Journal of the ACM, 43(2):193-224, 1996.

Knowledge Compilation and
Theory Approximation

Henry Kautz and Bart Selman
Al Principles Research Department
AT&T Bell Laboratories
Murray Hill, NJ 07974
{selman, kautz} @research.att.com

Abstract

Computational efficiency is a central concern in the design of knowl-
edge representation systems. In order to obtain efficient systems, it has been
suggested that one should limit the form of the statements in the knowledge
base or use an incomplete inference mechanism. The former approach is
often too restrictive for practical applications, whereas the latter leads to un-
certainty about exactly what can and cannot be inferred from the knowledge
base. We present a third alternative, in which knowledge given in a gen-
eral representation language is translated (compiled) into a tractable form
— allowing for efficient subsequent query answering.

We show how propositional logical theories can be compiled into Horn
theories that approximate the original information. The approximations
bound the original theory from below and above in terms of logical strength.
The procedures are extended to other tractable languages (for example, bi-
nary clauses) and to the first-order case. Finally, we demonstrate the gener-
ality of our approach by compiling concept descriptions in a general frame-
based language into a tractable form.

1 Introduction

The study of the computational properties of knowledge representation sys-
tems has revealed a direct trade-off between tractability and expressiveness [Levesque

1

and Brachman, 1985]. In general, in order to obtain a computationally efficient
representation system one either restricts the expressive power of the knowledge
representation language or one uses an incomplete inference mechanism. In the
first approach, the representation language is often too limited for practical ap-
plications [Doyle and Patil, 1991]. The second approach involves either resource-
bounded reasoning or the introduction of a non-traditional semantics. In resource-
bounded reasoning, inference is limited by bounding the number of inference
steps performed by the inference procedure. It therefore becomes difficult to char-
acterize exactly what can and cannot be inferred, that is, the approach lacks a
“real” semantics (one that does not simply mimic the proof theory). Moreover, no
information is provided if a proof cannot be found within the time bound. (But
see [Horvitz et al., 1989] for an example of probabilistic inference, where confi-
dence in the results increases with the amount of computation.) Accounts of lim-
ited inference based on non-traditional semantics [Levesque, 1984, Frisch, 1985,
Patel-Schneider, 1986] often provide only a very weak kind of inference. For ex-
ample, in the four-valued semantics approach of Levesque, given the statements p
and p O g, one cannot infer g.

This paper presents a third alternative for obtaining efficient representation
systems, which neither limits the expressive power of the representation language,
nor gives up completeness of the inference procedure. In this new approach, the
user enters statements in a general, unrestricted representation language, which
the system compiles into a restricted language that allows for efficient inference.
Since an exact translation into a tractable form is often impossible, the system
searches for the best approximation of the original information. We describe how
the approximation can be used to speed up inference. We refer to this approach as
knowledge compilation.

We illustrate our method by studying the approximation of propositional logic
theories by Horn theories. Applications of propositional inference arise in many
areas of artificial intelligence and computer science in general. Examples in-
clude qualitative reasoning about physical systems [Reiter and de Kleer, 1987],
circuit diagnosis [Larrabee, 1992], expert systems [Dean, 1985], and learning the-
ory [Valiant, 1983]. In addition, many reasoning tasks can be directly mapped
into propositional inference problems, such as finite-domain constraint satisfac-
tion problems (CSP) [Dechter, 1992] and certain classes of planning problems
[Kautz and Selman, 1992b].

Finally, note that first-order domain theories in artificial intelligence often in-
volve only finite domains. Such theories are therefore essentially propositional.

2

For example, Reiter and Mackworth [1989] discuss how their first-order domain
theory for visual interpretation can be restated in propositional form. By con-
sidering the propositional formulation, they show how methods from relational
databases can be used to answer queries much more efficiently than by using a
general first-order theorem prover on the original domain theory. Another exam-
ple is our propositional formulation of planning, cited above.

General propositional reasoning is the prototypical NP-complete task. How-
ever, inference based on Horn approximations is very fast (linear time). Following
the formal definition of Horn approximation, we present algorithms for generat-
ing such approximations. The algorithms have the property that they can be in-
terrupted at any time to produce some useful intermediate result. We also present
an empirical evaluation of our approach, and demonstrate substantial computa-
tional savings on computationally challenging propositional theories. The paper
concludes with a discussion of extensions to first-order theories and various gener-
alizations of Horn approximations, as well as to description logics. A preliminary
discussion of these ideas appeared in [Selman and Kautz, 1991] and [Kautz and
Selman, 1991].

2 Propositional Horn Approximations

In this section, we introduce the idea of knowledge compilation using a concrete
example. We show how a propositional theory can be compiled into a tractable
form consisting of a set of Horn clauses.

2.1 Definitions

We assume a standard propositional language, and use a, b, ¢, p, g, and r to denote
propositional letters and =, y, and =z to denote literals (a literal is either a propo-
sitional letter, called a positive literal, or its negation, called a negative literal). A
clause is a disjunction of literals, and can be represented by the set of literals it
contains. A clause is Horn if and only if it contains at most one positive literal,
a set of such clauses is called a Horn theory. Formulas are given in conjunctive
normal form (CNF, a conjunction of disjuncts), so they can be represented by a
set of clauses. CNF notation and clausal notation are used interchangeably. For
example, we may write (p VV —¢q) A r instead of {{p, —q}, {r}}, and vice versa.

Models of X,

Models of & °

Models of > .

Figure 1: Two sets of models that bound the original set of models of the original
theory X from below and above. Models are represented by dots. Each of the
bounds can be represented by a set of Horn clauses.

In general, determining whether a given CNF formula (the query) follows from
a set of formulas in a knowledge base is intractable [Cook, 1971]. However, when
the knowledge base contains only Horn clauses the problem can be solved in time
linear in the length of the knowledge base combined with the query [Dowling and
Gallier, 1984].

So, a useful kind of knowledge compilation would be the following: Given a
set of arbitrary clauses, compute a logically equivalent set of Horn clauses, and
base subsequent inference on that set. Unfortunately, there does not always exist a
logically equivalent Horn theory. For example, no Horn theory is equivalent to the
theory p Vv ¢q. We therefore propose to approximate the original set of clauses by a
set of Horn clauses. The basic idea is to bound the set of models (satisfying truth
assignments) of the original theory from below and from above by Horn theories.
Fig. 1 illustrates the basic idea.

In the following definition, M (%) denotes the set of satisfying truth assign-
ments of the theory X..

Definition: Horn lower-bound and Horn upper-bound
Let > be a set of clauses. The sets Xy, and X,,;, of Horn clauses are respectively a
Horn lower-bound and a Horn upper-bound of ¥ iff

M(ER) STM(E) S M(Ew)

or, equivalently,
b E X EXwn

Note that the bounds are defined in terms of models: the lower-bounds have fewer
models than the original theory, and the upper-bound has more models. The reader
is cautioned not to associate “lower” with “logically weaker.” In fact, because the
lower-bound has fewer models, it is logically stronger than (i.e., implies) the orig-
inal theory. Similarly, because the upper-bound has more models, it is logically
weaker than (i.e., is implied by) the original theory.

Instead of simply using any pair of bounds to characterize the initial theory,
we wish to use the best possible ones: a greatest Horn lower-bound and a least
Horn upper-bound.

Definition: Greatest Horn lower-bound (GLB)

Let X be a set of clauses. The set X, of Horn clauses is a greatest Horn lower-
bound of X iff M(X,,) C M(X) and there is no set £’ of Horn clauses such that
./M(Zglb) C JM(Z/) - ./M(E)

Definition: Least Horn upper-bound (LUB)

Let X be a set of clauses. The set ¥, of Horn clauses is a least Horn upper-
bound of ¥ iff M(¥) C M(X,,b) and there is no set ¥’ of Horn clauses such that
M(E) S M(Y) C M(Ew).

We call these bounds Horn approximations of the original theory ¥.! The defi-
nition of a Horn upper-bound implies that the conjunction of two such bounds is
another, possibly smaller upper-bound. It follows that a given theory has a unique

1We will sometimes use the term Horn approximation to refer to any Horn upper or lower-
bound, not necessarily the LUB or the GLB.

LUB (up to logical equivalence). On the other hand, a theory can have many
different GLBs.

