.

ChildN2
sourceNode targetNodeTag targetNode

b2 author a2

b2 year y2

DescN2
sourceNode targetNodeTag targetNode

doc book b2
We also add relationRTCN2

containing the reflexive, tran-
sitive closure of the union ofChildN2

andDescN2
. We

translateN1 to the query

MN1
()← RTCN2

($doc, book, $b1), ChildN2
($b1, author, a2)

Clearly, there is a containment mapping fromN1 into N2

if and only if MN1
returns a non-empty answer onDN2

. ⋄

We emphasize thatMN1
in the above example is shown

for brevity in conjunctive query syntax but it is imple-

mented as an operator tree, in which selections and projec-
tions are pushed and joins are implemented as hash joins.
Most importantly, the join ordering and pushing of projec-
tions are chosen according to Yannakakis’ algorithm ap-
plied to the acyclic conjunctive query obtained if we ignore
equality conditions inN1 [12]. This approach results in a
running time ofO(|N2|

2 × |N1|) if there are no equality
conditions inN1 (where|N | denotes the number of pattern
nodes in the Xtableau ofN )7. Moreover, it performs very
well in practice in the general case. Our experimental eval-
uation shows that queries with up to 15 nesting levels and
271 path expressions are minimized in less than 100ms.
Our experimental evaluation shows that such added opti-
mization cost is clearly less than the benefit we obtain in
query execution.

Note that in the CCC algorithm, the roles ofN1, N2

are played by the queriesNC,N , respectivelyNC,N ′ from
Proposition 1 , which change at every iteration, soDN2

andMN1
must be repeatedly recomputed. The most ex-

pensive operations are those of recomputing the equiva-
lence classes of variables, and the transitive closureRTCN2

.
Fortunately, this does not have to be done from scratch if
we recall that at every iteration, the Xtableau is changed
by a simple collapse operation. We chose the following
data structures which are easy to incrementally maintain
with respect to collapse operations. For every Xtableau,
we keep the equivalence classes of variables in a union-
find data structure, so whenever noden is collapsed into
m, we simply union the class ofn with that ofm in con-
stant time.RTCN is represented as an adjacency matrix in
whichRTCN [x][y] = 1 if and only if y is a descendant of
x in the tree pattern ofN . Whenn is collapsed intom,
we setRTCN [n][m] =RTCN [m][n] = 1 and recompute the
transitive closure by multiplyingRTCN with itself until we
reach a fixpoint (guaranteed to occur in at mostlog |N | it-
erations, but much earlier in practice because of the small
incremental change).

6 Conclusions and Future Work

We described the NEXT generalization of tree patterns,
which enables logical optimization of XQuery and demon-
strated its value by developing an effective technique for

7We make the standard assumption ofO(1) for indexing into the hash
table when joining. Otherwise, an additionallog |N2| factor must be
counted for sort-merge join.
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minimization of nested XQueries, which removes redun-
dancy across and within subqueries. A key ingredient of
NEXT is the groupby operation, which reduces mixed
(bag and set) semantics to pure set semantics that provides
the typical framework for logical optimization such as min-
imization. Furthermore, it enables consolidation of all nav-
igation in the XTableaux. The provided rewriting rules re-
duce any query from the OptXQuery subset of XQuery into
a NEXT.

The minimization algorithm also capitalizes on the
groupby of NEXT, which allows the navigation per-
formed on a nesting level to reuse the navigation performed
on higher levels. In addition, our minimization algorithm
went fundamentally beyond prior minimization algorithms
for tree patterns and conjunctive queries by introducing a
new type of minimization step, calledcollapsing. The col-
lapse stepaddsto a subquery identity-based equality con-
ditions between its variables to state that their bindings are
the same. Prior algorithms onlyremovevariables [3, 23].
The removal step alone turns out to be insufficient for
nested XQueries, as removal-based techniques not only fail
to find a minimal form, but depending on the application or-
der, they yield several distinct queries, each non-minimal.
Indeed, we prove the existence of a unique minimal form
for any NEXT query and show that our algorithm is guar-
anteed to find it regardless of the order in which it applies
collapse steps (Theorem 4.2).

