1

The NEXT Framework for Logical XQuery Optimization

Alin Deutsch

Yannis Papakonstantinou

Yu Xu

University of California San Diego

Abstract

Classical logical optimization techniques rely on
a logical semantics of the query language. The
adaptation of these techniques to XQuery is pre-
cluded by its definition as a functional language
with operational semantics. We introduce Nested
XML Tableaux which enable a logical foundation
for XQuery semantics and provide the logical plan
optimization framework of our XQuery processor.
As a proof of concept, we develop and evaluate
a minimization algorithm for removing redundant
navigation within and across nested subqueries.
The rich XQuery features create key challenges
that fundamentally extend the prior work on the
problems of minimizing conjunctive and tree pat-
tern queries.

Introduction

The direct applicability of logical optimization technigg)
(such as rewriting queries using views, semantic optilet $doc :=document (‘input.xml”)

mization and minimization) to XQuery is precluded by
XQuery’s definition as a functional language [30].
normalization module of the NEXT XQuery processor en-
ables logical optimization of XQueries by reducing them to
NEsted Xml Tableaux (NEXT)which are based on logical

The return

unavoidably innestedqueries, where the subqueries per-
form navigation that is redundant relative to the query they
are nested in. A common case is that of queries that
perform grouping in order to restructure or aggregate the
source data. The grouping is typically expressed us-
ing a combination of self-join and nesting, in which the
navigation in the nested, inner subquery completely dupli-
cates the navigation of the outer query (see Examples 1.1
and 1.2). Another typical scenario pertains to media-
tor settings, where queries resulting from unfolding the
views [20, 17, 25] in the original client queries contain
nested and often redundant subqueries (when the naviga-
tion in two view definitions overlaps). Finally query gener-
ation tools tend to generate non-minimal queries [31].

EXAMPLE 1.1 Consider the following query that groups
books by authors (it is a minor variation of query Q9 from
W3C's XMP use case [27]). Thdistinct-values func-
tion eliminates duplicates, comparing elements by value-
based equality [30].

for $ain distinct-values ($doc//book/author)
(result) { $a,

for $bin $doc//book

where some $bain $b/authorsatisfies $baeq $a
return $b}

(/result)

(X1)

semantics. NEXT extend tree patterns [3, 21] (which have

been used in XPath minimization and answering XPathNotice that théor loop binding$a (from now on called the
queries using XPath views) with nested subqueries, joins, loop) hassetsemantics, all others halmg semantics
and arbitrary mixing of set and bag semantics. i.e., duplicates are not removéd.

As a proof-of-concept of NEXT's applicability to The straightforward nested-loop execution of this query
XQuery logical optimization, but also for its own impor- s wasteful since the nested loops (iefor loop and the
tance in improving query performance, we developed andj, some loop) are redundant: th&: loop has already
evaluated a query minimization algorithm that removes renavigated to the corresponding book and author elements.
dundant navigation within and across nested subqueriefn this case, we say that the redundant navigation appears
Minimization is particularly valuable in an XQuery con- acrossnested subqueries, where nesting is w.r.trétern
text, since redundant XML navigation arises naturally anddause_ The NEXT XQuery processor performs a more
efficient execution (inspired by the OQL groupby opera-
tor [8]): eliminate the redundant navigation by scanning
books and authors just once and then apply a group-by op-
eration. o

Permission to copy without fee all or part of this materiagimnted pro-
vided that the copies are not made or distributed for diremtmercial
advantage, the VLDB copyright notice and the title of thelipation and
its date appear, and notice is given that copying is by pesiois of the
Very Large Data Base Endowment. To copy otherwise, or tohlegty
requires a fee and/or special permission from the Endowment

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004
1Both the plural and singular form are “NEXT".

2The query can be expressed in a shorter form by replacinghitse
clause with Where $a = $b/author” or by replacing the innefor
with “$doc/ /book[author = $a]". Itis well known [19] how to reduce
such syntactic sugar (use of “=" or use of predicates in pdthghe basic
XQuery constructs we use (see Figure 3).

(b; bibliography)

/ \
(b1; book (b2; book
(a11;author) (a12;author) (t1;title) (y1; year) (az21;author) (ag2;author) (t2;title) — (yo;year)
|
(v11; Elvis) (vi2; Tony) (vis; Rock) (v14; 1958) (v21; Elvis) (vag; Tim) (va3;Roll) (va4;1958)
Figure 1: Data of Running Example
It turns out that, when attempting to perform groupir XQ‘uery 0 OptXQuery !
by more than one _varlable, the resuItmg_X_Quenes cont CCC Minimization
redundant navigation both across and within subqueries Normalization
Rewritin iMinimized NEXT
EXAMPLE 1.2 The following nested XQuery groups ol 9 —
.) .) Optimization &
two variables: book titles are grouped by author and yi Functional NEXT X ¢
f publicati Translation to Physical Plan
O publication. Functional-to-Logical lph -
ysical Plan
for $a in distinct-values ($doc//book/author) (X2) :
$y in distinct-values ($doc//book/year) (Logical) NEXT Plan Execution Engine

where some $bs in $doc//book$as in $b3/author,
$ys in $b3/year

satisfies $a eq $as and Sy eq $ys Figure 2: The NEXT XQuery Processor Architecture
retumn <;§sr”f$tg/ |{n$€$fdi?é/ /book defined sense. The expressiveness of OptXQuery raises the
where some $a’ in $/author, $y' in $v’ /year following novel challenges that fundamentally change the
satisfies $a’eq $a and $y'eq $y nature of the minimization problem, such that previous al-
return $bv'/title} gorithms for the minimization of conjunctive queries [5, 2]
(/result) and XPath queries [3, 23, 11], do not apply:

The$doc variable is defined as in the first line of (X1) and 1~ OPtXQueries are nested (as opposed to conjunctive
its definition will be omitted from now on. Notice the use of queries and tree patterns).

of the 30’ loop. Once again, the navigation of the outer- tree patterns, which correspond to acyclic joins [12]).
most subquery (th8a and$y loops) is duplicated by the)))
nested subquery. In addition, redundant navigation occurs 3. OptXQueries freely mix bag and set semantics (as op-

also within the outermost subquery: tseme loop bind- posed to allowing either pure bag or pure set seman-
ing $b3 navigates tdook, author andyear elements, all tics in relational queries, and only set semantics in tree
of whom are also visited by tH&: and$y loops. o patterns).

The combined effect of the normalization and minimiza- Section 5 discusses the implementation of the minimiza-
' Izall inimiza- 1, algorithm. Though the problem is NP-hard, as is the

tion modules of the NEXT XQuery processor removes thecase for minimization of relational queries, the implemen-

redundant navigation from the above examples. This MiNtation reduces the exponentiality to an approximationef th
nquery tree width [12] and results in fast minimization even
'ior very large queries, as proven by our experimental re-
ults. We summarize the contributions of this work and
provide future directions in Section 6. Related work is de-

_Fcribed in Section 7.

model. In many XQuery processors, including our own
the matching of paths and equality conditions is performe
by joins that outperform brute force loops. Minimization
reduces the number of joins in such cases.

Section 2 describes the system architecture and NEX
and highlights NEXT’s key logical optimization enabling .
feature: NEXT consolidate all navigation of the original 2 Framework and Architecture
query in the XTableaux tree pattern structure, regardlesXML We model an XML documenb as a labeled tree

of whether navigation originally appeared in tivbere of nodesNx /1., edgesEx sz, a function\ : Nxpr —
clause, within non-path expressions in fhe clause, or Constantghat assigns a label to each node, and a function
even within subqueries that are withirdestinct-values id : Nxpr — IDs that assigns a unique id to each node.
and hence follow set semantics. We ignore node order. The tree of Figure 1 serves as our

Section 3 describes the normalization algorithm that retunning example.
duces a wide set of XQueries, called OptXQuery, to NEXT.OptXQuery The paper focuses on the OptXQuery subset
All example XQueries appearing in this paper fall in this of XQuery, which follows the syntax of Figure 3 and also
class. Due to space limitations we only briefly discuss insatisfies the constraints described below. Notice that Op-
Appendix D the processing of non-OptXQuery XQueries. tXQuery allows navigation along the childref) @nd de-
Section 4 describes a minimization algorithm that, givenscendant (/) axes of XPath, existential quantification us-
a NEXT, fully removes redundant navigation, in a formally ing some, arbitrary conjunctive conditions (as opposed to

XQ = (n){XQy, ..., XQ, }{/n) (P1)

XQ = (m){XQy,...,XQ, H/n) va Vein path V. in path, EE%
| XQ1,XQ- or Viin Path;, ..., V, in Pa
.) (where CList)?
| for (Vin XQ) + (where CLisy? groupby (V/|[V{])... (V|[V{])(into P)?
return XQ return XQ
| (document (“constant”)|Var)((/|//)Constanj « Path::= (document (“Constant”)|Var)((/|//)Constan} (P4)
| Constant ClList:= Cond(and Cond)x (P5)
distinct-val X Cond:= V; eq (Vz|Constan} (P6)
oL | CIS IZE -VZ L(J:esqg Q Figure 4: Functional NEXT Syntax
Ist = ond(an onda) x
Cond := Var eq (Varz|Constanj

| some (V'in XQ) + satisfies ClList patterns [21, 3, 23] to capture nesting, cyclic joins, and
mixed set and bag semantics. There is an 1-1 correspon-
dence between functional and logical NEXT expressions.

Group-By The arguments of group-by are a listggbupby
variablesGy, . .., Gk, the name of an optionalartition
variable P, and the result expression. A group-by inputs
e tuples of variable bindings produced by floe and
here clauses and outputs a tuple set that has exactly one
tuple for every set of tuples that have equal groupby vari-
Sble bindings. Equality is identity-based if the groupby
variable appears d¢7;] or value-based if the variable ap-

Figure 3: OptXQuery

acyclic conditions only [12]), element creation that may in
clude nested queries (as opposed to tree conditions that r
turn a single element or tuples of variable bindings, an
duplicate elimination using thdistinct-values function
(which allows both bags and sets). The grammar can b
trivially extended with additional constructs that have an

obvious reduction to OptXQuery, such as predicates in pat ears agi;. In OOL fashion, a new variable binding is

Expressions. ,)) i i created for the variablé and binds to a table that has
OptXQuery’s constraints rule out (i) queries that directly yhe yples that belong to this group. However, in order to

or indirectly test the equality of constructed sets (ii) liip stay within the XML data model, we emulate the nested

disjunctive conditions (aside from the explicit absence ofi;pie with a speciapartition element that containgiple

or). Appendix C provides sufficient conditions for ruling gjements, which in turn contain elements named after the

out (i) and (ii). We limited the syntax and included the first n5mes of the aggregated variables, excluding

constraint in prder_ to be _able to guarantee full minimiza For example, consider the functional NEXT (X3), which
tion, as explained in Section 4, since it is well known from . . M -
) i . : roups book titles by author and year (indeed, it is the mini-
both relational and object-oriented query processing that . . .
SR . .-mized form of XQuery (X2), and the corresponding logical
minimization and containment problems become undecids . C I
; ; . .- NEXT will be seen in Figure 8(c)).
able once set equality, negation and universal quantificati
are allowed. On the contrary, there is no theoretical reason

against disjunctions and we can extend NEXT to inCOrpotor $p, in $doc//book$a; in $bs/author,$y: in $hslyear

rate them, but for simplicity we focus on purely conjunc- groupby $a1,$y: into $L return (X3)
tive queries. Though only OptXQueries are guaranteed to (result){ $a1, $y:

be fully minimized, the processor may also input arbitrary for $b'in $L/tuple/bs groupby [$v'] return
XQueries and optimize them using minimization, as briefly for $tin $b’/title groupby [$t] return $t }

discussed in Appendix D. The main body of the paper as- (/result)

sumes that the input query is in OptXQuery.