Example: Consider the non-Horn theory ¥ = (—a V ¢) A (=bV ¢) A (a V b). The
Horn theory a A b A ¢ is an example of a Horn lower-bound; both ¢ A cand b A ¢
are GLBs; (—a V ¢) A (=b V ¢) is an example of a Horn upper-bound; and ¢ is the
LUB. The reader can verify these bounds by noting that

(anbhe)E(aNe) EEXEcE((maVe)A(=bVc))

Moreover, there is no Horn theory X’ logically distinct from a A ¢ such that (a A
¢) E ¥ = X. Similar properties hold of the other GLB and of the LUB.

2.2 Using Approximations For Fast Inference

Before we discuss how to compute Horn approximations, let us consider how
these approximations can be used to improve the efficiency of a knowledge rep-
resentation system. Suppose a knowledge base (KB) contains the set of clauses
Y, and we want to determine whether the formula « is implied by the KB. We
assume that « is in CNF, because one can determine in linear time if a proposi-
tional CNF formula follows from a Horn theory. (Note that the query need not
be Horn.) The system can proceed as shown in Fig. 2. First, it tries to obtain an
answer quickly by using the Horn approximations. If ¥,,, = « then it returns
“yes,” or if ¥, [~ o then it returns “no.” So far, the procedure takes only time
linear in the length of the approximations.? In case no answer is obtained, the
system could simply return “don’t know,” or it could decide to spend more time
and use a general inference procedure to determine the answer directly from the
original theory. The general inference procedure could still use the approxima-
tions to prune its search space. Thus the system can answer certain queries in
linear time, resulting in a improvement in its overall response time. Exactly how
many queries can be handled directly by the Horn approximations depends on
how well the bounds characterize the original theory. (We will return to this issue
in Section 2.4 below.) Note that we give up neither soundness nor completeness,
because we can always fall back to the original theory.

When the system opts for returning “don’t know” instead of performing gen-
eral inference with the original theory, we have an example of trading accuracy

Z\We assume that the lengths of the Horn approximations are roughly the same as that of the
original theory. We will return to this issue later on.

6

YEa?

Return “yes”.

Return “no”.

Return “don’t know” or fall back to X.

Figure 2: Fast querying using theory approximation. The original theory is ¥;
b and g, are its approximations; and « is the query.

for speed. This approach may be quite useful in real-time systems that have some
fall back mechanism for dealing with the “don’t know” answers. For example, if it
too expensive to answer a query by inference, a robot may instead try to determine
the answer by sensing.

This paper concentrates on compiling a given knowledge base before any
queries are made. Greiner [1992] and Greiner and Schuurmans [1992] extend
our framework by providing compilation algorithms that interleave compilation
and query answering. Another interesting direction for future research would be
to allow for updates to the knowledge base between queries.

2.3 Computing Horn Approximations

We now turn to the problem of generating Horn approximations. There does not
exist a polynomial time procedure for generating such approximations (provided
P=£NP). This is consequence of the following theorem.

Theorem 1 Let X be a set of clauses. The GLB of X is consistent iff X is consis-
tent. Similarly, the LUB of X is consistent iff X is consistent.

Proof: If M(X) = 0, then an inconsistent Horn theory such as p A —p is both a GLB and
LUB of 3. Let X be consistent and M be a satisfying truth assignment of 3. By
definition, M must be a satisfying assignment of any Horn upper-bound. Moreover,
the theory with M as the only satisfying truth assignment is a better (larger) Horn
lower-bound than an unsatisfiable (inconsistent) Horn theory. So, both the LUB and
the GLB of 3 are consistent since each has at least one satisfying truth assignment.
]

If the length of the Horn approximations is bounded by some polynomial function
of the length of X, then the task of finding them is NP-hard, because checking
the consistency of a general set of clauses is NP-complete, whereas checking the
consistency of Horn clauses takes only linear-time. On the other hand, if certain
approximations are of exponential length, then it certainly takes exponential time
to generate them. Thus, in either case the problem is intractable. Of course, if the
approximations were polynomial time computable, then they could not be very
good approximations (for example, inconsistency could go undetected), and at
query time they could save at most a polynomial amount of time on an exponen-
tially hard problem.

Computing the Horn approximations should be viewed as a compilation pro-
cess. The computational cost can be amortized over the total set of subsequent
queries to the KB. In some cases, however, the approximations may be needed for
query answering before the compilation process finishes. So, instead of waiting
for the best Horn bounds, it would be desirable to employ procedures that could
output lower- and upper-bounds as intermediate results, generating better and bet-
ter bounds over time. That is, the approximation algorithms should be “anytime”
procedures [Boddy and Dean, 1988]. The algorithms presented in this paper have
this property.

We discuss a method for generating the GLB first. The following notion is
central to our approach:

Definition: Horn-strengthening

A Horn clause C'y is a Horn-strengthening of a clause C iff Cy C ' and there
is no Horn clause CY; such that C'y C Cf; € C. A Horn-strengthening of a set
of clauses {C1,...,C,} is any set of clauses {C,...,C’} where C! is a Horn-
strengthening of ;.

Thus, a Horn-strengthening of a non-Horn clause is formed by removing all
but one positive literal.
Example: Consider the clause C' = {p, ¢, —r}. The clauses {p, —r} and {q, —r}
are the Horn-strengthenings of C'.

The following two lemmas state some useful properties of Horn-strengthenings.
The first lemma shows that a Horn theory entails a clause only if it entails some
Horn-strengthening of the clause.

Lemma 1 Let ¥y be a Horn theory and ' a clause that is not a tautology. If
Yy E C then there is a clause Cy that is a Horn-strengthening of C' such that
Yy E Cu. More generally, if a Horn theory entails a set of clauses, then it entails
a Horn-strengthening of the set.

Proof: By the subsumption theorem [Lee, 1967], there is a clause C’ that follows from
Yy by resolution such that C” subsumes C'. Because the resolvent of Horn clauses
is Horn, C” is Horn. Therefore there is some Cy that is a Horn-strengthening of
C'suchthat C* C Cyx C C, and ¥ | Cy. The generalization to sets of clauses
follows immediately. =

The next lemma shows that every GLB of a theory is equivalent to some Horn-
strengthening of the theory.

Generate_ GLB
Input: a set of clauses ¥ = {C4,Cs, ..., C,}.
Output: a greatest Horn lower-bound of X.
begin
L := the lexicographically first Horn-
strengthening of ¥
loop
L' := lexicographically next Horn-
strengthening of ¥
if none exists then exit loop
if LELthenl:=1'
end loop
remove subsumed clauses from L
return L
end

Figure 3: Algorithm for generating a greatest Horn lower-bound.

Lemma 2 Let X, be a GLB of a theory ¥ = {C,...,C,}. Then there is a
set of clauses C1,...,C) such that ¥, = {C},...,C}}, where C/ is a Horn-
strengthening of .

Proof: By the definition of a GLB, we have X, = Y. Therefore X, |= C; for 1 <
i < n. Because X, is Horn, by Lemma 1, there exists {C1, ..., C},}, where each
C! is a Horn-strengthening of C;, such that Xy, = €% for 1 < 7 < n. Thus
Yab E {C1,...,C}} E X. Moreover, because X, is a greatest lower-bound, it
must be the case that X, = {C],...,C]}. =

n

Moreover, it is not difficult to see that every Horn-strengthening of X is a Horn
lower-bound of > — though not necessarily the greatest lower-bound. This leads
us to the Generate_GLB algorithm given in Fig. 3. The algorithm systematically
searches through the various possible Horn-strengthenings of the clauses of the
original theory, looking for a most general one. Where ¥ = {C;,C5,...,C,}
and C{ is the j-th Horn strengthening of clause C;, the Horn strengthenings of
3 are generated in the lexicographic order {C},C;,....C}}, {C?,Cs,...,CL},
{C1,C2,...,C} {C: C2,...,CL}, etc.

10

Theorem 2 Given a set of clauses ¥, Generate GLB (Fig. 3) computes a great-
est Horn lower-bound of ¥ of length less than or equal to that of ..