Minimization of queries from our XQuery subset is NP-
complete, which is no surprise since even in the absence
of XQuery’s nesting, arbitrary (cyclic) joins, which one
can write using XPath predicates, increase the complex-
ity of minimizing XPath expressions described by tree pat-
terns from PTIME [3, 23] to NP-hard [10]. Our minimiza-
tion algorithm behaves optimally on every input: it runs in
PTIME if the tree patterns have no cyclic joins and in NP in
the presence of cyclic joins. As shown by our experimen-
tal evaluation, even in the NP-complete case optimization
time is low (below 100ms for queries with up to 15 nest-
ing levels and up to 271 path expressions, as explained in
Appendix B) thanks to a careful implementation which re-
duces the exponential to an approximation of the tree width
of the query [12] (small in practice), as opposed to the num-
ber of navigation steps (may by very large in practice). We
incorporated minimization in our NEXT XQuery processor
and provided experimental data points that prove the ben-
eficial effect of minimization on the total execution time.
Due to space constraints, the experimental evaluation is re-
ported in the full paper, and included in Appendix 5 for the
reviewer’s convenience.

NEXT normalization and minimization can be used in
any XQuery processor, regardless of its underlying execu-
tion model, as long as it supports an OQL-stylegroupby
operator.

An extension of NEXT, called NEXT+, allows the nor-
malization of arbitrary XQueries, which may be outside the
OptXQuery set, into NEXT+ queries. Guaranteeing full
minimization for NEXT+ is either impossible (e.g., it is

straightforward to show that no algorithm can guarantee
the full minimization of XQueries involving negation) or
requires various extensions to NEXT and the minimiza-
tion algorithm (e.g., extra minimization can be achieved
by algorithms that understand the semantics of aggrega-
tion functions.) Nevertheless, the minimization algorithm
can be applied to the NEXT subexpressions of NEXT+
queries and guarantee their full minimization (which, as
said, does not imply the full minimization of the NEXT+
query). Space constraints relegate this discussion to Ap-
pendix D.

Looking beyond minimization, we plan to employ the
NEXT notation to address , in the context of our media-
tor efforts (which include the Local-As-View approach), an
answering-queries-using-views algorithm for XQuery.

7 Related Work

There is an extensive body of work on nested query
optimization, for relational (SQL) and object-oriented (
OQL [4]) queries. See [6], respectively [8] and the ref-
erences within. For both OQL and SQL, the main ef-
fort is that of unnesting nested queries (merging query
blocks), not their minimization. The group-by operation
is crucially exploited to this end, by evaluating a nested
query using an outerjoin followed by a group-by operation.
See [16, 13] for the relational query evaluation, [8] for the
object-oriented case, and [20, 24] for XML query evalua-
tion. Such rewrites have only limited applicability when
bag and set semantics are mixed [22] or the nesting occurs
in the select clause. Our techniques succeed in these
situations. One of our rewrite rules introduces group-by
operations with everyfor loop, exploiting the well-known
fact that thedistinct-values operation is a special case of
group-by [6]. Another common fact we exploit was recog-
nized in [22], namely that quantifiers are not affected by du-
plicates. There is an interesting duality between our tech-
nique and the generalization of predicate pushdown [26]
to nested (SQL) queries in [17]. The latter pushes con-
ditions from thewhere clause of a query into its nested
subqueries. Our technique pullsfor loops up from nested
queries. Existing algorithms for the minimization of tree
patterns consider no nesting, no arbitrary joins, and only set
semantics [3, 23]. Group-by detection is particularly im-
portant in XQuery, where surface syntax does not include a
group-by construct. [24] uses algebraic rewriting for nested
queries that perform grouping. Our algorithm solves this
problem as a special case of minimization. [7] is the first
work that introducesGeneralized Tree Patterns (GTPs)that
model nested queries and reduce the problem of evaluat-
ing a nested query into one of finding matches for its GTP.
In addition, [7] shows a translation of GTPs to a physical
plan algebra, which we have adopted, with minor modi-
fications. There is an interesting correspondence as well
as subtle differences between GTPs and NEXTs and the
corresponding modules, stemming from NEXT’s orienta-
tion towards problems such as minimization and answering
queries using views. First, we make a distinction between
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optXQuery/NEXT and full XQuery/NEXT+. OptXQuery
scopes the area where minimization (and, we conjecture,
answering queries using views) is guaranteed to find opti-
mal plans. OptXQuery/NEXT omits XQuery features that
make minimization undecidable (e.g., negation and univer-
sal quantification) or too complex (e.g., aggregate func-
tions). Such features are allowed in NEXT+, where we do
not guarantee optimality of the resulting plan. Finally, note
we have introduced a distinction between grouping-by-id
and grouping-by-value since we find multiple aggregation
examples in mediation. (A similar extension for [7] is pos-
sible.)