Normalization and NEXT The normalization module of The first table below illustrates the tuples generated by
the NEXT processor (see Figure 2) inputs an OptXQueryihe outermostor clauses of (X3) when run on the data of
applies a series of rewriting rules, discussed in Section 3rjgyre 1 and the next table illustrates the output of its first
and produces &inctional NEXT whose syntax (see Fig- group-by. For illustration purposes, the bindings of the pa
ure 4) extends a subset of OptXQuery with an OQL-tition variable are also shown in nested table format. The
inspired group-by construct [4]. notation(z) stands for the tree rooted at the node withr id
Functional NEXT The functional NEXT syntax allows Notice that grouping by value results into creating copies
only path expressions in tifer clause, while OptXQuery for the bindings of the group-by variables in the result. For
also allowed nested subqueries. Also, NEXT allows onlyexample, notice that the first binding

variables in the condition, while OptXQuery also allowed of $a; is neither(ai1) nor (az;)
some, which include existential navigation. It is the use | Sa1 [Sy1 [$bs | but is a new object(n;) that

of group-by that has enabled us to move all navigation to | (a11) | (y1) | (b1) has equal value witffa;;) and
the path expressions of tha clauses. Th&unctional-to- (a12) | (1) | (b1) (as1). Efficient implementations
Logical module performs a straightforward translation of | (a21) | (y2) | (b2) | ¢ group-by can avoid to physi-
its input into alogical NEXT, whose syntax extends tree (a22) | (y2) | (b2)

cally produce copies.

$a1 eq $a’ belongs toX, despite$a; being free inXs.

Also, $v’ belongs toX, (where it is bound), and it is free
Sa; [S [5L lin X,

(p1; partition) . .
(nr; author) (s year) (t1r: buple) Ttras tuple) = G; and G, are the vectors of groupby-id variables
Lo]]] and groupby-value variables. For exampl, has an
(n2; Elvis) (n4;1958) (b11; b3) (b12; bs) L . . .
)) 2) || empty groupby-id list and its groupby-value variable list

pa; partition “$a1, $y1” specifies that the result expressign will be

(ns; author) (n7; year) (ta1; tuple) invoked once for each unique pair of values$af;, $y1,
(ne; Tony) (ng; 1958) (ba1; bs) where uniqueness is based on value comparison. The vari-
1) able list corresponds to the groupby list of the functional
(p3; partition) NEXT.
(o3 author) (11 year) (ts1; tuple) = theresultfunctionf inputs the group-by variables’ bind-
(n10; Tim) (n12;1958) (b31;b3)

ings and the results of the nested queries and outputs an
(b2) XML tree. The result function may be the identity function
or it may involve concatenation and/or new element cre-
Logical Next The Functional-to-Logical module creates ation. The functiory; creates an element nameslult that
the logical NEXT that corresponds to its input. Figure 5 contains$a, $y; and the result o, (in this order). The
illustrates the functional and the logical NEXT that corre- function f, returns the result ofl3 and f5 returns$t. The
spond to query (X2). specifics of the function are unimportant for minimization
Logical NEXT reflect the nesting of group-by expres- purposes, since it cannot be minimized; hence in the rest of
sions using agroupby tree(see tree on the left side the paper we refer to the result functionsfasyfs,
of the logical NEXT of Figure 5). Each node of the Normalization Benefit Normalization reduces queries into
groupby tree corresponds tofar expression of the func- the NEXT form, where all selections and navigations are
tional NEXT and the immediate nesting of twfor ex- consolidated in the XTableaux, regardless of whether navi-
pressions is represented by an edge between their nodegation initially appeared isome loops, withindistinct-
We label a nodeV with N(X;G;;G,;f) (for example, values functions, or within subqueries nested in tine
N1(X1;;%8a1, $y1; f1(8a1, $y1,N2))), where: clause (see following example). This consolidation ersmble
= theXTableauX = (F, EQ.ai, EQ;q4) consists of a for- minimization to detect the opportunities for eliminatireg r
est F' of tree patterns, which captures navigation, a setlundant navigation, regardless of the context in which nav-
of value-based equality conditios(?),,,; (represented by igation originally appeared. Normalization is crucial for
bubble-ended dotted lines) and a set of id-based equalitie®aximizing the minimization opportunities and guarantee-
EQ;q (represented by arrow-ended dotted lines). The threéng full minimization for the queries of OptXQuery. Ex-
shaded sections of the pattern in Figure 5 correspond to th@mple 2.1 below illustrates the need for the consolidation
Xtableaux ofNy, N2, N3. The formal XTableau semantics achieved through normalization. It shows a query that is se-
extend the tree pattern semantics of [21] to account for thenantically equivalent to (X2) but involves a more complex
equality conditions and specify the set of bindings for thein clause. The combined action of normalization and min-
variables of the tree pattedd. An alternate (and shorter) imization reduces it to the same minimal form with (X2).
route towards specifying the bindings of the variables ofWe will see how this query is normalized in Section 3.
the XTableaux is based on the 1-1 correspondence between
logical and functional NEXT: Each node in the XTableau EXAMPLE 2.1 While apparently more complicated than
of group-by tree nodéV corresponds to a variable in the the query (X2), query (X5) below is what an XQuery ex-
for expression that corresponds . Each edge corre- Pert would write, since it results in a more efficient execu-
sponds to a navigation step to a child (graphically repretion plan, that avoids redundant navigation within the same
sented by a single edge) or a descendant (represented Bybquery. In fact this is the most efficient way to perform
a double edge). Nodes are labeled with the correspondingrouping by multiple variables in XQuery.
tag name tests, orif no such test is performed. Similarly, ¢, $p in distinct-values

the equality conditions in therhere clause correspond to for $by in $doc/ /book,

the equalities of the XTableau. The set of variable bind- $ay in $b1/author, $y1 in $by /year

ings delivered by the XTableau is the set of bindings deliv- return (pair)(a){$a1}(/a)(y){Sy1}(/y){/pair)),

ered for the variables of the correspondiiog expression $ain $p/a/author, $y in $p/y/year (X5)

in the functional NEXT. In addition to prior tree pattern return (result) {Sa}{$y}

formalisms, we accommodate free and bound variables: { for $b' in $doc//book _

since the nested queries may refer to variables bound in where some $a’ in $b'/author, Sy’ in $V'/year

satisfies $a’ eq $a and $y’ eq $y
return $b'/title}
(/result)

outer queries. For example, variall¢ is bound inV, and

free in N3. Tree patterns of a groupby node may be rooted
at variable nodes bound in the tree pattern of an ancestor
groupby node. Similarly, equalities may involve variablesThe outermostor binds the variabl&p to distinct pairs of
that are bound at ancestor groupby nodes. The equalityuthor andyear subelements dfook elements. For each

for $b1 in $doc//book, $a1 in $b1 /author,
$b2 in $doc/ /book, $y1 in $bs /year, Ny(Xy: 188, Sy, i, (5a,.8y,N,)

$b3 in $doc//book, $asz in $bs/author, $ys in $b3/year X, Xy
where $a; eq $a3 and $y1 eq $ys | \
groupby $a1, $y1 return N,(X,; $b'; 5f (80", N3)) book
(result){$a1, $y1, o
Ny for $b" in $doc/ /book, $a’ in $b' /author, ‘ / \ \

$y’ in $b" /year (X4) Ny(Xq 8t ; ; F4(31) author year | fitle

N, d Where Sa; eq $a’ and $y1 eq $y’ f.($a, 8y, N,) = ; e ¥, .
*\ groupby [$t]return Sresul{ $a, $y,, Noj<lresult

{ for $tin $b' /title
3 f,80, N9 =N, f,(81) = $t

groupby [$¢] return $t
}{/result)

Figure 5: Logical and Functional NEXT corresponding to quet2)

pair, the neste@b’ loop retrieves the corresponding book The normalization process is stratified in two stages.
elements. This loop is the unavoidable redundant navigaFirst, all standard XQuery rewriting rules are applied in
tion across subqueries. o anyorder. Next, thgroupby -specific rules are used. Rule
(RG1) may be applied in both stages. In Appendix A we
Minimization Module Normalization does not solve the prove:
minimization problem by itself, as we still have to identify
which navigations are reusable. The CCC algorithm mini-Theorem 3.1 The rewriting of any XQuery) with the
mizes the redundant navigation in a given NEXT query andules in Figure 6 terminates regardless of the order in which
provably finds the minimal equivalent XTableaux of its in- rules are applied, i.e. we reach a quefyfor which no
put NEXT. This requires detecting and eliminating redun-more rewrite rule applies. If) is an OptXQuery, theff’ is
dant navigatiomithin andacrossnested XTableaux. guaranteed to be a NEXT query. ©
For example, the NEXT of Figure 8(c) and its corre-
sponding functional NEXT (X3) are the minimized form of EXAMPLE 3.1 Recall query (X2) from Example 1.2. In
XQueries (X2) and (X5). We navigate to books just oncethe first phase of the normalization of (X2), Rules (R1),
and the inner subqueries utilize the navigation of the outefR13), (R14) and (R8) apply, yielding the query (X6).
level. Notice that the minimized NEXT of Figure 8(c) has

fewer nodes and edges than the original NEXT of Figurefor $ain distinct-values (. (X6)
5(b). Indeed it is the minimum possible number of nodes ~ for 8b1 in $doc//book retum for $ay in b1 /author
and edges. return $a;)

return for $y in distinct-values (
for $b2 in $doc/ /book return for $y1 in $b2/year return $y1)
where some $bs in $doc//booksatisfies

Executing NEXT Finally, the minimized NEXT is reduced
to a physical plan, similar to the algebraic plans of [14, 15]

and is executed. Our logical optimization steps can be some $a3 in $b3/authorsatisfies some $ys in $b3/year
easily incorporated in other implementations of XQuery satisfies $a eq $as and $y eq $ys

as well by attaching a groupby clause to FLWR, i.e., by return (result) {$a, $y,

having the ability to execute the groupby of the functional for $b” in $doc/ /book