Example: Consider the theory ¥ = (—a VbV ¢) A (aV b). The algorithm first tries
the Horn-strengthening L = ((—aVb)Aa) = (anb), and then L' = ((—aVb)Ab) =
b. Since L. = L', L is set to L', and the algorithm proceeds. Since the other two
Horn strengthenings do not further improve the bound, the algorithm returns
as an answer (the redundant clause (—a V b) is removed by the last step of the
algorithm).

Proof of Theorem 2 Ignoring the last step that removes subsumed clauses from I, it
is obvious that Generate GLB returns a logically-weakest Horn-strengthening of
>.. So to prove the algorithm correct, we need to show that any logically-weakest
Horn-strengthening of ¥ is a GLB of X. First note that 7. = X and L is Horn so L
is a LB. Suppose it were not a greatest LB. There is a set of Horn clauses H such
that

L E H
H ¥ L
H E X
By Lemma 1 there must be some Horn strengthening X’ of X such that
HEY

But this means that

LEY
Now there are two cases: (1) L and X' are the logically equivalent. Then this means
that 7. and H are logically equivalent, which is a contradiction. (2) L and X' are

logically distinct. But then L is not a logically-weakest Horn strengthening of 3,
which is also a contradiction. This proves the theorem. =

Generate_GLB is indeed an anytime algorithm: L represents some lower-bound
whenever the algorithm is interrupted. Note also that the total running time of the
algorithm is exponential only in the length of the non-Horn part of the original
theory, because the only strengthening of a Horn clause is the clause itself.

The querying algorithm shown in Fig. 2 uses only a single GLB of the theory.
One could extend the algorithm to use several lower bounds (although not neces-
sarily all of them, because certain theories can have exponentially many distinct

11

GLBs). There is a simple and interesting relationship between a theory and the set
of all of its GLBs. This follows from the fact that each model of a theory corre-
sponds to a a lower-bound of the theory, namely the conjunction of all the literals
assigned true by the model. We thus obtain the following theorem:

Theorem 3 Let X be a set of clauses. Then X is logically equivalent to the dis-
junction of all the greatest Horn lower-bounds of .

We now turn our attention to the generation of the LUB. We will use the notion
of a prime implicate of a theory, which is a strongest clause implied by the theory.
The following theorem reveals our basic strategy.

Theorem 4 Let X be a set of clauses. The LUB of ¥ is logically equivalent to the
set of all Horn prime implicates of 3.3

Proof: The set of Horn prime implicates is implied by 32, and thus is a Horn upper-bound.
Furthermore, it must be the LUB, because at least one of its clauses subsumes (and
therefore implies) any clause in any Horn upper-bound. =

So, in principle, we could use resolution to generate the prime implicates and sim-
ply collect the Horn ones in order to generate the least Horn upper-bound. How-
ever, such a method could prove very expensive since even if the original theory
contains only Horn clauses, there can be exponentially many Horn resolvents (for
an example, see Selman [1990]). Clearly, such resolvents add nothing to the best
approximation of the original Horn theory, since the least Horn upper-bound is
already given by the theory itself.

Fortunately, we can improve upon the procedure of generating all prime im-
plicates by only resolving two clauses if at least one is non-Horn. The intuition
behind this improvement is that any resolution proof tree that ends in a Horn clause
can be rewritten so that all the resolutions between pairs of Horn clauses appear
at the bottom of the tree. The compilation phase essentially generates the top part
of the tree, and the all-Horn part is generated at query-answering time. The full
inductive proof that this method is complete was provided by del Val [1995] . As
with Generate_GLB, the algorithm is anytime: Y.y improves over time.

Theorem 5 Given a set of clauses ¥, Generate LUB algorithm (Fig. 4) com-
putes the least Horn upper-bound of ..

31t follows directly that the LUB is complete with respect to Horn queries. That is, for any
Horn clause a, we have ¥ = « if and only if Xy, = .

12

Generate_LUB
Input: a set of clauses ¥ = ¥y U Yy, where
Y is aset of Horn clauses, and Xy is a
set of non-Horn clauses.
Output: a least Horn upper-bound of ¥..
begin
loop
try to choose clause C'y € ¥y and (' € ¥y U Xy,
such that 'y, = Resolve(C'y, C4)
is not subsumed by any clause in ¥y U Xy
if no such choice is possible then exit loop
delete from Xy and Xy any clauses
subsumed by ',
if C', is Horn then
EH = EH U {02}
else
EN = EN U {02}
end if
end loop
return Xy
end

Figure 4: Algorithm for generating the least Horn upper-bound.

13

Example: Consider the theory (—a VvV b) A (=bV ¢) A (a Vv b). The LUB algorithm
resolves the first and the third clause, obtaining the clause 6. Xy becomes (—b V
¢) A b, upon which the loop is exited and Xy is returned.

2.4 Computational Savings

In Section 2.2 we described how the bounds can be used to answer queries, and
claimed that doing so could lead to computational savings. One might wonder
whether it could be the case that queries that can be answered by the bounds are
also easy to answer using the original theory. A central aspect of our approach is
that this is not so. An obvious counterexample is any inconsistent theory. Com-
pilation yields an inconsistent upper bound. Any query against this bound would
quickly return “yes” (see Fig. 2). However, evaluating a query against the original
theory would in general involve proving that the theory was inconsistent, which is
NP-complete.

Of course, most interesting knowledge bases will be consistent. Let us there-
fore consider a consistent theory that is equivalent to a Horn theory, but is not in
Horn form. Clearly, all queries can be answered efficiently against the bounds.
However, it is not the case that a theorem prover could also answer queries effi-
ciently against the original theory. This can be shown using a result by Valiant
and Vazirani [1986] . They show that even if a propositional theory has a single
model (and is thus trivially equivalent to a Horn theory), finding the model is still
intractable (unless NP = RP, which is unlikely). Therefore, there cannot exist a
theorem prover that efficiently handles this special case, because such a prover
could be used to find the unique model of the non-Horn theory (by repeatedly
testing whether each literal followed from the theory).

The fact that the bounds obtained by our method can be used to answer queries
efficiently that would be intractable to test against the original theory is a key fea-
ture that distinguishes our work from most related work on reasoning with approx-
imations (related work is discussed in Section 4 below). The most natural applica-
tion of our framework is therefore in domains where fast response to queries is of
the highest importance. Direct practical evidence for this can be found in the work
by de Kleer [1990] on qualitative physics. De Kleer uses an Assumption-Based
Truth Maintenance System (ATMS), a kind of propositional theorem prover, to
reason about logical theories of qualitative physics. The main form of inference
of the ATMS is so-called Boolean Constraint Propagation (BCP). BCP is sound

14

and complete for Horn clauses, but incomplete for more general theories. In or-
der to make BCP more useful, the system preprocesses the theory using a limited
form of resolution. For example, given the clauses =V -y V z and -z V -y V z, one
can add their resolvent —y Vv z. This additional clause will allow BCP to derive
additional information. Since BCP in effect ignores non-Horn clauses, the process
can be viewed as computing a form of a Horn upper-bound approximation to the
original theory. De Kleer’s approach is thus a concrete example of the practical
usefulness of a limited form of knowledge compilation.*

In order to gain some further insight into the practical usefulness of knowl-
edge compilation, we now consider the compilation of hard, randomly-generated
propositional theories. Mitchell, Selman and Levesque [1992] show that most
randomly-generated theories are easy to reason with. Such theories tend to be ei-
ther very over-constrained or very under-constrained; in either case, experiments
show that answering queries is easy using the standard Davis-Putnam procedure
[Davis and Putnam, 1960].> However, Mitchell et al. also described how to ran-
domly generate computationally challenging theories. The key is to generate for-
mulas with a particular ratio of clauses to variables. For random 3CNF formulas,
the ratio is about 4.3. We consider hard random 3CNF theories containing be-
tween 75 and 200 variables. In order to simplify the following analysis, we com-
puted bounds that consisted of conjunctions of unit clauses. Note that unit clauses
are a restricted case of Horn clauses. Therefore, these bounds are not as tight as
the full Horn bounds. We will show that even these bounds are useful for answer-
ing a high percentage of queries. Because the full Horn bounds are tighter, they
would answer an even higher percentage of queries. However, by considering the
unit clause bounds we are able to provide a simple exact analysis.