[25] addresses minimization of nested XQueries in the
context of Peer-to-Peer systems, where scalability is an
acute problem. They develop a PTIME algorithm, trad-
ing completeness of minimization for scalability. The algo-
rithm is incomparable to ours: on one hand, it changes the
structure of the group-by tree, which we do not do, as we
treat result functions as uninterpreted. On the other hand,it
only minimizes the nested subqueries in the context of their
ancestor subqueries, but it does not attempt to reuse the
navigation of the ancestors. No grouping is used, and the
only step considered is removal of variables, which leaves
even the simple XQuery from Example 1.1 unchanged. The
key to our technique’s success is precisely the sophisticated
collapse step which goes beyond node removal, as well as
the essential use of grouping.
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A Details on Normalization into NEXT

OptXQuery We define the OptXQuery subset of
XQuery [30] as the class of queries which are ac-
cepted by the grammar in Figure 3 and in addition satisfy
the semantic constraints presented shortly after we pro-
vide some notations and the intuitions for the semantic
constraints.

A query Q is not a NEXT query if Q
has one of the following expressions which in
general case cannot be rewritten into NEXT
form: “some $V in (E1, E2) satisfies C”,
“distinct-values (E1, E2)”, “ 〈e〉E〈/e〉//c”,
“〈e1〉E1〈/e1〉 eq ($V |〈e2〉E2〈/e2〉|Constant)”. Al-
though the last two types of expressions are not allowed in
the grammar shown in Figure 3, both types of expressions
could appear after application of some rewriting rules in
Figure 6 (R3 and R5).

A.1 Notations

We first define the notations used in semantic constraints.
The definition def($V ) of a variable $V in “$V in E”
is defined asdef($V ) = f(E) wheref(E) = E if E
is 〈c〉XQ〈/c〉, or a path expression;f(E) = f(E1) if
E is distinct-values (E1); f(E1, E2) = f(E1), f(E2);
f(E) = f(Er) if E is a FLWR expression andEr is the
return clause ofE. Note the recursive definition in the case
of FLWR expressions.

A variable$V directly dependson$V ′ if $V ′ appears in
def($V ). We say that$V dependson $V ′ if it directly or
indirectly (via other variables) depends on$V ′. A variable
$V is called asimple variableif the definition of$V and
the definition of any variable that$V depends on contain
no element constructor nor concatenation. An element con-
structor〈e〉E〈/e〉 is called asimple element constructorif
the element〈e〉 is created by the query via repeated applica-
tion of element constructors to constants, simple variables
and simple element constructors. Note the recursive defi-
nition and the fact that complex expressions such as path
expressions orfor loops are disallowed.

A variable $V is called atuple variableif def($V ) is a
simple element constructor. A variable $V whose definition
is “$X/c1/.../cn” is a tuple variable if all of the following
conditions are met: $X is a tuple variable; every naviga-
tion step in the path expression is “/”; the evaluation re-
sult ofdef($X)/c1/.../cn (Rule RG1) is a simple element
constructor; and every intermediate result of evaluating
def($X)/c1/.../cn (e.g, def($X)/c1, def($X)/c1/c2,
. . ., def($X)/c1/.../cn−1) is a simple element construc-
tor. All other variables are not tuple variables.

A variable $V whose definition is “$X/c1/.../cn” is
called a input simple variableif all of the following
conditions are met: $X is a tuple variable; every nav-
igation step in the path expression is “/”; the evalua-
tion result of def($X)/c1/.../cn (Rule RG1) is a sim-
ple variable; and every intermediate result of evaluating
def($X)/c1/.../cn (e.g, def($X)/c1, def($X)/c1/c2,

. . ., def($X)/c1/.../cn−1) is a simple variable or a sim-
ple element constructor. Obviously a tuple variable is not
an input simple variable, but the variables depending on it
may be input simple variables. Notice that an input simple
variable binds to single elements from the input just like
a simple variable. Simple variables and input simple vari-
ables together are calledinput element variables. All other
variables are not input element variables.

In Query X2, all variables are simple variables. In Query
X5, $b1, $a1, $y1, $b′, $a′, $y′ are simple variables;$p is a
tuple variable; $a and $y are input simple variables, but not
simple variables since they depend on $p, a tuple variable,
whose definition contains element constructors.

A.2 Semantic Constraints for OptXQuery

The semantic constraints for OptXQuery are:

• for each $V defined by “$V in E” in a some clause,
$V and every variable $X inE and every variable that
$X depends on are simple variables.

• For each distinct-values (E), if we define $V
as “$V in distinct-values (E)”, $V must be
an input element variable or tuple variable; for
each path expression “$V (/|//)c1 . . . (/|//)cn”
where $V depends on a variable $X defined in
“$X in distinct-values (E), if we define $Vi as
“$Vi in $V (/|//)c1 . . . (/|//)ci”, $Vi must be a tuple
variable or an input element variable (i = 1, . . . , n).

• $V is an input element variable if $V starts a path ex-
pression containing “//”.

• $V is an input element variable if $V appears in an
equality condition.