NEXT. One can improve performance by removing trivial where some $a’ in $b’/author satisfies

groupby ’s, such as those of the innfar loops of (X3), some $y’ in 8V /yearsatisfies $a’ eq $a and $y’ eq Sy
and keeping only the essential ones, such as only the outer- return for $tin $'/title return $t}

mostgroupby of (X3). (Iresult)

ETI The second phase of the normalization applies
3 Normalization into NEXT groupby rewriting rules to (X6). A rewrite step with
Figure 6 presents a set of rewrite rules which provably norRule (G1) applied to the outermogor replaces the
malize any OptXQuery to a NEXT query (as shown by distinct-values function with agroupby clause which
Theorem 3.1 below). Some of these rules are known simgroups by the value of variabl. Similarly, Rule (G3)
plification rules of XQuery; they are used extensively bothturns the innerfor expression, which does not involve
in reducing XQuery to its formal core [29] as well as in distinct-values , into a for expression that involves
guery optimization [19]. We focus the presentation on thegrouping by identity. By applying Rule (G4) theome
rules that are particular tgroupby , such as Rules (G1), structures are eliminated. Notice that the variables define
(G3), (G4) and (G5) and leave out the trivial standard norin some do not participate in the groupby variable lists.
malization rules. Notice that, for simplicity of presenta- Rule (G5) removes nested subqueries from generator ex-
tion, all rules are shown usirfgr andsome expressions pressions. Rule (G6) substitutis, for $a and$y; for $y.
that define exactly one variable. The extension to multipleRule (G10) collapsegroupby ’s. The transformations re-
variables is obvious. duce the query (X2) to the NEXT (X4). o

Standard XQuery Rewriting Rules

(R1) for $V1in E4,...,8V, in E, where C return E
— for $V41 in E; returnfor $Vs in Esreturn ...for $V, in E, where Creturn E
2) for $V in (for $V1 in E; return E3) return Es +— for $V1 in E; returnfor $V in Es return E
3) for $V in <6>E1</€> return Es — 9$V»—»(e>E1</e) (EQ) * Osv— B, (E2) substitutest; for $V in E5 *)
4) for $V1in $Vareturn E — Ogv,, .51, (E) (if $V2 is not defined byet *)
5) for $Viin E; returnfor $Vzin (e)Ea(/e) where Creturn Es — Ogy,, . ()5, (/e (fOr $V1 in Ey where Creturn E3)
6) for $V1 in E1 returnfor $Vz in $V5 where C return Es — Ogv,. .51, (for $V1in E1 where C return Es)
7) for $Vin (E1, Ez) return Es — (for $V in E; return Es), (for $V in E; return Es)
) some $Viin Eq,...,$V, in E, satisfies C
— some $Vi in E; satisfiessome $V% in E; satisfies ...some $V, in E, satisfies C
(R9) some $V in (for $V1 in E; return E,) satisfies C — some $V; in E; satisfies some $V in E, satisfies C
(R10) some 3V in (e)E1(/e) satisfies C +— Ogv ()5, (/e) (C)
() some $V1in $V; satisfies C — gy, 51, (C) (*if $V2 is not defined byet *)
(R12) some $V indistinct-values (F) satisfies C +— some $V in E satisfies C
(R13) $V(/|//)C s for $V1in $V (/|//)C return $V1 (*if $V/C does not appear ir§X in $V/C"™)
(R14) SV (/|//)C1...(/|//)Cr > for $V1in $V (/|//)C1 return ...for $V, in $V,_1(/|//)Cn return $V, (for n > 2%
(R15) distinct-values ($V|{e)E1{/e)|distinct-values (F)) — $V|{e)E1(/e)|distinct-values (FE) (:if $V is not defined byet *)
(RG1) (e)En,...,En{/e)/cr> gc(F1),...,0c(En)
oe((VE(/e)) = (E(fe) oe({a)E(/a) (sa# cx) s () 0o(8V) 8V (xif(tagName($V) = c)x) () (xelsex)
oc(for $V1in Eq return E) — for $Viin Ejreturn o.(E2) oc(E(/|//)c) — E(/|//)e oc(E(/I//)a) — ()(xa # cx)
0c(E1, E2) — 0c(E1),0.(E?2) oc(distinct-values (F)) — distinct-values (o.(FE))

Group-By Rewriting Rules

(G1) for V indistinct-values (Ep) return Eo — for Vin E; groupby V return E;
(G2) distinct-values (E1) — for Vin E; groupby V return V' (*for distinct-values (E:) which does not appear i in distinct-values (E1)™)
(G3) for Vin Eyreturn E,; — for Vin E; groupby [V]return E;
(G4) for V1 in Eywhere some V; in E; satisfies C groupby G return E3

— for Viin Eq, V2 in E; where C groupby G return Es
(G5) for Vain (for V1 in Ey groupby Gi return E.) groupby Va return Es

— for Viin Ey, V2 in E5 groupby Vs return Es
(G6) for Xin (X' | (c)E(/c))groupby G return E. — Ox (x| (cyE(/c))(Er)
(G7) for Vin E groupby Gy returnfor X in (X' | (c)E2(/c))where C groupby G return E,

= Ox (x| (B (/ey) (fOr Viin E where C groupby G, return E,)
(G8) for Viin E1, X in (X' [{(c)E(/c)) groupby Greturn E,. +— 0x . (x’ [(cyE(/e)(fOr V1in E1 groupby Greturn E.)
(G9) for Vin (e)En,...,En(/e)/cgroupby [V]return E.

— (for Vin o.(E1) groupby [V]return E.),...,(for Vin o.(E,) groupby [V]return E,)
(G10) for Viin Ei,...,V,in E, groupby Gireturnfor V{in Ei,...,V/in Ej, groupby G.return E,

—for Viin E1,...,Vain E,,V{in E{,...,V/in E, groupby G1,G2return E,. (+f G, andG only contain grouping by value variables*)
(G11) groupby E — groupby strip(E)

strip((tag) E(ltag)) — strip(F) strip(F1, E2) — strip(E1), strip(E2)

strip([E]) — [strip(E)] strip($V,8V) — strip(8V) — $V

Figure 6: Rules for rewriting OptXQuery into NEXT

Example 3.2 illustrates the normalization of (X5), which 4 Minimization of NEXT Queries

is the efficient variant of query (X2). The minimization algorithm focuses on the Xtableaux,

which describe the navigation part of NEXT queries, in or-
der to eliminate redundant navigation. The algorithm we
present here does not incorporate knowledge about the se-
mantics of the result functions, treating them as uninter-
reted symbol$. It is easy to see that under this assump-
ion, two equivalent NEXT queries must have isomorphic
group-by trees, where the corresponding (according to the
isomorphism) nodes of the two group-by trees have identi-
cal (up to variable renaming) groupby lists and result func-
gro??ebsyulgﬁb fy%gjlt“m tions. However, this does not constrain the Xtableaux asso-

for $b'in $doc//book, $ain $t/author.$y in $bf/year ciated with the corresponding group-by nodes in any other
where $a’ eq $a1anoi Sy eq $u:1 ' way than having to deliver the same set of bindings for their

EXAMPLE 3.2 Recall from Section 1 (X5), the expert’s
choice of writing query (X2). Standard XQuery normaliza-
tion rules (R1),(R13), (R14), (R8) and (R2) are applied.
Then groupby -specific rules (G1,G3, G4, G5, G6, G8,
G11) and RG1 are applied and the final result is the NEXT,
guery shown below.

for $b:1 in $doc//bookSaiin $b1 /author, $y.in $b1 /year

groupby [$b'] return variables. o _
for $tin $b'/title groupby [$t] return $t } We say that NEXT querg is minimal if for any other
(Iresult)

3Which means thaf; (z, y) is equal tofz (u, v) iff f1 andfo are the
same function symbol and = « andy = v. Exploiting the semantics of
<o the result functions in minimization is a future work direct

NEXT query Q, equivalent toQ, and for any group-by CCC(Q: NEXT query) :=min_query(empty context, R
nodeN of @, the nodeN, of @, corresponding taV via '
the isomorphism has at least as many variable nodes in itgin-query (Context group-by tree,

Xtableau. Clearly, minimality rules out redundant naviga- N(i(; Gi;Gv\;f) : group-by tree)
tion: if NEXT query@ performs redundant navigation, this Ty e Tn -

can be removed, yielding an equivalent query with strictly returns group-by tree

less navigation steps, hence strictly less variableg) o _

not minimal. (X™™m @) — min_tableau(Context X, G;, G,)

if Contextis empty
Theorem 4.1 Any NEXT query with uninterpreted result NewCtxt— N'(X™";0(G;); 0(G,); 0(f))
functions has a unique minimal form (up to variable re- else /*Contextis of the formN{(...) —... = N&(...)*/
naming)‘_" o Context
NewCtxt— |
We present th€ollapse and Check Containment (CCC) N/(X™"0(G);0(G,); 0(f))
algorithm, which searches for this minimal form and is return
guaranteed to find it. Note that Theorem 4.1 implies that no N/(X™m:0(G); 0(Gy); 0(f))

other algorithm can further minimize CCC'’s output with- C/

out manipulating the result functions. As a matter of fact, min_query(NewCtxtf(7})) ... min_query(NewCtxtd(T},))
we conjecture that in the absence of any schema informa-

tion, no manipulation of the result function can generate

additional minimization opportunities. This conjecturela Figure 7: The CCC Minimization Algorithm
Theorem 4.1 imply that the CCC algorithm fully minimizes)))
any NEXT query, regardless of its result function. the same pair of variable nodes. In this case, we remove

The CCC algorithm is shown in Figure 7. It minimizes a One /-edge. We also remove any //-edge- (s,t) such
NEXT queryQ by invokingmin_query on the empty con- that there exists a path fromto ¢ in X which does not
text andQ. min_query Visits the group-by tree of) in a includee. Clearly, the removed edges correspond to redun-
top-down fashion. Lef be a subtree of)'s groupb-by ~ dant navigation steps.

:/raer?azlneds dva?(?;z \gi';b;‘[inthse :r)gt ?I)aaejt; g‘aﬁ\gt@ee EXAMPLE 4.1 We illustrate the minimization of the
9 b y ' NEXT of Figure 5. First we applynin_tableau to tableau

where(C' is the list of N's ancestors ir)’s group-by tree. ; ;

min_query(C,T) returns a minimize(;QeqSivalepnt}:if in X, of the rootV, Qf the groupby tree. Since there IS no

coniextC’ as’follows. First, the XtableaX of NV is mini- ancestor context, it collapses O’?'V variables bound’m

mized in contextC' by themin_tableau function (described 8by into $bs, b, into $b3, thensy; into Sy, and finally$as

shortly), which returns a minimized Xtablead™" and a into $ay, to obtain the minimized groupby nodé{ in Fig-
Y)s ure 8 (a). Using the algorithm described lateim_tableau

varigble mappin@. 6 maps gliminate_d variables.d;f into erifies thatX; and X (the Xtableau of\!) are equiva-
retained variables — potentially variables provided by anjgnt Coincidentally, the variable mappiflg = [$b; —
cestor groupby nodes. This variable mapping is applied t b3, by > $bs, $ys +— Sy1, $az — $a1] does not affect
the groupby lists and the arguments of the result function of},o groupby lists and result function B, .