We began by generating a set of 40 random 3CNF theories, with 10 each based
on 75, 100, 150, and 200 variables. Then we computed the unit LUB and a unit

“De Kleer also discusses the possibility of replacing the entire theory by its set of prime
implicates. Though this may be useful for abductive reasoning [Reiter and de Kleer, 1987,
Selman and Levesque, 1990], it is not necessary for deductive reasoning because Horn clauses
themselves already allow for efficient inference. Also note that generating all the prime implicates
may require exponential space.

5If the theory is over-constrained, it is generally unsatisfiable, so that all queries trivially follow.
If it is under-constrained and the CNF query contains short disjunctions, then the query almost
certainly does not follow. Finally, if the theory is under-constrained and the CNF query contains
only long disjunctions, then the query almost certainly does follow, which can be easily shown by
adding the negation of the query to the theory and using the Davis-Putnam procedure with unit
propagation to show inconsistency.

15

vars | clauses || size unit | size unit || percent queries answered

LUB GLB unit | binary | ternary

75 322 53 71 || 100% | 85% 88%
100 430 57 93 || 100% | 76% 79%
150 645 62 139 || 100% | 66% 66%
200 860 132 188 || 100% | 83% 85%

Table 1: Size of bounds and percentage of random queries answered by unit
bounds for hard random 3CNF theories. The size of the unit LUB and unit GLB
were determined empirically. The table gives the median values over 10 random
theories of each size. The percentage of random queries answered by the bounds
was then computed probabilistically, as described in the text.

GLB of each. Table 1 gives the average size, in literals, of the LUB and GLB for
each size theory.

We computed the unit upper bound using a version of the Generate LUB
algorithm that was restricted to output only unit clauses. Generate GLB was
similar adapted for unit bounds; in particular, the first strengthening of the theory
was taken to be a satisfying model of the theory found using a fast randomized
satisfiability procedure [Selman et al., 1992].

Computation time for the unit LUBs ranged from 5 minutes for the 75 variable
theories, to one hour for the 200 variable theories, on a 100Mhz SGI Challenge.
Computation of the unit GLBs ranged from 1 minute to 5 minutes each.

The percentage of queries that could be answered by these bounds is com-
puted using some basic probability theory. We assume that we are dealing with
single-clause queries drawn from a uniform fixed-clause length distribution. The
simpliest case is the unit clause queries. All unit clause queries can be answered
using only the unit LUB, because this bound is complete for such queries. Thus
this column is 100% for every size theory.

Next, let us consider the more interesting case of binary queries. Let z V y
be a random binary clause, where x and y are distinct and not complements. We
wish to compute the probability that the bounds answer the query, given that the
unit LUB is of size / and the unit GLB is of size m, and there are NV variables in

16

the theory. That is, we wish to compute
PT((E]ub FzvVv y) or (Eglb ’7/ zV y))

which equals
Pr(EwpFzVy)+ Pr(Egp /2 Vy)

because the two possibilities are disjoint. A disjunction is entailed by a set of
literals if and only if one of the disjuncts is so entailed. Thus,

PT(E]ub Fzv y) = PT((E]ub F JZ) or (Elub F y))

Note that we were only able to make this step because we are considering the unit
bounds, instead of the full Horn bounds. This quantity is equal to

PriSmF)+ EwFy) — EwFzAy)

The first and second terms are equal to the odds of picking a random literal that
is in the LUB, namely [/(2N). The third term is equal to the number of ways of
choosing two distinct literals from the LUB, divided by the number of ways of
choosing two distinct, non-complementary literals, namely /(I — 1) /((2N)2(N —
1)). Thus,
[) I(l-1)
Pr(Sip F = ——
PG F 2 VY) = S0+ SN T ANV = 1)
Next, consider the probability that a binary query is answered by the GLB. We
have
Pr¥gp/2Vy)=1—Pr(XgpF2zVy)

The final term above can be calculated using the same argument as for the LUB
to yield
m m m(m — 1)
Pr(¥ =4 - _ ")
r(Zen 2V y) <2N+2N 4N(N—1))
Combining the probability that the LUB answers the query with the probability
that the GLB answers the query results in the expression
4N(m —1) —3(m — 1)+ 1* — m?
AN(N —1)

1 —
The value of this expression was used to complete the “binary” column of Table 1.

17

vars | clauses || bounds and tableau tableau only

binary ternary || binary | ternary

75 322 51 48 258 248
100 430 54 45 368 341
150 645 61 59 || 1286 1084
200 860 55 51 || 12962 | 8632

Table 2: Time in seconds to answer 1000 random queries using the bounds to-
gether with the program tableau (a version of the Davis-Putnam algorithm) versus
using tableau alone. All experiments were run on a 100Mz SGI Challenge work-
station.

The probability that the bounds answer a random ternary query can be simi-
larly derived, and was used to complete the final column of the table. As we have
noted, a similar analysis could be performed for Horn bounds, but would be much
more complicated, because the probability that a Horn theory entails a disjunction
is the same as the probability that it entails one of the disjuncts.

As we can see from Table 1, the percentage of queries that can be handled by
even such simple unit clause bounds is quite high. Note that the queries handled
by the bounds can be answered in linear time. However, the Davis-Putnam proce-
dure scales exponentially on the queries considered in the table (this follows from
the experiments in [Mitchell et al., 1992]). Thus, this suggests that knowledge
compilation on such randomly-generated theories should have a clear payoff.

We verified the computational savings suggested by the preceding analysis by
implementing the fast querying algorithm shown in Fig. 2, and testing 1000 ran-
dom binary and 1000 random ternary queries against each of the 40 test theories.

In case both bounds failed to answer a query, it was tested against the original
theory using an efficient implementation of the Davis-Putnam procedure called
“tableau”.® Table 2 lists the average time to run each batch of a 1000 queries,
using the bounds together with tableau versus using tableau alone. Thus, in both
cases all queries were answered. We see that knowledge compilation reduced

5The Davis-Putnam procedure is currently the fastest known complete procedure for propo-
sitional satisfiability testing and theorem-proving on the class of formulas considered here [Buro
and Biining, 1992, Dubois et al., 1995]. Tableau [Crawford and Auton, 1993] is one of the fastest
implementations of the algorithm.

18

the overall time by over two orders of magnitude on the largest theories. This
eliminates the remote possibility that the bounds are only answering the “easy”
queries. Earlier we invoked complexity theory to argue that in general the bounds
are not limited to easy queries; these experiments verify that the bounds answer
hard queries against a computationally interesting distribution of random theories.

As an aside, we observe that even when we take into account the time required
to compile the theories, we obtain an overall time savings. For example, on the
200 variable theories, computing the bounds takes about an hour and five minutes;
thus, the total time to compute the bounds and answer 1000 binary queries is
3,955 seconds, versus 12,962 seconds not using the bounds. (Note that difference
in overall time will increase even further when we would consider, for example,
10000 queries.) Thus in this case we have gone beyond our stated goal of shifting
computational effort from on-line to off-line, and have actually reduced the total
amount of work required.

These positive results for random theories are quite surprising, since one would
expect that their apparent lack of structure would make them hard to approxi-
mate by simpler theories. A further understanding of the costs and benefits of the
knowledge compilation approach will come through the application of the tech-
niques to various real-world problems. Note that, in practice, one may be satisfied
with upper and lower bounds that are not necessarily optimal, but are cheaper
to compute. Greiner [1992] gives compilation algorithms that begin answering
queries with non-optimal bounds, and gradually improve them at run-time de-
pending on the particular query distribution.

2.5 Size of the Approximations

The size of the approximations is clearly an important issue. Ideally, one would
like the approximations to be of roughly the same size or less than the original
theory. If the approximations are much larger, then one may lose the potential
computational advantage. For example, if a bound is exponentially larger than
the original theory, evaluating a query in linear time using the bound would be as
expensive as using the original theory.

From the Generate_GLB algorithm it follows immediately that the size of the
generated bound is less than or equal to that of the original theory.” The system

"Recently, Cadoli [1993], building on our original paper on knowledge compilation [Selman
and Kautz, 1991], has shown that computing the GLB is in the complexity class PN ¥. (Problems

19

can safely use this bound; even if the approximation does not provide an answer
for a particular query, at most a linear amount of time (in terms of the length
of the original theory) is being “wasted.” The LUB is less well-behaved. First,
we will show that there are theories that have exponentially long upper-bounds.
However, such bounds can often be shrunk down to the size of the original theory
by introducing new letters in the vocabulary. Such new letters can be viewed as
useful abbreviations for repeated structure in the theory. Finally, we will prove
that, unfortunately, one cannot always shrink down the LUB by introducing new
letters. In those cases, the system has to limit the length of the approximation by
using a weaker bound. (We discuss some kinds of weaker bounds in Section 3;
see also Greiner and Schuurmans [1992] for an example of this.)