• No “$V in $V ′” is allowed; at least one variable$Vi in
“ for $V1 in E1, . . . , $Vn in En where C return E”
must be a simple variable.

The first four constraints guarantee that none of the
four types of non-NEXT expressions mentioned in the be-
ginning of this section (respectively) would appear during
rewriting. The last constraint’s purpose is to avoid the need
of introducingif construct into the grammar of NEXT as
the following rule (Rule Rif) introducesif which is ab-
sent in OptXQueries:for $V1 in E where C return Er

7→ θ$V1 7→E(if C then (Er) else ()) where E =
$V2|〈e〉E1〈/e〉, and θ$V 7→E1

(E2) substitutesE1 for $V
in E2. However if the FLWR expression is immediately
nested in another FLWR expression, theif construct is not
needed because we can move up the condition as shown in
Rules R5, R6 and G7. It is not difficult to see why the last
constraint prevent the complete removal of thefor loop
of any FLWR expression. Consider any FLWR expression
and assume$V is a simple variable defined in thefor loop.
If $V is defined by a path expression, clearly thefor loop
can not be completely removed because Rule Rif is not ap-
plicable. In the only other possible case where$V is de-
fined by a FLWR expression, Rule R2 applies and leads to
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a longer chain of nested FLWR expressions. In Rule R2,
either $V1 is a simple variable (thenE1 is either a path
expression or a FLWR expression) , orE2 is a FLWR ex-
pression. Rule R2 cannot apply infinitely as we will prove
shortly. Because of the last constraint, finally there is a
simple variable defined by a path expression which makes
Rule Rif not applicable.

A.3 Normalization Rewriting Rules

Figure 6 presents a set of rewrite rules which provably nor-
malize any OptXQuery to a NEXT query. Some of these
rules are known simplification rules of XQuery; they are
used extensively both in reducing XQuery to its formal core
[29] as well as in query optimization [19]. We focus the
presentation on the rules that are particular togroupby ,
such as Rules (G1), (G3), (G4) and (G5) and leave out the
trivial standard normalization rules. Notice that,where
clauses can be trivially added to FLWR expressions with-
out where clauses in all rules except Rules R3,R4, and
G7. The introduction ofwhere clause to the three rules
requires the introduction ofif construct and would lead to
three new rules. However because of the last semantic con-
straint, these three new rules are not needed for rewriting
OptXQueries. The omission ofwhere clauses is for the
simplicity of presentation. For the same presentation rea-
son, Rules G4, G5, G7 are shown usingfor loop that define
exactly one variable. The extension to multiple variables is
obvious.

The normalization process is stratified in two stages.
First, all standard XQuery rewriting rules are applied in
any order. Next, thegroupby -specific rules are used. Rule
(RG1) may be applied in both stages. We repeat here the
following result (Theorem 3.1):

Theorem A.1 The rewriting of any XQueryQ with the
rules in Figure 6 terminates regardless of the order in which
rules are applied, i.e. we reach a queryT for which no
more rewrite rule applies. IfQ is an OptXQuery, thenT is
guaranteed to be a NEXT query. ⋄

First, we prove that the rewriting terminates, then prove
that OptXQueries are rewritten to NEXT queries.

Consider the first rewriting stage. We associate
τ , 〈sp, mp, var, elm, con, vp, some, for, dis, dm〉, with
each queryQ, with sp being the most significant part of
τ . Intuitively each component ofτ indicates the degree the
query violates the NEXT form in some aspect. Each rule
decreases the value ofτ and it is obvious to see each com-
ponent ofτ cannot be less than0. Thus we prove rewriting
in the first stage always terminates.

Several rules are worth to notice when definingτ .
Rule 3 substitutes $V with〈e〉E1〈/e〉 in E2. E1 may be
far from NEXT normal form, yetE2 containing multiple
occurrences of $V may be in NEXT form. After substi-
tution, τ may increase ifτ is not properly designed. R7
duplicates one subquery (E3). Rules R13 and R14, unlike
all other rules, introduce new variables into the query.

For simplicity of presentingτ , we require input queries
do not have a variable defined more than once, which can
be achieved by variable renaming. The components ofτ of
a queryQ are defined as:

• sp, the number of distinct “$V (/|//)c” occurrences
not in “$X in $V (/|//)c” in Q.

• mp, the number of distinct “$V (/|//)c1 . . . /|//cn”
occurrences inQ.

• var =
∑

distinct variable $V in Q var($V ). If a vari-
able $V appears multiple times inQ, var($V ) is
added tovar only once. For$V in “$V in E”,
var($V ) = the number of distinct variables$V ′ de-
fined in “$V ′ in E′” which is (anywhere) inE +
∑

distinct variable $Xin E vars($X).