N, yielding a new group-by tree nod’. The children of Next, N5 is minimized under the context df]. Now

N’ are set to the result of recursively applyingn_query \ye can also collapse nodes across Xtableaux: we map
to each child ofV under the appropriate context. Finally, ¢; (from N2) into $b5 (from N?) to get the temporary

the new group-by tree rooted &t is returned. XtableauX} shown in Figure 8 (b). We continue collaps-
Tableau Minimization The tableau minimization algo- ing $y/ into y, anda’ into $a; to obtain the groupby

rithm min_tableau is based on two key operations: collaps- y54e N7 shown in Figure 8 (c). Notice thav} has the

. . . . " 2
ing vanablg nodes, and checking that this rewriting Pre-empty XtableauX, which means that it performs no new
serves equivalence.

. . _ _ navigation. Instead, it reuses the navigatioVinto get the
The collapse step.Consider two variables, y in the in-

_) : bindings of$b3, on whose identity it then groups. It turns
put tableau. Assume that is bound inX, whiley may ¢ that the above collapse steps are equivalence preserv-
be either bound or free. Theamllapsingz into y means

o . _ ing, i.e., X is equivalent taX’ in the context ofV;.
substitutingy for z in X. Notice that after a sequence of = “1ne minimization ofN; results in an identicaV;. The

collapse steps, we may end up with two /-edges betweegyqrq| effect is that the NEXT query (X4) has been opti-

4Contrast this with the uniqueness problem for nested OQlriggie mized into the NEXT query of Figure 8 (C) <
which is open, as a consequence of the open problem of dgaid@ir . . .
equivalence [18]. We have developed a decision proceduredoiv- While not needed in the above example, there is one

alence of NEXT queries with arbitrary nesting depth and tempreted more case in which we try to collapse pairs of variables

result func_t|ons. _Thls procedure is not needed in |jn|n|rmmtbut its z,y, name|y when they are both free in the Xtable¥u
existence is crucial for the proof of minimal form uniquene€hecking

equivalence of NEXT queries is of independent interestifeirtoptimiza- Cc_)llapsing them inX’ means add_ing the id-based equality
tion. x is y to X. The reason we consider such collapse steps on

N3 (X35 88y, By 5 No(Xp $D7 5 Na(Xgi$t 5 5 F5($0) N (X'y; s $ay, Sy ity ($a,$y,.N') N, (X';5 8, By,;f;($a;,$y1,N",)
)fl(alYyl’N2))f2($b',N3)

X‘l $doc $ dOC X'1
X $doc X X gt H
: y; \2 8 Ny(Xsi$t ; ; F(51) boo 20Xz 831,805 D) || N 2(>§ (2$:bﬁj';)
book book . yx . N(C8t; 5 Fa(st) DOOK o
by s N T $b,
A / \ \ title author year author year X'y / \ X",
author year author year title $t $a, $y, $a' Sy’ /
$a, Sy, $ar %y i s . P title author year
] ‘ $t $a, $y,
(a) (b) (c)

Figure 8: (a) after minimization ap; (b) after collapsingd’, $b3 in Q- (c) the minimal form

free variables is subtle. The fact th&t has a non-empty it is a pleasant surprise for NEXT queries, as this is not

set of bindings may say something about the structure ofrue in general for nested OQL queries [28].

the XML document which in turn may render the bindings Containment Mappings. Next we show how to check the

of variablex reusable to obtain those gf However, for containment ofN¢ n in No n- and vice versa. We will

documents wher& has no bindings, the bindingsefand show in Proposition 2 below that containment is equiva-

y may be unrelated. Therefore we need a way to say thdent to finding acontainment mappinglefined as follows.

z andy have related bindingprovided X has bindings. Let N, N’ be two groupby nodes with identical result func-

The solution is to add the equalityis y to X (see Exam- tions, with associated XtableauX, X’, groupby-id vari-

ple 4.4). able listsG;, G, and groupby-value variable lists,,, G.,.
Equivalence of group-by nodes in a context.After We omit the result functions from the discussion since they

a collapse step ohin_tableau has reduced the Xtableau are identical (modulo variable renaming). A containment

X of a groupby nodeV (X;G;; G,; f) into an Xtableau mapping fromN to N’ is a mappingh from the pattern

X'’ by deriving a mappind, it checks the equivalence nodes and constants &f to those ofX’ such that

of N(X;G;;Gy; f) to N'(X';0(G,); 0(G,); 6(f)) in the

contextC' provided by the ancestors 8f. This meansver- 1. his the identity on constant values.

ifying that X and X’ produce the same sets of bindingsfor o ¢, any noden in X, n’s tag is the same as that of

the variables of the groupby lists when the bindings of their h(n).

free variables are provided by the contéxt The func- _)

tion min_tableau reduces the problem to checking contain- 3+ for any /-edgér — m in X, therells a/-edge — v

ment of nodes without free variables (i.e., to equivalence N X' such that the conditions i imply the value-

of nodes in the absence of any context) and then solves the ~Pased equality of(n) with u and ofh (i) with v (by

latter. reflexivity, symmetry, transitivity, and the fact that id-
The reduction proceeds as follows: Let the cont&xte equality implies value-equality§.

the list vy, ..., Ng of N's ancestors. LeN¢ v be a new 4. for any //-edgex — m in X, there are edges (regard-

groupby node. Its groupby-id and groupby-value variables less of their type}y; — t1, ..., s, — t, in X’, such

are the list of all group-by variables &f, ..., N%, N. Its that the conditions iX”’ imply the value-based equal-

result function is the same &§é's. Its Xtableau is obtained ity of ¢; with s;,1 (forall 1 < ¢ < n — 1), of s; with

by merging the Xtableaux a¥{, ..., N, N (put together h(n), and oft,, with h(m).

all nodes and edges). Analogously, defivie 5. Then the

. 5. for each equality conditioneq vy in X (x, y are vari-
following holds: ables or c?)nsta);lw)(z) eq ;?(5) is ingpliyed by the
Proposition 1 Group-by nodesV and N’ are equivalent conditions ofX’. Analogously forz is y.
in contextC' if and only if the sets of bindings of the 6, the value-based equality of vectdr&s,,) and G, is
groupby variables ofV¢ y and N¢ - are contained in implied by the conditions itk
one another. 7. the id-based equality of vectok$G;) and G, is im-
EXAMPLE 4.2 By Propositon 1, the correct- plied by the conditions iX .

ness of the collapse step dft’ into $b3 in Ex-

. 5 i ;
ample 4.1 reduces to the egquivalence of aroupb [18] does shoyv however that eq_uwalence reduce_s to congaihfor
P q 9 P ynested OQL queries whose output is a VERSO relation [1]. ristwout

/ . /. . /

nodes NNLNz (Nl #Na; 805 Sar, Sy1; fo ($b 7N3)) that there is a close relationship between VERSO relatios NEXT
and Ny g (N1#N3; 8b3; $a1, $y1; f2(8bs, N3)). Here queries: If we neglect the result functions of the groupbtesoand sim-
N{, No, Né refer to Figure 8, andX#Y denotes the ply output tuples of bindings, the resulting nested refai®a VERSO

. . relation.
Xtableau obtained by merging XtableadxandY'. © 6Checking that a certain equality is implied by the condiion X’

. i . . . can be done in PTIME. It simply involves checking the membigrsf the
While the reducibility of equivalence to containment is equality in the reflexive, transitive closure of the eqigditin X’ (which

self-understood for conjunctive queries and tree patternss PTIME-computable).

The difference between the tree pattern containmenby collapsing$s; into $b, in both versions ofV;. Since
mappings from [21] and the ones defined in this work isin both versions these variables are free\ify this means
that the latter were designed to help reasoning about equakdding the id-based equaliip, is $b; to N;. This step
ity conditions, which are not allowed in tree patterns. Forin turn enables the collapse of all remaining nodes from
example, the intuition behind clauses 3. and 4. is thatV} into nodes fromV,, leading in both cases to the same
whenever two XML nodes are equal (by value or id), sominimal NEXT query having a nod&? with an empty
are the subtrees;, T rooted at them, so any path iRy Xtableau. o

has a correspondentf}. 2. The CCC minimization algorithm applies directly

EXAMPLE 4.3 Continuing Example 4.2, the mapping also to queri_eQ contgining*-labeled pattern nodes or.id-.

: _ / / based equality conditions. However, Theorem 4.2 fails in
defined ash = {$b3 — 8V',%a1 — $d,%y1 ~— : ; . o

this case, i.e. the algorithm may not fully minimi@e leav-

ing some residual redundant navigation. But so will any
other NP algorithm, unlesdS = NP, for the following
reason. The complexity of checking for the containment
mapping is NP-complete in the number of variable nodes
in the Xtableau. [10] shows that even for XQueries with-
out nesting, but allowing either navigation to descendants
and children of unspecified tag name, or id-based equality
checks, equivalence §5-complete. It follows that even

By Propositions 1 and 2, all the CCC algorithm has to doif Nc.a: Nc,g- are equivalent, the existence of the con-
to check the equivalence of noddsand N’ in contextC tainment mapping is not necessary, i.e. tmdy if part
is to find containment mappings in both directions betweerPf Proposition 2 fails. Consequently, the CCC algorithm
Ne,n and Ne . In fact, the nature of the collapse op- might wrongly conclude that the collapse step leading to
eration guarantees the existence of a containment mappir@/ is not equivalence preserving, and discard it.

from NC,N to NC,N’- Hence on|y the Opposite mapp|ng rom LOg|Cal NEXT to .FunCtiOI’laJ NEXT. NO“Ce that
must be checked. the translation of the logical NEXT output by the minimiza-

We prove the following result: tion algorithm into a functional NEXT must deal with a
subtlety that minimization may have introduced: the trans-
Theorem 4.2 Let Q be a NEXT query. Then (a) the CCC lation of a groupby nodéV with a free variabler. Two
algorithm finds the minimal form/, and (b)) is reached cases may arise. Firsty may be among the groupby vari-
regardless of the order of collapse steps. o ables of some ancestor groupby nddé(e.g. in the NEXT
query from Figure 8 (c)$b3 appears in the groupby list
Remarks. 1. Note that collapse steps are quite dif- of N/, and free inN3). Then in the translation oV we
ferent and more complex than the basic step used in tresimply refer to$r, using it as a free variable. Secorid,
pattern minimization, namely simply removing a variable may not be in any groupby variable list (e.g. variabbg
node. This complexity is unavoidable: see Example 4.4s free in Nj/ and not in any groupby list for the query in
for a non-minimal NEXT query for which, if instead of Figure 8 (c)). Then denote witlv® the groupby node in
collapsing nodes we only try removing them, no removalwhich $r is bound (V] for $b5 in our example). The indi-
is equivalence preserving and we cannot modify the origvidual bindings for$r are collected in the nested relations
inal query at all. Moreover, for the same query, if we do created byN®’s groupby operation. To access these bind-
not collapse variables that are both free in a groupby nodengs, we add to the groupby construct in the translation of
confining ourselves to pairs with at most one free variable N ¢ the clausénto $L, with $L a fresh variable binding to
we cannot reach the minimal form, and for two distinctthe list of bindings offr. Now in the translation oV we
sequences of collapse steps, we obtain two distinct, noradd the loogor $rin $L/tuple/r. The query in Figure 8
minimal queries. (c) translates to (X3).