2.5.1 Explosion of the LUB

The following theory has an LUB with has exponentially many clauses. The
clauses in the theory can be interpreted as rules for deciding if someone is a cog-
nitive scientist. The clauses are numbered for ease of reference.

(CompSci A Phil A Psych) D CogsSci)
ReadsMcCarthy O (CompSci V CogSci) (2)
ReadsDennett O (Phil V CogSci) (3)
ReadsKosslyn D (Psych V CogsSci) 4

Clause (1) states a sufficient condition for being a cognitive scientist: being a
computer scientist, and a philosopher, and a psychologist. The remaining clauses
let one deduce a person’s profession from his or her reading habits. Clause (2)
states that if a person reads papers written by McCarthy, then the person is either
a computer scientist or a cognitive scientist (or possibly both). Similarly, a reader
of Dennett is either a philosopher or cognitive scientist or both, and a reader of
Kosslyn is either a psychologist or cognitive scientist or both.

Reasoning with this theory can be quite complicated. For example, by rea-
soning by cases, one can prove that a computer scientist who reads Dennett and

in PNP can be solved in polynomial time by a deterministic Turing machine with access to an NP
oracle. See Garey and Johnson [1979] or Johnson [1990].) This means that computing a GLB
is only slightly harder than answering a single query, since the best known algorithms for both
problems are singly-exponential [Johnson, 1993]. Note that is indeed a positive result, because
one might have feared that, in the worst case, a doubly-exponential amount of work was needed to
compute a bound that can potentially handle an exponential number of queries efficiently.

20

Kosslyn is also cognitive scientist. In general, for such non-Horn form theories,
finding a proof will take time exponential in the length of the theory (provided
P#£NP).

Clause (1) can be resolved with subsets of clauses (2—4) to yield many dif-
ferent Horn clauses, such as

(ReadsMcCarthy A Phil A ReadsKosstn) D CogSci
(CompSci A ReadsDennett A Psych) D CogSci

In fact, the LUB of this theory is equivalent to the set of 2% Horn clauses:

(pAgAT) D Cogsci |
p € {CompsSci, ReadsMcCarthy }
g € {Phil, ReadsDennett}
r € {Psych, ReadsKosslyn}

()

Furthermore, we can prove that there is no smaller set of clauses equivalent to
(5). Note that this is a much stronger condition then simply saying that there are
no redundant clauses in (5); we are asserting that there is no way to represent the
same information in less space in clausal form. This example can be generalized
by increasing the number of propositions that appear in the left-hand side of clause
(1), and adding a clause of the general form of (2) for each new proposition. The
size of the LUB then grows exponentially. In general, we have the following
theorem.

Theorem 6 There exist clausal theories Y. of size »n such that the smallest clausal
representation of their LUB is of size O(2").

The proof appears in the appendix. Therefore, although we can tell if any clause
follows from the LUB in time linear in the size of the LUB, the explosion in size
of the LUB in this example wipes out our savings. Of course, there are also many
commonsense theories for which such exponential blowup does not occur.

2.5.2 Shrinking the LUB

The syntactic form of a theory can often be modified without changing its basic
meaning. For example, any theory can be represented by a set of clauses each
containing no more than three literals (3-CNF form) by introducing new propo-
sitional letters. The old and new theories are not equivalent, since the new one

21

uses an expanded vocabulary, but they are essentially the same: They both entail
or both do not entail any formula that does not contain any of the new letters.

Thus one might wonder if a large LUB could be represented by a small set
of Horn clauses that have basically the same meaning, if not actual logical equiv-
alence. As with the case of 3-CNF formulas, the technique we use depends on
the introduction of new propositional letters. Rather than modify the definition of
the LUB, we will add these new letters to the source theory itself. If we take the
meaning of a letter to be a concept, we will see that the method reduces to the
definition of new concepts that generalize concepts in the original theory.

For example, let us modify the theory given by clauses (1—4) by introducing
three new concepts, “computer science buff”, “philosophy buff”, and “psychology
buff”. The first generalizes the concepts of a computer scientist and of a reader of
papers by McCarthy. Similarly, the second generalizes philosopher and reader of
Dennett, and the third generalizes psychologist and reader of Kosslyn. Each con-
cept definition requires three clauses: one to assert that the more general concept
is divided among its subconcepts, and two to assert that the subconcepts are part
of the concept. The added clauses are

CompSciBuff O (CompSci V ReadsMcCarthy) (6)
CompSci O CompSciBuff @)
ReadsMcCarthy O CompSciBuff (8)
PhilBuff D (Phil \V ReadsDennett) 9)
Phil O PhilBuff (10)
ReadsDennett O PhilBuff (11)
PsychBuff O (Psych V ReadsKosslyn) (12)
Psych D PsychBuff (13)
ReadsKosslyn D PsychBuff (14)

The LUB of the augmented theory containing (1—4) and the clauses above can
be represented by just the Horn clauses from the new concept definitions (7, 8, 10,
11, 13, 14) together with the single clause

(CompsSciBuff A PhilBuff A PsychBuff) O CogSci (15)

The total size of the LUB (counting all occurrences of literals) is half the size of
the LUB of the unmodified theory. As we generalize the example by adding new

22

propositions, the size of the LUB grows as O(n), as opposed to O(2"). Further-
more, the added clauses only increase the size of the source theory by a linear
amount.

Returning to our example concerning a computer scientist who reads Dennett
and Kosslyn, we can now infer quickly from (7), (11), and (14) that the person is
a computer science buff, philosophy buff, and psychology buff, and therefore by
(15) a cognitive scientist. Note that this inference can be computed in time linear
in the size of the new LUB and therefore linear in the size of the original theory
(1—4). Thus, by teaching the system new concept definitions, the size of the new
source theory grows only slightly, and the LUB shrinks to approximately the size
of the source theory itself.

In [Kautz and Selman, 1992a] we discuss a strategy for automatically deriv-
ing (“learning”) new concept letters that shrink the original bound. We call this
theory compaction. The flavor of our approach is very similar to that of the use
of additional letters in extended resolution [Tseitin, 1968]. See [Muggleton and
Buntine, 1988] for a related approach to learning new generalizations, based on
inverting resolution proofs.

2.5.3 Does a Compact Representation of the LUB Always Exist?

So far, we have shown that a naive representation of a theory’s LUB can some-
times require an exponential amount of space, and that in some of those cases a
clever representation using new propositional letters requires only a polynomial
amount of space. The question then becomes how general these results are. Is
it always possible to produce a compact, tractable representation of the LUB?
Unfortunately, the following theorem shows that this is unlikely.

Theorem 7 Unless NP C non-uniform P, it is not the case that the Horn least
upper-bound ¥,,,;, of a propositional clausal theory ¥ can always be represented
by a data structure that allows queries of the form

Ywb Fa
to be answered in time polynominal in (|| +|«|), where « is a single Horn clause.

Note that this is so despite the fact that we allow an arbitrary amount of work to
be performed in computing the data structure used to represent ;.. The proof of
the theorem appears in the appendix.

23

The notion of “non-uniform P”” comes from work in circuit complexity [Bop-
pana and Sipser, 1990]. A problem is in non-uniform P (also called P/poly) iff
for every integer n there exists a circuit of complexity (size) polynomial in » that
solves instances of size n. The adjective “non-uniform” refers to the fact that
different circuits may be required for different values of ». Any problem that
can by solved by an algorithm that runs in time O(f(n)) has circuit complexity
O(f(n)logn). We use this fact implicitly in the proof of the theorem, where we
talk about polynomial time algorithms rather than polynomial size circuits.