• elm, the number of distinctdirect element variables.
$V defined in “$V in E” is a direct element variable if
E = 〈e〉E1〈/e〉 or if E is a concatenation expression
and one of its concatenation component is an element
constructor〈e〉E1〈/e〉. $V defined in “$V in E” is a
direct element variable ifE = $V ′ and$V ′ is a direct
element variable or ifE is a concatenation expression
and one of its concatenation component is$V ′ and
$V ′ is a direct element variable.

• con =
∑

distinct variable $V in Q con($V ). If a
variable $V appears multiple times inQ, the value
con($V ) is added tocon only once. For$V defined in
“$V in E” , con($V ) = the number of concatenation
anywhere inE.

• vp, the number of “$V in E” whereE is not format
of “$X(/|//)c” anywhere inQ.

• some, the number ofsome clauses that define more
than one variable anywhere inQ;

• for, the number of FLWR expressions that define
more than one variable in thefor clause anywhere
in Q;

• dis, the number of occurrences of the
distinct-values function anywhere inQ.

• dm is the number of “〈e〉E〈/e〉/c” occurrences inQ.

As examples, τ(X2) = 〈1, 2, 0, 0, 0, 2, 2, 1, 2, 0〉,
τ(X6) = 〈0, 0, 4, 0, 0, 2, 0, 0, 2, 0〉,
τ(X5) = 〈1, 2, 9, 0, 3, 3, 1, 1, 1, 0〉, τ(X8)=
〈0, 0, 15, 0, 1, 1, 0, 0, 1, 0〉.

The following table shows how each rule may
changeτ where↑means increase,↓ decrease, - no change.
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sp mp var elm con vp some for dis dm

R1 - - - - - - - ↓ - -
R2 - ↓ - ↓ ↓ -↑ - ↓ - ↓ - - - -
R3 - ↓ - ↓ - ↓ ↓ - ↓ ↑ - ↓↑ - ↓ ↑ - ↓ ↑ - ↓ ↑ - ↓↑
R4 - - - ↓ - ↓ - ↓ - - - -
R5 - ↓ - ↓ - ↓ ↓ - ↓ ↑ - ↓↑ - ↓ ↑ - ↓ ↑ - ↓ ↑ - ↓↑
R6 - - - ↓ - ↓ - ↓ - - - -
R7 - ↓ - - - ↓ - ↑ - ↑ - ↑ - ↑ -↑
R8 - - - - - - ↓ - - -
R9 -↓ - ↓ -↑ -↓ -↓ - - - -
R10 -↓ -↓ - ↓ ↓ - ↓ ↑ -↓ ↑ -↓ ↑ -↓ ↑ -↓ ↑ -↓ ↑

R11 - - - ↓ - ↓ - ↓ - - - -
R12 - - - - - - - - ↓ -
R13 ↓ - -↑ - - - - - - -
R14 - ↓ -↑ - - - - - - -
R15 - - - - - - - - ↓ -
RG 1 -↓ -↓ -↓ - ↓ -↓ -↓ -↓ -↓ - ↓ ↓

Similarly, we can prove rewriting in the second stage
terminates and in fact the definition ofτ is much simpler.

For an OptXQueryQ we prove that the rewriting ends
up with a NEXT query. The rewriting in the first stage turns
an OptXQueryQ into XNF form in Figure 12. Syntacti-
cally, there are three differences between OptXQueries and
XNF queries. First,for or some loops in OptXQueries
may define more than one variable. Second, path expres-
sions in OptXQueries may be more than one step or appear
outside of variable definitions. Third, variables in a XNF
query can only be defined by single step path expressions
in some clauses or in addition by thedistinct-values
function if variables are defined infor loops.

Assume the first stage rewriting stops and turns an Op-
tXQueryQ into Q′, thenQ′ must be in XNF form, which
we prove by contradiction. If the first type of violation of
XNF form exists, Rule 1 or Rule 8 is applicable. If the sec-
ond type of violation of XNF form exists, R13 or Rule 14
is applicable. If the third type of violation of XNF form
exists, consider a variable defined in “for $V in E” loop.
If E is an element constructor, a FLWR expression, a path
expression of more than one step, a concatenation expres-
sion, 〈e〉E1〈/e〉/c, or a variable, Rules R3, R2, R14, R7,
RG1, R4 and R6 are applicable respectively, which con-
tradicts the assumption that the rewriting has terminated.
Notice that〈e〉E1〈/e〉/c is not allowed to define variables
in OptXQueries but may appear in the definition of a vari-
able after application of Rule R3, and it is the only type of
expression that may be introduced by rewriting as the defi-
nition of a variable because of Rule R3 and R5. Notice that
〈e〉E1〈/e〉//c cannot appear during rewriting because of
the third semantic constraint. Similarly we can show that
E defined in “some $V in E” can only be a single step
path expression and cannot be thedistinct-values func-
tion because of Rule R12. Since variables in equality con-
ditions are required to be input element variables, equality
conditions would not be affected (by Rule R3 and R5) and
are still format of “$V eq $V ′|c′′ after rewriting.