EXAMPLE 4.4 Consider the NEXT query in Figure 9 (a), IR .
where N, is a child of N in the groupby tree. The navi- 5 Minimization Implementation Issues

gation in N» binding variable$bs can reuse fromV; ei- The implementation of the minimization module sheds
ther the navigation fo$b, or that for$b,. We thus have a light on the cost of applying minimization and on the ben-
choice of collapsingbs into $b5 and therfys into $y, and efits of minimization in XQuery processing. The former
$ps into $po, obtaining the NEXT in Figure 9(b). Alterna- was not a priori clear, since the CCC algorithm is based on
tively, we can collaps&bs into $b; and ther$as into $a; repeatedly finding containment mappings, a step thatis NP-
and$ys into $y;, obtaining the NEXT query in Figure 9(c). complete in the general case. Notice that, in special cases
In both cases, there are no more equivalence preserving cakthen there are no equality conditions and no wildcard child
lapse steps that involve at least one free variable, and tve gaavigation is allowed, the pattern of a NEXT query degen-
“stuck” with either of the NEXT queries, depending on the erates to the simple tree patterns of [3] for which contain-
initial collapse choice. However, note that we can continueament is in PTIME.

$y',8a’ — $d’,%y — $y'} is a containment map-
ping from Ny n; (Ni#N3;8b3; a1, $y1; f2(8bs, N3))
iNto Ns n, (N1#Na; 8V'; 8a, $y1; f2($b', N3)). Here the
equality h($a1) eq h(3a’) becomessa’ eq $a’, which is
trivially implied by the reflexivity of equality. o

Proposition 2 N¢ is contained inN¢, - if and only if
there is a containment mapping fralNy v+ to N v

Ny(X,; 1$a,, $p,if,) N,(Xi b5 if) Ny(X;; ;$a,, $p,if,) N'o(X'518b,; 3 5)
Xl

N'p(X'58by; if5) Ni(Xy; i8ay, $p,ify)

% $doc X,
book book book
$b, $b, $b,
author year year price author year year price
$a, By, e—e 8y, $p, $a, Sy, e——oSy, $p, S | | $p, %3, Sy, e

(@) (b) (€)
Figure 9: Query with two distinct partial minimized forms

mented as an operator tree, in which selections and projec-

Sdoc $doc tions are pushed and_jqins are_implemented_ as hash_joins.
e bOILk Most importantly, the join ordering and pushing of projec-
$b $by tions are chosen according to Yannakakis’ algorithm ap-
author year autlhor plied to the acyclic conjunctive query obtained if we ignore
$as Sy $a, equality conditions inV; [12]. This approach results in a

running time ofO(|N»|? x |Ny|) if there are no equality
i conditions inN; (where|N| denotes the number of pattern
Figure 10:No(X2;;$az; f2) Figure 11:N,(X1;; $a1; f1) nodes in the Xtableau a¥). Moreover, it performs very
))] well in practice in the general case. Our experimental eval-
We came up with an algorithm that behaves optimallyation shows that queries with up to 15 nesting levels and
on every input. The algorithm is based on the key obsery71 path expressions are minimized in less than 100ms.
vation that finding a containment mapping from groupbyoyr experimental evaluation shows that such added opti-
node N, to groupby nodeV, can be reduced to evaluat- mization cost is clearly less than the benefit we obtain in
ing a booleamelationalquery obtained froniv; on a small query execution.

database computed froivy,. This allows us to exploit stan- Note that in the CCC algorithm, the roles of,, Ny

dard relational optimization technique_s. In particulae t _are played by the querieSc v, respectivelyN¢, - from

; . . . Proposition 1 , which change at every iteration, 3@,
acyclic. This class of queries can be evaluated in PTIME 4 My, must be repeatedly recomputed. The most ex-
; . . o L .

n the_ size of bOthI.Vl and N, accordm_g to Yannakakis pensive operations are those of recomputing the equiva-
algorithm [12]. We illustrate the reduction on an example. lence classes of variables, and the transitive cloRlity, .

. . Fortunately, this does not have to be done from scratch if
\IIEV)éOASI\gF;LrEuEEéy f;(e)gglgg; Sit;l\tl(z) f erfe)(rrodqeugggrﬁgrgé we recall that at every iteration, the Xtableau is changed
tively N, shown in Figures 11 and 10. We do not specify by a simple coIIapse operation. We chose the followlng
the result functiong, f» as they are ig.nored when check- dgta structures which are easy to incrementally maintain
ing for containmentlr,na2ppings We represahtinternally with respect to C(_)Ilapse operations. For every Xtablegu,
as the relational “frozen”datat;aﬁg\; below, constructed e keep the equivalence classes of _/ar|ables n & union-
. o) 2 = P find data structure, so whenever nadés collapsed into
in the spirit of [26]: we create a special constantpre-

senting the equivalence class of variafewith respectto v’ we simply union the class of with that ofn in con-
9 4 g g ! P stant time.RTCy is represented as an adjacency matrix in
the value-based equality conditionsin.

which RTCy [z][y] = 1 if and only if y is a descendant of

Chi T Sourg—sNOde targgg:‘r?:remg targ%NOde z in the tree pattern oN. Whenn is collapsed intan,
B2 year 7 we setRTCy [n][m] =RTCy[m][n] = 1 and recompute the

Desc v, sourceNode| targetNodeTag| targetNode transitive closure by multiplyin@TCy with itself until we
doc book Do reach a fixpoint (Quaranteed to occur in at mogt| V| it-

We also add relatioRTCy, containing the reflexive, tran- erations, but much earlier in practice because of the small
sitive closure of the union othi | d, andDescy,. We incremental change).
translateNV; to the query

6 Conclusions and Future Work
Mp, () < RTCx;, ($doc, book, $b1), Child n, (3b1, author, az)

We described the NEXT generalization of tree patterns,
which enables logical optimization of XQuery and demon-

Clearly, there is a containment mapping fraw into N, strated its value by developing an effective technique for

if and only if My, returns a non-empty answer @hy,. ©

. . . "We make the standard assumptior(x(fl) for indexing into the hash
We emphasize that/y, in the above example is Shown apje when joining. Otherwise, an additioriaks | N2| factor must be

for brevity in conjunctive query syntax but it is imple- counted for sort-merge join.

10

minimization of nested XQueries, which removes redun-straightforward to show that no algorithm can guarantee
dancy across and within subqueries. A key ingredient othe full minimization of XQueries involving negation) or
NEXT is the groupby operation, which reduces mixed requires various extensions to NEXT and the minimiza-
(bag and set) semantics to pure set semantics that providéen algorithm (e.g., extra minimization can be achieved
the typical framework for logical optimization such as min- by algorithms that understand the semantics of aggrega-
imization. Furthermore, it enables consolidation of altna tion functions.) Nevertheless, the minimization algarith
igation in the XTableaux. The provided rewriting rules re- can be applied to the NEXT subexpressions of NEXT+
duce any query from the OptXQuery subset of XQuery intoqueries and guarantee their full minimization (which, as
a NEXT. said, does not imply the full minimization of the NEXT+
The minimization algorithm also capitalizes on the query). Space constraints relegate this discussion to Ap-
groupby of NEXT, which allows the navigation per- PendixD. S
formed on a nesting level to reuse the navigation performed Looking beyond minimization, we plan to employ the
on higher levels. In addition, our minimization algorithm NEXT notation to address , in the context of our media-
went fundamentally beyond prior minimization algorithms tor efforts (which include the Local-As-View approach), an
for tree patterns and conjunctive queries by introducing @nswering-queries-using-views algorithm for XQuery.
new type of minimization step, callenbllapsing The col-
lapse steaddsto a subquery identity-based equality con-7 Related Work
ditions between its variables to state that their bindings a))
the same. Prior algorithms ontgmovevariables [3, 23]. There is an extensive body of work on nested query
The removal step alone turns out to be insufficient foroPtimization, for relational (SQL) and object-oriented (
nested XQueries, as removal-based techniques not only f#QL [4]) queries. See [6], respectively [8] and the ref-
to find a minimal form, but depending on the application or-erénces within. For both OQL and SQL, the main ef-
der, they yield several distinct queries, each non-minimalfort is that of unnesting nested queries (merging query
Indeed, we prove the existence of a unique minimal formPlocks), not their minimization. The group-by operation
for any NEXT query and show that our algorithm is guar- 1S cruma!ly epr0|ted. to this end, by evaluating a nested
anteed to find it regardless of the order in which it appliesduery using an outerjoin followed by a group-by operation.
collapse steps (Theorem 4.2). Se_e [16, _13] for the relational query evaluation, [8] for the
object-oriented case, and [20, 24] for XML query evalua-
tion. Such rewrites have only limited applicability when

E?T(leﬁﬁ’ Vs\lhr:(;rs]t:fl noa?gi:'?:rse ((S:m(;:li?:)eyoeigsmvt/meic?b;?rewgag and set semantics are mixed [22] or the nesting occurs
y 9 y cy J ' in the sel ect clause. Our techniques succeed in these

can write using XPath predlcates, increase the Corm:)lexs'ituations. One of our rewrite rules introduces group-by
ity of minimizing XPath expressions described by tree pat-

terns from PTIME [3, 23] to NP-hard [10]. Our minimiza-

Minimization of queries from our XQuery subset is NP-

operations with everfor loop, exploiting the well-known
tion alaorithm behaves optimally on every input: it runs in fact that thedistinct-values operation is a special case of
9 P y y Input: group-by [6]. Another common fact we exploit was recog-

PTIME if the tree patterns have no cyclic joins and in NP "N hized in [22], namely that quantifiers are not affected by du-
the presence of cyclic joins. As shown by our experimen-

tal evaluation, even in the NP-complete case optimizatiorPlicates' There is an interesting duality between our tech-
time is low (below 100ms for queries with up to 15 nest. ique and the generalization of predicate pushdown [26]

. ; . to nested (SQL) queries in [17]. The latter pushes con-
ing levels and up to 271 path expressions, as explained "Yitions from thewhere clause of a query into its nested

Appendix B) thanks to a careful implementation which re'subqueries. Our technique pultr loops up from nested

duces the exponential to an approximation of the tree widt ueries. Existing algorithms for the minimization of tree

of the query [12] (small in practice), as opposed to the num- . . : -
ber of navigation steps (may by very large in practice) Wepatterns consider no nesting, no arbitrary joins, and agtly s
) AP ' __“semantics [3, 23]. Group-by detection is particularly im-
incorporated minimization in our NEXT XQuery processor

and provided experimental data points that prove the bengortantgn XQuery, wgtzre surfatl:e sgnt_ax doe_s_ noft mcl:de a
eficial effect of minimization on the total execution time. 3 ooF- y construct. [24] uses algebraic rewriting for adst