The class non-uniform P is, however, considerably larger than P. (For exam-
ple, non-uniform P contains non-computable functions, such as the function that
returns “1” on inputs of length » iff Turing Machine number » halts on all inputs.
For any n the circuit is simply fixed to return 1 or 0.) Although it is possible that P
NP and yet NP C non-uniform P, this is considered unlikely. One consequence
would be that the polynomial-time hierarchy would collapse to ¥, [Karp and Lip-
ton, 1982]. As shown in the appendix, the theorem can be strengthened to say
that the claim that there always exists an efficient form of the LUB for answering
Horn clausal queries is equivalent to the claim that NP C non-uniform P. There-
fore a proof that such efficient representations do or do not always exist would be
a major result in the complexity of finite functions.

An immediate corollary of the theorem is that unless the polynomial hierarchy
collapses in this manner, compaction by defining new propositions is an incom-
plete method for shrinking the LUB.

Corollary Unless NP C non-uniform P, it is not the case that there is always a
compaction (using any number of new variables) of the Horn least upper-bound
of a theory ¥ that is of size polynomial in |X].

This follows from the theorem because one can determine if a Horn clause fol-
lows from a compaction (which is itself Horn) in time linear in the length of the
compaction plus the length of the query.

To summarize, there are theories for which the Horn LUB cannot be repre-
sented in a short, tractable form. In such cases, knowledge compilation can still
be of use, but one will have to rely on a shorter and therefore weaker upper-bound.
One way to do this would be to simply stop generating the bounds at some point;
this is straightforward, given the anytime nature of our compilation algorithms.
Another alternative would be to generate so-called £-Horn approximations, which
are Horn theories with at most % literals per clause [Dechter and Pearl, 1992].
Given the limitation on the clause lengths, such theories are of most polynomial

24

size in the number of variables. (We discuss £-Horn and other alternatives to Horn
approximations in Section 3 below.)

3 General framework

Central to our knowledge compilation proposal is the definition of approximations
in terms of subsets and supersets of the set of models of the original theory. This
was illustrated in Fig. 1. Such a model-theoretic definition leaves much freedom
in terms of choice of representation language for the original theory, the approxi-
mations, and the queries. Our only additional requirement is that the queries can
be evaluated efficiently with respect to the approximations. Note again that we
view the computation of the approximations as an off-line compilation process,
so that its cost can be amortized over the set of queries. By allowing substantial
computational resources to be spend on the compilation the approximations will
become of real practical significance, as was shown in Section 2.4.

Formally, a knowledge compilation system isa tuple (£, =, Ls, L1, Lq, fu, fu)
containing the following components:

L is a formal language. We identify a language with the set of all its
sentences.

= is a consequence relation over sets of sentences in £. In most of
the examples we will study, |= has its usual meaning of logi-
cal entailment, but the framework allows |= to represent other
relationships, such as subsumption.

Ls isthe “source” sublanguage of £, used to express a general knowl-
edge base.

L is the “target” sublanguage of £, used to express approximations
to the general knowledge base. It should be easier in some sense
(analytically or empirically) to determine if a query is a conse-
quence of a set of sentences in L1 than of a set sentences in
Ls.

Lq is the “query” sublanguage of L.

/1, is a function that models some (particular) anytime lower-bound
algorithm, mapping a source theory and time-bound n to the

25

best lower-bound that can be computed in » steps. Formally,
fu: Ls x N— L. By definition, f1,(X, c0) isa GLB of X.

fu is a similar upper-bound function, where fy (%, c0) is the LUB
of X.

Suppose a knowledge compilation system is presented a query o € Lq after
performing « compilation steps on the source theory . As described earlier, if
Ju(X, 1)~ « then the system answers “no”, if fu(X,:)}= « then the system an-
swers “yes”, and otherwise it answers “unknown”. A definite answer of “yes” or
“no” always agrees with the answer to the question “Does ¥ }= a?”, even if the
lower (upper) bound is not the greatest (least) bound.

The case of knowledge compilation using propositional Horn clauses fits into
this framework as follows: £, Lg, and L, are general, propositional, clausal lan-
guages, L is restricted to Horn clauses, and = is propositional entailment. In this
case the query language is strictly more expressive than £r. (Note that to answer a
general query consisting of a set of clauses, one can determine efficiently whether
each of the clauses is implied by the Horn approximation, by using the linear time
algorithm for testing the satisfiability of Horn clauses.) The functions fi, and fu
model the Generate_GLB and Generate _LUB algorithms presented above.

3.1 Other Instances of Knowledge Compilation
3.1.1 Restricted Propositional Clausal Forms

A broad class of propositional knowledge compilation systems can be realized by
generalizing the algorithms for the Horn case. The idea of a Horn-strengthening
is generalized as follows:

Definition: #-strengthening

Let 4 be a particular class of propositional clauses. A clause in that class is called
a f-clause, and a set of such clauses is called a #-theory. A clause Cy is a 0-
strengthening of a clause C' iff Cy C € and there is no f-clause Cé such that
CypCCyc .

A knowledge compilation system can be created by letting the source language
Ls be the set of general clauses, and the target language £ be such a restricted
class of clauses #. Now further suppose that 4 is closed under resolution (i.e., the
resolvent of any two é-clauses is a #-clause), and that every clause has at least one

26

f-strengthening. Then we see that the proof of Lemma 1 generalizes from Horn
clauses to #-clauses: that is, if a -theory entails a clause ', then it must also entail
a #-strengthening of C'. Furthermore, every greatest lower-bound in terms of -
clauses of a theory is equivalent to a (logically weakest) #-strengthening of the
theory. Therefore one can find a GLB by searching the space of §-strengthenings.

Theorem 8 Let 6 be a class of propositional clauses such that (i) the resolvent of
any two clauses in 4 is also in 4, and (ii) every clause is subsumed by some clause
in 4. Given a set of clauses ¥, Generate_GLB (Fig. 3) computes a greatest -
lower-bound of ¥ of length less than or equal to that of > (where ““6”” is substituted
for “Horn’” in the algorithm).

Now consider the problem of generating the least upper-bound of a clausal
theory. Recall that the “naive” algorithm for finding the Horn LUB of a theory
is simply to compute all resolvents of the theory, and then collect the Horn prime
implicates from that set. This is due to the resolution completeness theorem and
the fact that propositional Horn clauses are closed under subsumption, i.e., a Horn
clause can only be subsumed by another Horn clause. Therefore, a condition (z)
we place on the general target language ¢ is that it be closed under subsump-
tion. (An example of a class that violates this condition is the set of definite Horn
clauses. These are clauses that contain exactly one positive literal. The resolvent
of any two definite Horn clauses is a definite Horn clause. However, a definite
Horn clause (for example, —p V ¢) can be subsumed by a non-definite Horn clause
(for example, —p)). We summarize these observations about generating the §-LUB
in the following theorem:®

Theorem 9 Let 4 a class of propositional clauses such that that if C € # and
C' subsumes ', then C" € 6. Given a set of clauses ¥, Generate LUB (Fig. 4)
computes the least #-upper-bound of ¥ (where “4”” is substituted for “Horn”” in
the algorithm, and C is selected from Xy U ¥y).

Several useful clausal target languages meet the conditions of Theorems 8 and
9. These include:

¢ Horn and Reverse-Horn (clauses containing at most one negative literal).

8This theorem is due to del Val [1995], and strengthens a proposition from Kautz and Selman
[1991] that appeared in earlier drafts of this paper.

27

e Binary: clauses containing two or fewer literals. Satisfiability and entail-
ment can be determined in linear time for this class [Aspvall et al., 1979].
(Note that unit clauses and the empty clause are included in this class.)

e Unit clauses; that is, bounds that consist of conjunctions of literals. This
class is a specialization of both Horn and binary.

e Clauses not containing a given set of propositional letters. While such a
class may not have better worst-case complexity than the unrestricted lan-
guage, it may be empirically desirable to “compile away” certain irrelevant
propositions.? For example, let ¥ = {p V q, —¢q V r}, and 4 be clauses not
containing ¢. Then the #-GLB of X is {p A r}, and §-LUB is {p V r}.