The second rewriting stage turns a query in XNF form
resulting from the first stage into a NEXT query. Syn-
tactically, there are three differences between XNF form
and NEXT form. First, a queryQ in XNF form may have
distinct-values functions, which Rules G1 and G2 elim-
inate. Second, every FlWR expression inQ is added with
the groupby clause. Third,Q may havesome clauses
which Rule G4 eliminates. Rules G1 and G2 introduce
FLWR expressions to variable definitions which violates
the NEXT form. When the rewriting terminates, eachE

XQ ::= 〈n〉{XQ1, . . . , XQm}〈/n〉|FLWR|Constant

| XQ1, XQ2|distinct-values (FLWR)

FLWR ::= for V in SP(where CList)?return XQ

SP ::= Path| distinct-values (FLWR)

Path ::= (document (“constant′′)|Var)(/|//)Constant

CList ::= Cond(and Cond)∗

Cond ::= Var1 eq (Var2|Constant)

| some V in Pathsatisfies CList

Figure 12: XQuery Normal Form

in “$V in E” can only be a single step path expression,
which again can be proven by contradiction. IfE is a
FLWGR expression, an element constructor, a variable,
or 〈e〉E1〈/e〉/c, Rules G5, G6, G7, G8, G9 are applica-
ble respectively, which contradicts the assumption that the
rewriting has terminated. Unlike the proof in the first stage,
E cannot be a path expression of more than one step which
is not in XNF, and none of the rewriting rule introduces
it. E cannot be a concatenation expression which is not
in XNF and none of the rewriting rule introduces it be-
cause of the semantic constraints of OptXQueries. Note
the element constructors in G6, G7 and G8 must be simple
element constructors because of the second semantic con-
straint. In G9, the result of〈e〉E1, . . . , En〈/e〉/c is either
a simple element constructor or a variable because of again
the second semantic constraint. Only Rules G6, G7 and G8
may make agroupby clause contain an expression other
than variables and the expression can only be a simple ele-
ment constructor. However G11 strips any simple element
constructor and makesgroupby clause contain only vari-
ables.
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for $b1 in $doc//book, $a1 in $b1/author,
$b2 in $doc//book, $y1 in $b2/year,
$b3 in $doc//book, $a3 in $b3/author, $y3 in $b3/year

where $a1 eq $a3 and $y1 eq $y3

groupby $a1, $y1 return
〈result〉{$a1, $y1,

N2



























for $b′ in $doc//book, $a′ in $b′/author,
$y′ in $b′/year (X4)

where $a1 eq $a′ and $y1 eq $y′

groupby [$b′]return

N3

{

for $t in $b′/title
groupby [$t] return $t

}〈/result〉
Example A.1 illustrates the normalization of an efficient

variant of query (X2).

EXAMPLE A.1 While apparently more complicated than
the query (X2), query (X5) is what an XQuery expert would
write, since it results in a more efficient execution plan, that
avoids redundant navigation within the same subquery. In
fact this is the most efficient way to perform grouping by
multiple variables in XQuery.

Standard XQuery normalization rules (R1),(R13),
(R14), (R8) (R2) apply, yielding the query X8 .
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Figure 13: Minimization times as function of nesting depth
d and redundancyr

for $p in distinct-values ( (X8)
for $b1 in $doc//book return
for $a1 in $b1/author return
for $y1 in $b1/year return 〈pair〉〈a〉{$a1}〈/a〉〈y〉{$y1}〈/y〉〈/pair〉)

return
for $iv1 in $p/a return for $iv2 in $iv1/author return
for $iv3 in $p/y return for $iv4 in $iv3/year return
return 〈result〉 {$iv2, $iv4,

for $b′ in $doc//book
where some $a′ in $b′/author satisfies some $y′ in $b′/year
satisfies $a′ eq $iv2 and $y′ eq $iv4

return for $t in $b′/title return $t }
〈/result〉

Thengroupby -specific rules (G1,G3, G4, G5, G6, G8,
G11) and RG1 are applied and the final result is the NEXT
query shown below.