Due to space constraints, the experimental evaluation is relienes that perform grouping. Our algorithm solves this

; . . . problem as a special case of minimization. [7] is the first
Feo\:iteev(\j/e”:’;hce()zuvneﬁ?epnecr’eand included in Appendix 5 for theWork that introduce&eneralized Tree Patterns (GTRBat

o o ~ model nested queries and reduce the problem of evaluat-
NEXT normalization and minimization can be used in jng a nested query into one of finding matches for its GTP.
any XQuery processor, regardless of its underlying execum addition, [7] shows a translation of GTPs to a physical
tion model, as long as it supports an OQL-stgteupby plan algebra, which we have adopted, with minor modi-
operator. fications. There is an interesting correspondence as well
An extension of NEXT, called NEXT+, allows the nor- as subtle differences between GTPs and NEXTs and the
malization of arbitrary XQueries, which may be outside thecorresponding modules, stemming from NEXT’s orienta-
OptXQuery set, into NEXT+ queries. Guaranteeing full tion towards problems such as minimization and answering
minimization for NEXT+ is either impossible (e.g., it is queries using views. First, we make a distinction between

11

optXQuery/NEXT and full XQuery/NEXT+. OptXQuery
scopes the area where minimization (and, we conjecture,
answering queries using views) is guaranteed to find optif12]

mal plans. OptXQuery/NEXT omits XQuery features that
make minimization undecidable (e.g., negation and univer-

sal quantification) or too complex (e.g., aggregate funcyi3)

tions). Such features are allowed in NEXT+, where we do

not guarantee optimality of the resulting plan. Finallyteno
we have introduced a distinction between grouping-by-i

and grouping-by-value since we find multiple aggregation
examples in mediation. (A similar extension for [7] is pos-
sible.)

L o [
[25] addresses minimization of nested XQueries in the
context of Peer-to-Peer systems, where scalability is a

acute problem. They develop a PTIME algorithm, trad-

ing completeness of minimization for scalability. The algo
rithm is incomparable to ours: on one hand, it changes th

structure of the group-by tree, which we do not do, as we

treat result functions as uninterpreted. On the other hand, [18]
only minimizes the nested subqueries in the context of their
ancestor subqueries, but it does not attempt to reuse tH&9]
navigation of the ancestors. No grouping is used, and the
only step considered is removal of variables, which leaves
even the simple XQuery from Example 1.1 unchanged. Thé20]

key to our technique’s success is precisely the sophisticat

collapse step which goes beyond node removal, as well as

the essential use of grouping.

[21]

References

(1]

[2] A.V.Aho, Y. Sagiv, and J. D. Ullman. Efficient optimizati

(3]

(4]

(5]

(6]

(8]

(9]

[10]

S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases Addison-Wesley, 1995.

of a class of relational expressions (abstract)SIBMOD,
1978.

S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Sri-
vastava. Minimization of tree pattern queries.SIGMOD,
2001.

R. G. G. Cattell, editor. The Object Database Standard:
ODMG-93 Morgan Kaufmann, San Mateo, California,
1996.

Ashok Chandra and Philip Merlin. Optimal implementatio
of conjunctive queries in relational data bases. SIOC
1977.

S. Chaudhuri. An overview of query optimization in rela-
tional systems. 1fPODS 1998.

From Tree Patterns to Generalized Tree Patterns: On Effi-
cient Evaluation of XQuery. IWLDB, 2003.

S. Cluet and G. Moerkotte. Nested queries in object hases
In DBPL, 1993.

A. Deutsch, Y. Papakonstantinou, and Y. Xu. The NEXT
Framework for Logical Query Optimization (Extended Ver-
sion). In http://www.db.ucsd.edu/People/alin/papers/vidb-

2004-full.ps [

A. Deutsch and V. Tannen. Containment and integrity-con
straints for xpath fragments. KRDB, 2001.

12

J

T16]
17

(23]

[24]

[25]
[26]
(27]
[28]
[7] Z. Chen, H. V. Jagadish, L.Lakshmanan, and S. Paparizos.

[29]

[30]

31] Y.Papakonstantinou,

[11] S. Flesca, F. Furfaro, and E. Masciari. On the mininizat

of XPath queries. IWLDB, 2003.

J. Flum, M. Frick, and M. Grohe. Query evaluation viaetre
decompositions. In Jan Van den Bussche and Victor Vianu,
editors,ICDT, 2001.

R. A. Ganski and H. K. T. Wong. Optimization of nested
SQL queries revisited. IBIGMOD, 1987.

H.V.Jagadish, S.Al-Khalifa, A.Chapman,
L.V.S.Lakshmanan, A.Nierman, S.Paparizos, J.Patel,
D.Srivastava, N.Wiwatwattana, Y.Wu, and C.Yu. Timber:a
native xml database/LDB Journal 11(4), 2002.

15] H. V. Jagadish, Laks V. S. Lakshmanan, D. Srivastavd, an

k. Thompson. Tax: A tree algebra for XML. DBPL, 2001.

W. Kim. On optimizing an sql-like nested querfftODS
7(3):443-469, 1982.

A.Y. Levy, I. S. Mumick, and Y. Sagiv. Query optimizatio
by predicate move-around. WLDB, 1994.

A. Y. Levy and D. Suciu. Deciding containment for querie
with complex objects. 1fPODS 1997.

I. Manolescu, D. Florescu, and D. Kossman. Answering
XML Queries on Heterogeneous Data Sources.VLIDB,
2001.

M.Carey, J. Kiernan, J. Shanmugasundaram, E. Shekith,
S. Subramanian. XPERANTO: Middleware For Publish-
ing Object-Relational Data as XML Documents. DB,
2000.

G. Miklau and D. Suciu. Containment and equivalence for
an xpath fragment. IRODS 2002.

H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensi-
ble/rule based query rewrite optimization in starburst. In
SIGMOD, 1992.

P. Ramanan. Efficient algorithms for minimizing treétpen
queries. INSIGMOD, 2002.

S.Paparizos, S. Al-Khalifa, H.V. Jagadish, L. Laksimaa,
A. Nierman, D.Srivastava, and Y. Wu. Grouping in XML. In
EDBT Workshop on XML Data Management (XMLDM’02)
2002.

I. Tatarinov and A. Y. Halevy. Efficient query reformtilan
in peer-data management systemsSIGMOD, 2004.

J. D. Ullman. Principles of Database and Knowledge-Base
Systemsvolume 2. Computer Science Press, 1989.

W3C. XML Query Use Cases W3C Work-
ing Draft 15 November 2002. Available from
http://ww. w3. or g/ TR/ xm query- use- cases/ .

W3C. XQuery 1.0 and XPath 2.0 Functions and Operators.
W3C Working Draft 12 November 2003. Available from
http://ww. w3. or g/ TR/ xpat h-functi ons.

W3C. XQuery 1.0 Formal Semantics.
Working Draft 07 June 2001. Available
http://ww. w3. or g/ TR/ query-senantics/.

W3C. XQuery: A Query Language for XML.
W3C Working Draft 12 November 2003. Available from
http://ww. w3. or g/ TR/ xquery.

M. Petropoulos, and V.Vassalos.
QURSED: querying and reporting semistructured data. In
SIGMOD, 2002.

W3C
from

A Details on Normalization into NEXT . def($X)/c1/.../cn—1) is a simple variable or a sim-
ple element constructor. Obviously a tuple variable is not
an input simple variable, but the variables depending on it

XQuery [30] as the class of queries which are ac-pay e input simple variables. Notice that an input simple
cepted by the grammar in Figure 3 and in addition satisfy 5 japle binds to single elements from the input just like

the semantic constraints presented shortly after we prog gimpje variable. Simple variables and input simple vari-

vide some notations and the intuitions for the semantic,p|es together are calléabut element variablesll other
constraints. , , variables are not input element variables.

A query @ is not a NEXT query if @ In Query X2, all variables are simple variables. In Query
has one of the following expressions which in X5, $b1, $a1, $y1, $', $a’, $y/ are simple variablesp is a
general _case cannot be rewritten into NEXT tuple variable; $a and $y are input simple variables, but not
zor_m_: some $V in (B, E») Eatlsﬁes C”' simple variables since they depend on $p, a tuple variable,

distinct-values (E, E»)", (e)E(/e)//c", whose definition contains element constructors.
“le1)E1{/e1) eq ($V|{e2)E2(/e2)|Constant)”. Al-
though the last two types of expressions are not allowed iy 2 Semantic Constraints for OptXQuery
the grammar shown in Figure 3, both types of expressions) .
could appear after application of some rewriting rules in ' "€ Sémantic constraints for OptXQuery are:

Figure 6 (R3 and R5). o for each $V defined by$V in E”in a some clause,
$V and every variable $X ilv and every variable that
$X depends on are simple variables.

OptXQuery We define the OptXQuery subset of

A.1 Notations

We first define the notations used in semantic constraints. ® For eachdistinct-values (E), if we define $V
The definition def($V) of a variable $V in $V in E” as "8V in distinct-values (E)", $V must be

is defined asilef(3V) = f(E) wheref(E) = EIif E
is (¢)XQ{/c), or a path expressionf(E) = f(E) if
E is distinct-values (FE1); f(E1, E2) = f(E1), f(E2);
f(E) = f(E,) if Eis a FLWR expression an#, is the

return clause of. Note the recursive definition in the case

of FLWR expressions.
Avariable$V directly dependsn$V” if $V' appearsin
def($V). We say thaV depend®n $V” if it directly or

an input element variable or tuple variable; for
each path expression $V(/|//)c1i...(/|//)en”
where $V depends on a variable $X defined in
“$X in distinct-values (FE), if we define$V; as
“$Viin $V(/|//))er ... (/I//)ei”s 8V must be a tuple
variable or an input element variable=£ 1, ..., n).

e 3V is an input element variable if $V starts a path ex-

pression containing “//”.