There are still other interesting tractable clausal target languages that require
more significant modifications to our compilation algorithms. Important ones in-
clude:

e k-Horn: for any fixed £, Horn clauses containing % or fewer literals. Note
that reasoning with k-Horn theories takes only linear time, and furthermore,
the size of the £-Horn approximations is always polynomial in the number
of variables. One way to compute a £-Horn GLB is to simply generate the
set of all Horn clauses of length % as an initial (inconsistent) lower bound,
and then minimizing the set by striking out clauses until it no longer entails
the source theory. There is a similar brute-force algorithm to compute the
k-Horn LUB: start with the set of all £-length clauses entailed by the source
theory, and then repeatedly shrink it by removing clauses that are entailed
by the conjunction of the remaining clauses.

e Renamable Horn: the class of theories that become Horn by uniformly re-
placing a subset of the variables by their negation. This class is of particu-
lar interest because (linear-time) unit propagation (BCP) is complete for it
[Henschen and Wos, 1974, Lewis, 1978].

In additional to the clausal target languages we have concentrated on in this
paper, one could consider tractable non-clausal target languages. For example,

9Subramanian and Genesereth [1987] present a formal system for inferring that certain propo-
sitions are irrelevant to the computation of a given class of queries. Given this sense of what is
irrelevant, knowledge compilation can then be used as way to simplify the theory.

28

McAllester and Given [1992] discuss a logical language based on the structure of
natural language, and identify a fragment in which inference can be performed
in polynomial time. It would be interesting to see if ordinary first-order theories
could be (approximately) compiled into this tractable fragment, using our model-
theoretic notion of approximation.

3.1.2 First-Order Theories

We will now consider the application of knowledge compilation in first-order lan-
guages. Here will we only give a brief description of how to extend knowledge
compilation techniques to languages with quantification; more details will appear
in a future paper [Kautz and Selman, forthcoming].

In the propositional case, GLBs and LUBs for any pair of a source and target
language always exist, since only a finite number of logically distinct theories can
be constructed. In the general first-order case, however, such best approximations
may not be well-defined. For a simple example, let Lg be first-order logic, with
a single predicate p and the infinite set of constant terms {cy,c,,...}, and Lt
consist of ground (non-quantified) clauses. The theory {3z.p(x)} has an infinite
series of better and better ground-clause lower-bounds:

{p(c)} = {pler) Vplea)} = {p(er) V plea) Vples)} |= -+ - = {3ep(z)}

That is, there is no one greatest lower-bound.

The notion of a GLB is well-defined, however, for the first-order generaliza-
tions of the clausal languages we have considered. (In fact, clausal represen-
tations are the most widely used first-order languages.) A first-order literal is
constructed in the usual way from an optionally negated predicate symbol applied
to a sequence of terms constructed from function symbols, constants, and vari-
ables. A first-order clause is a sentence in prenex form containing only universal
quantifiers, whose matrix is a disjunction of literals.

A first-order Horn clause is a first-order clause whose matrix contains at most
one positive literal; a Horn-strengthening of a first-order clause corresponds to a
Horn-strengthening of its matrix. Note that even in the first-order case, a clause
has only a finite number of Horn-strengthenings.

The reader may now verify that Lemmas 1 and 2 hold without change in the
first-order case. Let us supply Generate GLB in Fig. 3 with an oracle for the test

if LELthenl:=1'

29

Then it clear that given a set of first-order clauses, the algorithm will search
through a finite set of Horn-strengthenings and return one that is logically weak-
est; by the argument in the proof of Theorem 2, this must be a GLB. This shows
that first-order Horn GLBs exist and are small.

There is also no difficulty in generalizing the notion of a GLB in other re-
stricted clausal target languages to the first-order case. The #-strengthening of a
first-order clause is again generated by eliminating literals from the clause’s ma-
trix. Then, Theorem 8 goes through as before.

It is less straightforward to apply the notion of a LUB to first-order theories.
We can construct finite first-order clausal theories that have no finite Horn LUB
(even using no function symbols, only variables). Thus, not all first-order Horn
LUBs are finitely representable. There are other aspects of compiling first-order
theories that will be dealt with in our later paper. In particular, we are investigat-
ing decidable (and possibly tractable) approximations to theories in undecidable
languages.!?

3.1.3 Description Logics

In this section, we consider description logics, a family of frame-based knowledge
representation languages as studied by Levesque and Brachman [1985]. (See also
[Donini et al., 1991].)

Levesque and Brachman consider a language F £ in which one can describe
structured concepts in terms of other concepts, either complex or primitive. For
example, if we wished to describe the concept of a person whose male friends are
all doctors with some specialty, we could use the F L expression

(AND person
(ALL (RESTR friend nual e)
(AND doct or
(SOME specialty)))),

which contains all the constructs (the capitalized terms) used in the language.
Levesque and Brachman consider the complexity of determining whether one con-

1%nteresting connections may be drawn with some recent research on the analysis of Prolog pro-
grams (for use in, for example, optimization and program specification). For example, [Heintze
and Jaffar, 1990] describes how to construct a recursive (i.e., decidable) approximation to a poten-
tially non-recursive logic program. Their method computes a lower-bound of the logic program
viewed as a logical theory (but not in general the greatest lower-bound).

30

cept subsumes another. For example, the concept of “a person whose friends are
all doctors”, written

(AND person
(ALL friend
doctor))

subsumes the one given above. Now, their central technical result is that deter-
mining subsumption in F £ is intractable, but that removing the RESTR construct
leads to polynomial time computable subsumption. The restricted language is
called FL™.

So for efficient subsumption, one can use the language F£~. But this lan-
guage may not be sufficiently expressive for practical applications. Knowledge
compilation provides again an alternative. In this case the idea is to take a concept
description in the language F £ and to approximate it using two concept descrip-
tions in FL™: a best lower-bound, i.e., the most general more specific concept
in FL£~, and a best upper-bound, i.e, the most specific more general (subsuming)
concept in FL™.

As an example consider the first concept given above. It is not difficult to see
that the concepts per son and

(AND person
(ALL friend
(AND doct or
(SOME specialty))))

in FL~ are examples of, respectively, an upper-bound and a lower-bound in F£ ™.
(These are also the best bounds in this case.) A knowledge representation system
can store such bounds with the original concept description, and use themto try to
determine quickly whether the newly given concept subsumes it or is subsumed
by it.

Note that in this application we compute a pair of bounds for each concept,
instead of a single pair of bounds for an entire knowledge base. The bounds
can be used both in subsumption queries to the KB and in updating the KB by
adding new concept definitions. In both cases, the system can use the bounds in
determining the appropriate place of the new concept in the hierarchy.

31

4 Related Work

An upper-bound approximation is logically weaker than the original theory, and
can thus be viewed as a generalization or abstraction of the theory. A lower-
bound approximation is a specialization (logical strengthening) of the original
theory. Borgida and Etherington [1989] propose using background knowledge
that captures the hierarchical relationship among predicates in order to replace
disjunctions by more general concepts. Suppose the background knowledge is

doctor(Jill) D professional(Jill)
lawyer(Jill) D professional(Jill)

and the KB is
doctor(Jill)V laywer(Jill).

They then generate a new KB that contains only professional(Jill). But this
is simply the least Horn upper-bound of the original KB together with the back-
ground knowledge. Note that the idea of an LUB is more general than Borgida
and Etherington’s approach, since it can be applied to arbitrary propositional Horn
theories — not just concept hierarchies with positive disjunctions. (Related to the
work of Borgida and Etherington is that of Imielinski [1987], who proposes a
notion of abstraction based on grouping individuals into equivalence classes.)

A Horn lower-bound corresponds to a more specific theory than the original
one. Its use generalizes the use of a counterexample to prune the search space
of inference procedures. The best-known example of the use of counterexamples
in artificial intelligence can be found in the early work by Gelernter [1959] on
proving theorems in geometry. Gelernter used a single model M (given by a
diagram) of the original theory X to answer certain queries negatively, based on
the fact that if M [~ o then ¥ [~ o, for a query . The Horn lower-bound is
used in a similar manner, but it will generally involve a set of models, and is thus
a better characterization of the original theory. In particular, one may avoid some
of the “accidental truths” that often hold in a single model or diagram.