for $b1 in $doc//book,$a1in $b1/author, $y1in $b1/year
groupby $a1, $y1return
〈result〉{$a1}{$y1}
{ for $b′ in $doc//book, $a′ in $b′/author,$y′ in $b′/year
where $a′ eq $a1and $y′ eq $y1

groupby [$b′] return
for $t in $b′/title groupby [$t] return $t }

〈/result〉

⋄

B Experiments

B.1 Minimization Time

We ran the following experiment to stress-test the CCC
algorithm. We considered a family of synthetic NEXT
queriesQd,r, where the parameterd controls the nesting
depth of the query, andr its intra-level redundancy.Qd,0

are the queries with no redundancy within subqueries (there
still is redundancy across them). Their general form is
shown below, already in NEXT form, to give a better in-
tuition on the grouping they perform:

for $x1in $doc//X, $y1,1in $x1/Y1

groupby $y1,1 return
〈T1〉 for $x2in $doc//X, $y2,1in $x2/Y1, $y2,2in $x2/Y2

where $y2,1 eq $y1,1

groupby $y2,2 return
〈T2〉 for $x3 in $doc//X,$y3,1 in $x3/Y1,

$y3,2 in $x3/Y2, $y3,3 in $x3/Y3

where $y3,1 eq $y2,1 and $y3,2 eq $y2,2

groupby $y3,3 return
〈T3〉 ...

The nesting depth of group-by constructs goes all the
way to d. Notice the redundant navigation across nest-
ing levels: the bindings of$yn,i are contained in those
of $yn−1,i for each nesting leveln. Starting fromQd,0,
we add intra-level redundancy as follows: on each nesting
level, we duplicate the tree patternr times (relaxing every
child step by turning it into a descendant step). For exam-
ple, if r = 1, the second nesting level becomes

〈T1〉 for $x2 in $doc//X,$y2,1 in $x2/Y1, $y2,2 in $x2/Y2

$x′
2 in $doc//X,$y′

2,1 in $x′
2//Y1, $y′

2,2 in $x′
2//Y2

where $y2,1 eq $y1,1

groupby $y2,2 return
〈T2〉

and forr = 2, level 2 contains 9 variables. Notice thatQd,r

is equivalent toQd,0 for everyr. Indeed, all queries with
the samed will be minimized to the same NEXT query.
The queries we minimize have1+(r+1)(d2 +3d)/2 path
expressions in them, which is a very large number for our
maximal choices ofd andr.

The measurements. Figure 13 depicts a family of
curves. Each shows the minimization time as a function
of the nesting depthd, for a fixedr. For example, a query
of 15 nesting levels, with intra-level redundancy 7, has a
total of 1081 variable bindings, and performs just as many
individual navigation steps, which exceeds by far practical
query sizes. The minimal form performs only 16 naviga-
tion steps. Minimization takes 656 milliseconds, which is
an insignificant fraction of the running time even for much
simpler queries, and a worthwhile effort to spend for such
a significant reduction of navigation complexity.

The effect of bottom-up join evaluation and
join/projection interleaving, according to Yannakakis’
algorithm, was quite beneficial to our implementation. In
a first, more brute-force implementation which performed
the joins top-down, instead of according to Yannakakis’
algorithm, we measured much slower minimization times,
despite using the same efficient data structures for per-
forming joins and unions. For example,Q2,1 (11 nodes)
andQ4,0 would take more than 5 seconds (and so did all
queries with largerd andr).

B.2 Effect of Minimization on Query Run Time

We measured the benefit of minimization on the overall
query execution time of a set of OptXQueries. We used
synthetic input documents containing books. Their sizes
ranged from1000 to 10000 in steps of1000. For every

16



Query Average Speedup Optimized time Unoptimized time

Query 1 1.5 60 90
Query 2 2.7 60 160
Query 3 1.7 60 102
Query 4 2.9 65 190
Query 5 10.5 133 1397
Query 6 5.5 65 360

Table 1: Average query running time ratio

size we had two files. In the first file the number of authors
was roughly 1/100th of the number of books. In the sec-
ond file the number of authors was roughly 100 always. In
both files the number of years was 30 and the number of
publishers was 1/100th of the number of books. All the ex-
periments were executed on a 2Ghz CPU, 1GB of memory,
and a 34GB drive running Windows 2000. The engine pro-
vides very competitive plans that make use of efficient join
operators, in the spirit of [14]. For example, nested queries
are not run in a naive way, where for each iteration of the
outer query we ran the inside query from scratch. Instead,
when the inner query has equality conditions with the out-
side query, the plan reads the data of the inner query just
once and appropriately indexes them. Then it evaluates the
outer query probing in each iteration the indexed table for
matching data only of the inner query.