indirectly (via other variables) depends &¥’. A variable
$V is called asimple variableif the definition of$V and e $V is an input element variable if $V appears in an
the definition of any variable th&}" depends on contain equality condition.
no element constructor nor concatenation. An element con-
structor({e) F(/e) is called asimple element constructdr
the elemente) is created by the query via repeated applica-
tion of element constructors to constants, simple vargable
and simple element constructors. Note the recursive defi- The first four constraints guarantee that none of the
nition and the fact that complex expressions such as patfour types of non-NEXT expressions mentioned in the be-
expressions dior loops are disallowed. ginning of this section (respectively) would appear during
A variable $V is called auple variableif def($V)isa rewriting. The last constraint’s purpose is to avoid thechee
simple element constructor. A variable $V whose definitionof introducingif construct into the grammar of NEXT as
is“$X/c1/.../c,,” is a tuple variable if all of the following the following rule (Rule Rif) introduced which is ab-
conditions are met: $X is a tuple variable; every naviga-sent in OptXQueriesfor $V; in E where C return E,.
tion step in the path expression is “/”; the evaluation re-— 6gy,, .p(if C then (E,) else ()) where E =
sultofdef($X)/c1/.../c, (Rule RG1) is a simple element §V5|({e)E;(/e), and bgy, . g, (E2) substitutesE; for $V/
constructor; and every intermediate result of evaluatingn E£,. However if the FLWR expression is immediately
def($X)/ci/.../cn (.9, def($X)/c1, def($X)/c1/c2, nested in another FLWR expression, theonstruct is not
... def($X)/c1/.../cn—1) is a simple element construc- needed because we can move up the condition as shown in
tor. All other variables are not tuple variables. Rules R5, R6 and G7. It is not difficult to see why the last
A variable $V whose definition is$X/c;/.../c,” is constraint prevent the complete removal of the loop
called ainput simple variableif all of the following of any FLWR expression. Consider any FLWR expression
conditions are met: $X is a tuple variable; every nav-and assum8V is a simple variable defined in thier loop.
igation step in the path expression is “/”; the evalua-If $V is defined by a path expression, clearly fbe loop
tion result ofdef($X)/c1/.../cn, (Rule RG1) is a sim- can not be completely removed because Rule Rif is not ap-
ple variable; and every intermediate result of evaluatingplicable. In the only other possible case whéié is de-
def($X)/c1/.../cn (€.9, def($X)/c1, def(8X)/c1/ca, fined by a FLWR expression, Rule R2 applies and leads to

e No“$Vin $V""is allowed; at least one variab$d/; in
“for $V1in Eq,...,$V, in E, where C return E”
must be a simple variable.

13

a longer chain of nested FLWR expressions. In Rule R2, For simplicity of presenting, we require input queries
either $1; is a simple variable (ther; is either a path do not have a variable defined more than once, which can
expression or a FLWR expression) , Bs is a FLWR ex- be achieved by variable renaming. The componentsaff
pression. Rule R2 cannot apply infinitely as we will prove a queryQ are defined as:

shortly. Because of the last constraint, finally there is a

simple variable defined by a path expression which makes e sp, the number of distinct$V'(/|//)c” occurrences
Rule Rif not applicable. notin “$Xin $V(/|//)c"in Q.

A.3 Normalization Rewriting Rules e mp, the number of distinct$V (/|//)c1.../l//¢cn”

. . . occurrences ind).
Figure 6 presents a set of rewrite rules which provably nor- %

malize any OptXQuery to a NEXT query. Some of these _
rules are known simplification rules of XQuery; they are ® V47 = Xaistinct variatic sv in @ Vo7 (3V). If @ vari-
used extensively both in reducing XQuery to its formal core able $V appears multiple times i, var($V) is

[29] as well as in query optimization [19]. We focus the added tovar only once. For$V in “$V in E”,
presentation on the rules that are particulagtoupby , var($V) = the number of distinct variablé”" de-
such as Rules (G1), (G3), (G4) and (G5) and leave outthe fined in “$V’ in £’ which is (anywhere) inE' +
trivial standard normalization rules. Notice thathere Y distinet variable $Xin B VaTs($X).

clauses can be trivially added to FLWR expressions with-

out where clauses in all rules except Rules R3,R4, and e elm, the number of distinadlirect element variables
G7. The introduction ofvhere clause to the three rules $V definedin ‘$V in E”is a direct element variable if
requires the introduction af construct and would lead to E = (e)E1{/e) orif E is a concatenation expression
three new rules. However because of the last semantic con- and one of its concatenation component is an element
straint, these three new rules are not needed for rewriting constructor(e) £ (/e). $V defined in ‘§V in E”is a

OptXQueries. The omission afhere clauses is for the direct element variable i/ = $V’ and$V” is a direct
simplicity of presentation. For the same presentation rea- element variable or i is a concatenation expression
son, Rules G4, G5, G7 are shown usfogloop that define and one of its concatenation componen$i§’ and
exactly one variable. The extension to multiple variabdes i $V' is a direct element variable.

obvious.

The normalization process is stratified in two stages.
First, all standard XQuery rewriting rules are applied in
any order. Next, thgroupby -specific rules are used. Rule
(RG1) may be applied in both stages. We repeat here the
following result (Theorem 3.1):

& con = Zdistinct variable $V in Q COTL($V) If a
variable $V appears multiple times i@, the value
con($V) is added taon only once. Fo$V defined in
“$Vin E”, con(3V) = the number of concatenation
anywhere inF.

Theorem A.1 The rewriting of any XQueryy with the N ,
rules in Figure 6 terminates regardless of the orderinwhich ® vp» the number of §in E” where E is not format

rules are applied, i.e. we reach a quefyfor which no of “$.X(/[//)c” anywhere inQ.
more rewrite rule applies. If) is an OptXQuery, theff is
guaranteed to be a NEXT query. S e some, the number oBome clauses that define more

than one variable anywhere @
First, we prove that the rewriting terminates, then prove

that OptXQueries are rewritten to NEXT queries. e for, the number of FLWR expressions that define

Consider the first rewriting stage. We ass_ociate more than one variable in thfer clause anywhere
7, {(sp, mp,var, elm, con,vp, some, for,dis,dm), with in Q;

each queny, with sp being the most significant part of
7. Intuitively each component of indicates the degree the
query violates the NEXT form in some aspect. Each rule
decreases the value ofand it is obvious to see each com-
ponent ofr cannot be less thah Thus we prove rewriting

e dis, the number of occurrences of the
distinct-values function anywhere ir).

in the first stage always terminates. e dm is the number of {e) E(/e) /c” occurrences irQ).
Several rules are worth to notice when defining

Rule 3 substitutes $V witle) E; (/e) in Ey. F; may be As examples, 7(X2) = (1,2,0,0,0,2,2,1,2,0),

far from NEXT normal form, yetE, containing multiple 7(X6) = (0,0,4,0,0,2,0,0,2,0),

occurrences of $V may be in NEXT form. After substi- 7(X5) = (1,2,9,0,3,3,1,1,1,0), 7(X8)=

tution, 7 may increase if- is not properly designed. R7 (0,0,15,0,1,1,0,0,1,0).
duplicates one subquery$). Rules R13 and R14, unlike The following table shows how each rule may
all other rules, introduce new variables into the query. changer where means increasg,decrease, - no change.

14

([sp [mp J var T eim T con T vp [some [for T ~dis [dm
RL 5 5 5 - - - 5 5

R2
R3
R4
R5
R6
R7
R8

1

e

N N B NN N E XQ = (n){XQ,...,XQ,,}{/n)|FLW R|Constant
T | XQ1, XQ.ldistinct-values (FLWR)
S s s B e FLWR := for Vin SP(where CList)?return XQ

! SP := Path|distinct-values (FLWR)

B O O e e

1

L R K N P (LY P) PR PR

P I N SN Dt A P

RID I T Y W N
Rz — - . - T - Path = (document (“constant’)|Var)(/|//)Constant
R13 - - - - - -
ST - CList := Cond(and Cond) s
R15 - - - - - B B T -
LCEN A SN NS N N S NS NS Cond := Var eq (Vary|Constant
Similarly, we can prove rewriting in the second stage | some V in Pathsatisfies CList

terminates and in fact the definition ofis much simpler.

For an OptXQuery) we prove that the rewriting ends
up with a NEXT query. The rewriting in the first stage turns Figure 12: XQuery Normal Form
an OptXQueryQ® into XNF form in Figure 12. Syntacti- o Y . .
cally, there are three differences between OptXQueries and _$V In E can only be a single step P"ﬂ!th expression,
XNF queries. Firstfor or some loops in OptXQueries which again can_be proven by contradiction. Bfis a
may define more than one variable. Second, path expreé:-l‘WGR expression, an element constructor, a van_able,
sions in OptXQueries may be more than one step or appe (e)Er(/e)/c, Rules G5, G6, G7, G8, G9 are applica-

outside of variable definitions. Third, variables in a XNF le r_e_spectively, V_’hiCh contrf_;ldicts the assumpti(_)n that th
iofféwriting has terminated. Unlike the proofin the first stage

in some clauses or in addition by thdistinct-values E cannot be a path expression of more than one step which
function if variables are defined for loops is not in XNF, and none of the rewriting rule introduces

Assume the first stage rewriting stops and turns an Op!—t' E cannot be a concatenation expression which is not

tXQueryQ into ', thenQ’ must be in XNF form, which in XNF and none of _the rewrlt_lng rule mtroducgs it be-
S X L cause of the semantic constraints of OptXQueries. Note
we prove by contradiction. If the first type of violation of

. : . the element constructors in G6, G7 and G8 must be simple
XNF form exists, Rule 1 or Rule 8 is applicable. If the €€ element constructors because of the second semantic con-
ond type of violation of XNF form exists, R13 or Rule 14

is applicable. If the third type of violation of XNF form straint. In G9, the result ofe) E1, .. ’E"</e>/c is either
; - ; . o S a simple element constructor or a variable because of again
exists, consider a variable defined iio* $V in E” loop.

If Eis an element constructor, a FLWR expression, a patﬁhe second semantic constraint. Or!Iy Rules G6, (.37 and G8
' . may make ggroupby clause contain an expression other
expression of more than one step, a concatenation expr

es- . : X
sion, () E1(/e} /e, or a variable, Rules R3, R2, R14, R7, than variables and the expression can only be a simple ele-

RG1, R4 and R6 are applicable respectively, which Con_ment constructor. However G11 strips any §|mple element
onstructor and makegoupby clause contain only vari-
I

tradicts the assumption that the rewriting has terminated’
Notice that(e) E1 (/e)/c is not allowed to define variables for $by in $doc/ /book, $ax in $b1 /author,

in OptXQueries but may appear in the definition of a vari- $by in $doc/ /book, $y1 in $ba /year,

able after application of Rule R3, and it is the only type of $b3 in $doc/ /book, $asz in $bs/author, $ys in $bs/year
expression that may be introduced by rewriting as the defi-| where $a: eq $as and $y1 eq $ys

nition of a variable because of Rule R3 and R5. Notice that | groupby $a1, $y: return

(e)E1(/e)//c cannot appear during rewriting because of [(result){$a1,$y:, .

the third semantic constraint. Similarly we can show tH4t for $b"in $doc/ /book, $a” in $V' /author,

E defined in some $V in E” can only be a single step Whj?e/ ig $b‘;{]y§af"and 41 00 Sy (X4)
al a Y1 Y

path expression and cannot be thistinct-values func- N,)

! . : . . groupby [$b]return

tion because of Rule R12. Since variables in equality con- for $t in S’ /title
ditions are required to be input element variables, equalit N3 { groupby [$¢] return $t

conditions would not be affected (by Rule R3 and R5) and }(Iresult)

are still format of §V eq $V’|c" after rewriting. Example A.1 illustrates the normalization of an efficient
The second rewriting stage turns a query in XNF formvariant of query (X2).

resulting from the first stage into a NEXT query. Syn-

tactically, there are three differences between XNF formEXAMPLE A.1 While apparently more complicated than

and NEXT form. First, a querg) in XNF form may have the query (X2), query (X5) is what an XQuery expert would

distinct-values functions, which Rules G1 and G2 elim- write, since it results in a more efficient execution plaatth

inate. Second, every FIWR expressiongns added with avoids redundant navigation within the same subquery. In

the groupby clause. Third@ may havesome clauses fact this is the most efficient way to perform grouping by

which Rule G4 eliminates. Rules G1 and G2 introducemultiple variables in XQuery.

FLWR expressions to variable definitions which violates Standard XQuery normalization rules (R1),(R13),

the NEXT form. When the rewriting terminates, eaEh (R14), (R8) (R2) apply, yielding the query X8 .

15

1000 - for $z1in $doc// X, $y1,1in $x1 /Y1
groupby $yi,1 return
<T1> for $z2in $dOC//,X7 $y2,1in $£Cz/}ﬁ7 $y2,2in $£CQ/Y2

where $y21 eq $y11

groupby $y2 - return

(T2) for $xs in $docl/X,$ys,1 in $z3/Y1,

Sys,2 In $x3/Y2, $ysz,3in $x3/Y3
. where $ys3 1 eq $y2,1 and $ys 2 eq $y2,2
. groupby $ys s return
(T3) ...

X % e + .
"> X x @ + .
W X x e + .

»X e + .

100

milliseconds

¢ N » X0 +

o m »X * @ +
oem b X x @ +

°
-
|
o m K xel +.
>

+
°

= > & X

» X X e

x
>
-

10 - w w w w The nesting depth of group-by constructs goes all the

0 5 10 15 20 way to d. Notice the redundant navigation across nest-
Nesting Depth ing levels: the bindings o$y, ; are contained in those

of $y,_1,; for each nesting levek. Starting fromQg,o,

we add intra-level redundancy as follows: on each nesting

level, we duplicate the tree patterrtimes (relaxing every

child step by turning it into a descendant step). For exam-

ple, if r = 1, the second nesting level becomes

Figure 13: Minimization times as function of nesting depth
d and redundancy

for $pin distinct-values ((X8) (T1) for $z2 in $dOC/X, $ya.1 in Sz2/Y1, $y2.2 in $z2/Y2
for $b1 in $doc/ /book return $a5 in $docl/X,$ys 1 in $x5// Y1, $ys0in S5/ /Yo
for $ai1 in $b1 /author return where $y2,1 eq $y1,1
for $y1 in $b1/year return (pair)(a){$a:}(/a){y){Sy: }(ly)(/pair)) groupby $ys.» return

return (T2) ’

for $iv1 in $p/a return for $ive in $iv1 /author return

for Sivs in $p/y return for Sivy in $ivs /year return and forr = 2, level 2 contains 9 variables. Notice th@4 -

return (result) {$ivz, $ivy,

for St/ in $doc/ /book is equivalent toR)4 o for everyr. Indeed, all queries with

where some Sa’ in $b' /author satisfies some $y' in 8t/ /ye{}€ Samed will be minimized to the same NEXT query.
satisfies $a’ eq $ive aéd Sy eq $iva Y /v The queries we minimize havet (r + 1)(d? +3d)/2 path
return for $tin $b'/title return $t } expressions in them, which is a very large number for our
(Iresult) maximal choices off andr-.
The measurements. Figure 13 depicts a family of

Thengroupby -specific rules (G1,G3, G4, G5, G6, G8, curves. Each shows the minimization time as a function

G11) and RG1 are applied and the final result is the NEXTOf the nesting deptf, for a fixedr. For example, a query
query shown below. of 15 nesting levels, with intra-level redundancy 7, has a

total of 1081 variable bindings, and performs just as many
for $b, in $doc//book$ayin $b, /author, $y1in $b, /year individual navigation steps, which exceeds by far prattica

groupby $a,, $y;return query sizes. The minimal form performs only 16 naviga-
(result){$a1 }{$y1} tion steps. Minimization takes 656 milliseconds, which is
{ for $1/ in $doc//book, $ain $b'/author,$yin $b//year an insignificant fraction of the running time even for much
where $a’ eq $a,and $y’ eq $i1 simpler queries, and a worthwhile effort to spend for such
groupby [$b] return a significant reduction of navigation complexity.
for $tin $b'/title groupby [$t] return $t } The effect of bottom-up join evaluation and
(Iresult) join/projection interleaving, according to Yannakakis’

algorithm, was quite beneficial to our implementation. In
¢ afirst, more brute-force implementation which performed
the joins top-down, instead of according to Yannakakis’
algorithm, we measured much slower minimization times,
despite using the same efficient data structures for per-
B.1 Minimization Time forming joins and unions. For exampl@z,; (11 nodes)

We ran the following experiment to stress-test the cccnd@a, would take more than 5 seconds (and so did all

algorithm. We considered a family of synthetic NEXT queries with larged andr).
queriesQq,, where the parametet controls the nesting
depth of the query, and its intra-level redundancyQq,o
are the queries with no redundancy within subqueries (therg/e measured the benefit of minimization on the overall
still is redundancy across them). Their general form isquery execution time of a set of OptXQueries. We used
shown below, already in NEXT form, to give a better in- synthetic input documents containing books. Their sizes
tuition on the grouping they perform: ranged from1000 to 10000 in steps of1000. For every

B Experiments

B.2 Effect of Minimization on Query Run Time

16

[_Query [Average Speeduf Opfimized time | Unoptimizedtime] ;ser that the query is not guaranteed to be fully mini-

Query 1 15 60 90 mized. Notice that this condition rules out from the where
83252 i; gg igg clause checks such d8)$z/b(/a) eq (a)$y/b(/a), as
Query 4 59 65 190 well as (a)$u(/a) eq (a)$v(/a), where$u is bound to
Query 5 105 133 1397 (c)$z/b{/c) and$v is bound to(c)$y/b(/c). Both com-
Query 6 55 65 360 pare the node sef&:/b and$y/b for equality. Also ruled
out are from within adistinct-values function expres-

Table 1: Average query running time ratio sions such aga)$z/b(/a), which compare the node sets

obtained for various bindings éfr.

size we had two files. In the first file the number of authors A sufficient restriction for avoiding disjunctive con-
was roughly 1/100th of the number of books. In the sec-ditions is (aside from the explicit absence of the key-
ond file the number of authors was roughly 100 always. Inyord or): variables bound bysome clauses shall
both files the number of years was 30 and the number ofiot range over sets of nodes obtained by concate-
publishers was 1/100th of the number of books. All the ex-nating results of several navigations. Indeed, ob-
periments were executed on a 2Ghz CPU, 1GB of memoryerve thatsome $x in (E;, E;) satisfies C is
and a 34GB drive running Windows 2000. The engine proequivalent to (some $z in E; satisfies C) or
vides very competitive plans that make use of efficient join(some $xz in E, satisfies C).
operators, in the spirit of [14]. For example, nested q@erie Though only OptXQueries are guaranteed to be
are not run in a naive way, where for each iteration of thefully minimized, the processor may also input arbitrary
outer query we ran the inside query from scratch. InsteadXQueries and optimize them using minimization. We dis-
when the inner query has equality conditions with the outcuss the processing of arbitrary XQueries in Appendix D.
side query, the plan reads the data of the inner query just
once and approp.riat_ely inde>§es th_em. Thgn it evaluates thB Beyond OptXquery: NEXT+
outer query probing in each iteration the indexed table for
matching data only of the inner query. The query processor also minimizes XQueries that are

Table 1 shows the ratios of the average running time oputside the optXQuery class. It first reduces such
the standard XQueries to their minimal NEXT query form. XQueries to theNEXT+ form and then minimizes their
Query1 is (X1) from Section 1. Querie® and3 are the NEXT components. In their functional representation,
two equivalent queries (X2) and (X5). Quetyis Q20 in NEXT+ queries extend each component of NEXT's
Figure 13, and it groups books by author at the first leveffor V in Navigationwhere Condition groupby
and then by year at the second level. Qu&ing Q3¢ in GroupBy Listreturn Result Functioh in the ways de-
Figure 13, so it has one more nesting level than Qdery scribed next.

it groups books at the third level by publisher. Quéris First, theResult Functiomay be a XQuery expression
Q2.1 in Figure 13, so it is similar to Querybut with intra- that is disallowed in OptXQuery. For example, it may be
level redundancy. a function specified in W3C’s XQuery/XPath function and

The minimization time for all queries in Table 1 is less operator specification [28] (such as tbeunt function),
than5 milliseconds. The minimal NEXT query is insensi- @ non-OptXQuery XQuery/XPath expression such as nav-
tive to the nesting depth. igation on the parent axis, or an XQuery-defined function
[30] written by the user. The normalization reduces any
non-OptXQuery result function to an uninterpreted func-
tion f(Q1,...,Qn), WhereQ, ..., Q, are NEXT queries
Below is a sufficient condition for disallowing set equal- or variables - as it is the case with NEXT result functions
ity checks. This condition is not necessary and is re-as well.
laxed in our formal specification of OptXquery. We say The Navigation part of thefor clause may also be
that a variable is amnput elementariable if it binds to a functionf(Q1,...,Q,). The uninterpreted functioff
single elements from the input. We say that it isien- appears in the Xtableau as a special function node, la-
ply created elementariable if it binds to elements cre- beled by f(Q1,...,Q@,). The node for the variablg§V’
ated by the query via repeated application of element conthat binds tof connects to thg node via a special edge
structors to constants, input element and simply createtype. The equivalence step of the minimization algorithm
element variables. Note the recursive definition and thes extended to require that two matching function nodes
fact that complex expressions such as path expression§Q,...,Q,) and f(Q},..., Q.) have the same name
or for loops are disallowed. We require that all vari- and arity andy; is equivalenttay;, foralli = 1,...,n.
ables appearing in equality conditions be input element Next, theCondition Listis a conjunctive normal form
variables, and all other variables be either input or sim-expression where terms of the conjunction maybe ex-
ply created element variables. We check this by employpressions obr expressions. Furthermore, predicates be-
ing a simple type inference algorithm (presented in theyond equality are allowed (e.g. capturing “exclusive or” or
full version of the paper), which identifies on the useruniversal quantification). The normalization algorithmp<a
guery the variables violating the restrictions, warning th tures all of the above by introducing uninterpreted boolean

C Constraints on OptXQuery

17

predicate$(Q1, . . ., Q) in the conjunction (in addition to
the equality predicates of NEXT). Two such predicates are
considered equivalent only if they have the same name and
equivalent arguments.

Finally, the Groupby Listmay also involve functions,
i.e., non-variable components. (Notice that this may
happen only by usinglistinct-values in the original
XQuery.) In this case the minimization algorithm does not
attempt to minimize théor expression; in effect, it treats
it as an unintepreted function. However, it still minimizes
the NEXT components of the function.

18