Table 1 shows the ratios of the average running time of
the standard XQueries to their minimal NEXT query form.
Query1 is (X1) from Section 1. Queries2 and3 are the
two equivalent queries (X2) and (X5). Query4 is Q2,0 in
Figure 13, and it groups books by author at the first level
and then by year at the second level. Query5 is Q3,0 in
Figure 13, so it has one more nesting level than Query4;
it groups books at the third level by publisher. Query6 is
Q2,1 in Figure 13, so it is similar to Query4 but with intra-
level redundancy.

The minimization time for all queries in Table 1 is less
than5 milliseconds. The minimal NEXT query is insensi-
tive to the nesting depth.

C Constraints on OptXQuery

Below is a sufficient condition for disallowing set equal-
ity checks. This condition is not necessary and is re-
laxed in our formal specification of OptXquery. We say
that a variable is aninput elementvariable if it binds to
single elements from the input. We say that it is asim-
ply created elementvariable if it binds to elements cre-
ated by the query via repeated application of element con-
structors to constants, input element and simply created
element variables. Note the recursive definition and the
fact that complex expressions such as path expressions
or for loops are disallowed. We require that all vari-
ables appearing in equality conditions be input element
variables, and all other variables be either input or sim-
ply created element variables. We check this by employ-
ing a simple type inference algorithm (presented in the
full version of the paper), which identifies on the user
query the variables violating the restrictions, warning the

user that the query is not guaranteed to be fully mini-
mized. Notice that this condition rules out from the where
clause checks such as〈a〉$x/b〈/a〉 eq 〈a〉$y/b〈/a〉, as
well as 〈a〉$u〈/a〉 eq 〈a〉$v〈/a〉, where$u is bound to
〈c〉$x/b〈/c〉 and$v is bound to〈c〉$y/b〈/c〉. Both com-
pare the node sets$x/b and$y/b for equality. Also ruled
out are from within adistinct-values function expres-
sions such as〈a〉$x/b〈/a〉, which compare the node sets
obtained for various bindings of$x.

A sufficient restriction for avoiding disjunctive con-
ditions is (aside from the explicit absence of the key-
word or ): variables bound bysome clauses shall
not range over sets of nodes obtained by concate-
nating results of several navigations. Indeed, ob-
serve that some $x in (E1, E2) satisfies C is
equivalent to (some $x in E1 satisfies C) or
(some $x in E2 satisfies C).

Though only OptXQueries are guaranteed to be
fully minimized, the processor may also input arbitrary
XQueries and optimize them using minimization. We dis-
cuss the processing of arbitrary XQueries in Appendix D.

D Beyond OptXquery: NEXT+

The query processor also minimizes XQueries that are
outside the optXQuery class. It first reduces such
XQueries to theNEXT+ form and then minimizes their
NEXT components. In their functional representation,
NEXT+ queries extend each component of NEXT’s
“ for V in Navigationwhere Condition groupby
GroupBy List return Result Function” in the ways de-
scribed next.

First, theResult Functionmay be a XQuery expression
that is disallowed in OptXQuery. For example, it may be
a function specified in W3C’s XQuery/XPath function and
operator specification [28] (such as thecount function),
a non-OptXQuery XQuery/XPath expression such as nav-
igation on the parent axis, or an XQuery-defined function
[30] written by the user. The normalization reduces any
non-OptXQuery result function to an uninterpreted func-
tion f(Q1, . . . , Qn), whereQ1, . . . , Qn are NEXT queries
or variables - as it is the case with NEXT result functions
as well.

The Navigation part of the for clause may also be
a functionf(Q1, . . . , Qn). The uninterpreted functionf
appears in the Xtableau as a special function node, la-
beled byf(Q1, . . . , Qn). The node for the variable$V
that binds tof connects to thef node via a special edge
type. The equivalence step of the minimization algorithm
is extended to require that two matching function nodes
f(Q1, . . . , Qn) and f(Q′

1, . . . , Q
′
n) have the same name

and arity andQi is equivalent toQ′
i, for all i = 1, . . . , n.

Next, theCondition List is a conjunctive normal form
expression where terms of the conjunction may benot ex-
pressions oror expressions. Furthermore, predicates be-
yond equality are allowed (e.g. capturing “exclusive or” or
universal quantification). The normalization algorithm cap-
tures all of the above by introducing uninterpreted boolean
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predicatesb(Q1, . . . , Qn) in the conjunction (in addition to
the equality predicates of NEXT). Two such predicates are
considered equivalent only if they have the same name and
equivalent arguments.

Finally, theGroupby Listmay also involve functions,
i.e., non-variable components. (Notice that this may
happen only by usingdistinct-values in the original
XQuery.) In this case the minimization algorithm does not
attempt to minimize thefor expression; in effect, it treats
it as an unintepreted function. However, it still minimizes
the NEXT components of the function.
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