Horn lower-bounds are also a generalization of Levesque’s notion of vivid
representations [Levesque, 1986, Etherington et al., 1989]. To allow for fast in-
ference, a vivid representation contains only complete information (no “reasoning
by cases”). Levesque proposes to replace a knowledge base containing incom-
plete information by a complete, vivid representation of the information. Such a
representation can be generated using abstractions or by filling in details. In the

32

propositional case, the proposal comes down to replacing a propositional theory
by one of its models (which is presumably “prototypical” of the models of the
original theory). Queries are evaluated directly with respect to the model. Our
Horn lower-bound can be viewed as a relaxation of the completeness constraint:
Instead of picking a single model, we use a collection of models represented by a
set of Horn clauses. We maintain the computational advantage because inference
is still efficient using the Horn bound.

In work in artificial intelligence on planning and theorem-proving with ab-
straction [Amarel, 1968, Plaisted, 1981], one maps a theory to a smaller, simpler
theory, generates proofs in the smaller theory, and then uses the proofs to guide
generation of proofs in the original theory. Various mechanisms have been sug-
gested for creating the abstractions, such as eliminating operator preconditions
[Sacerdoti, 1974], finding symmetries in the search space [Ellman, 1993], and
employing explanation-based learning on previously-generated plans [Knoblock
et al., 1991a). These abstractions are similar to our notion of an upper-bound.
(Some of the approaches differ in that they can introduce abstract solution that do
not correspond to any concrete solution. Knoblock et al. [1991] discuss various
kinds of abstractions that do preserve such solution and consistency properties.)

A crucial difference between the work on planning and our knowledge com-
pilation framework is that the former concentrates on solving single problem in-
stances, rather than shifting computational effort from on-line to off-line. All
but the most restricted forms of planning are NP-hard [Gupta and Nau, 1991,
Bylander, 1991, Erol et al., 1992]. Therefore, the best known planning algorithms
run in exponential time. Work on planning with abstraction attempts to lower the
exponent. By contrast, the aim in the knowledge compilation framework is to pre-
process (compile) a theory in such a manner that queries (problem instances) can
be solved in polynomial time.

The motivation behind our knowledge compilation approach is similar to that
behind the work on universal plans [Schoppers, 1987], a form of reactive planning
[Agre and Chapman, 1987]. A universal plan is a program (or logical circuit) that
efficiently determines the first step of a plan leading from any initial state toward
a pre-defined goal state. (After this step is taken, the universal plan determines
what to do in the new state, and so on, until the goal is reached.) Universal plans
can thus be viewed as an attempt to efficiently represent a potentially exponential
set of plans, just as knowledge compilation aims at creating a representation that
can efficiently answer a potentially exponential set of queries. In universal plans,
one generally tries to capture exactly the original domain theory. It would be

33

interesting to explore the question of whether Horn approximations of the domain
knowledge could be used to create “approximate” universal plans (e.g., ones that
may not specify for every state what to do next).

Cadoli and Schaerf [1992] generalize Levesque’s work on implicit and explicit
belief [Levesque, 1984]. They approximate the inference process by allowing
a sequence of more and more powerful inference relations. The more time the
system has to evaluate a query, the more powerful an inference relation it can use.
Allowing for an unrestricted amount of time leads to standard deductive reasoning.
An important difference with our approach is that there is no notion of directly
processing the original theory to obtain an approximation to it. This means that in
practice only a limited amount of work can be done per query, in order to obtain
an answer. Moreover, none of the work done for one query is saved for use in
answering the next query. In our framework, the cost of run-time querying is
shifted to off-time compilation. The cost of the compilation process is amortized
over a potentially very large set of queries, and the result of the compilation can
be used in processing each query.

Dalal and Etherington [1992] provide a general framework in which many dif-
ferent forms of approximations can be captured. Our notion of an upper bound
corresponds to their notion of a “direct weaking” of a theory. However, their
notion of the strengthening of a theory is quite different from ours; it roughly cor-
responds to the disjunction of all of the lower-bounds of a theory. They introduce
approximations to queries as well as theories; in our our framework there is no
need to approximate queries — as we saw earlier, it is possible to test arbitrary
CNF queries against Horn theories in linear time.

Dalal and Etherington do not develop the notion of shifting computation effort
from query-answering time to an off-line compilation phase, nor do they present
algorithms for compiling specific languages. The emphasis in their work is more
on developing a very general framework for describing mappings between differ-
ent vocabularies, rather than dealing with specific issues of computational com-
plexity.

Dechter and Pearl [1992] investigate the use of Horn approximations to obtain
more efficient representations of empirical data. They consider the case where the
original theory ¥ is given directly by its set of models (satisfying truth assign-
ments). They introduce a weaker notion of Horn approximations, called £-Horn
approximations, in which each Horn clause contains at most % literals. See [Kautz
et al., 1994], for a discussion of this work.

Finally, Greiner and Schuurmans [1992; Greiner 1992] have adapted our com-

34

pilation algorithms to ones that search for bounds that are optimal with respect to
a given query distribution. Generation of the bounds is interleaved with query an-
swering, and the queries themselves are used to optimize the bounds. They show
that this can be done efficiently, in that each interation takes polynomial time.

5 Conclusions

We introduced the notion of knowledge compilation. The basic idea is to compile
knowledge from an intractable into a tractable form. Since an exact translation
is often not possible, we introduced approximate translations, consisting of two
bounds that delimit the original theory.

Knowledge compilation provides an alternative to approaches that force the
user to state all knowledge in some restricted (tractable) language. A representa-
tion system incorporating a knowledge compilation procedure will allow the user
to enter information in a general, unrestricted language, which then the system
compiles into a tractable form.

To illustrate our approach, we showed how knowledge represented in a propo-
sitional theory can be approximated using two Horn theories, called Horn approx-
imations: a greatest Horn lower-bound and a least Horn upper-bound. Answering
a query based on the original knowledge base is intractable, but by using the Horn
approximations certain queries can be answered in time linear in the length of the
approximations. We gave algorithms for generating such Horn approximations.
The algorithms operate incrementally, generating better and better approxima-
tions over time. The incremental nature of the approximation algorithms is a key
feature of our approach, since in practical applications it would be unacceptable
to have to wait until the system has computed the best bounds before answering
any queries.

In summary, the main features of our knowledge compilation approach are:

e A guaranteed fast response for queries that can be answered directly using
the approximations.

¢ An incremental, off-line compilation process that provides continuous im-
provement of the overall response time of the system.

We also presented an empirical evaluation of our approach, and demonstrated
substantial computational savings on hard propositional theories.

35

We showed how the procedures for compiling propositional theories into Horn
theories can be generalized to apply to other tractable classes of clauses. Those
classes were characterized using various closure conditions. The classes con-
taining reverse-Horn clauses, clauses with two or fewer literals, or clauses not
containing a certain set of “irrelevant letters” are examples of classes that satisfy
the closure conditions. Finally, we discussed the compilation of concept descrip-
tions given in a terminological representation language. This example showed that
our knowledge compilation approach appears suited for dealing with a variety of
knowledge representation languages — not only traditional logics.

Acknowledgements

We thank Daniel Bobrow for getting us to think more about the issue of how to
make practical use of restricted, tractable representation languages and Ray Reiter
for pointing us to the work on prime implicates. We also thank Hector Levesque,
Yoav Shoham, and two anonymous referees for many useful comments.

Appendix: Proofs

Proof of Theorem 6
Consider a theory ¥ of the following form, for arbitrary n:

—pyVopy V- Voap, Vs (16)
g, VpL Vs an
—gy V pa Vs (18)
: (19)
=g,V p, Vs (20)

We see that ¥ contains 4n + 1 literals; that is, it is of size O(n). The LUB X, of
Y is the following set of Horn clauses, of total length 2"

—|x1\/—|$2\/---\/—'$n\/5 |
z; € {pi,qiy for 1 <j<n

First we prove that the set ¥, has the following properties: no two clauses re-
solve, and it is irredundant (no subset of ¥, implies all of X,,;,). Then we prove

36

that X, is of minimum size. (Note that being of minimum size is a stronger
condition than being irredundant.)

Proof that X, Is irredundant: suppose there is a clause « in X, such that
Y — {a} | a. Since no two clauses in ¥, — {a} resolve, by completeness of
resolution there must be an o’ in ¥, — {a} such that o/ subsumes «. But this is
impossible, since all clauses in X, are of the same length.

We can now prove that there is no smaller set of clauses 3{,,, which is equiva-
lent to X, Suppose there were a X, such that ¥y, = X1, and |31, < [Z1ub)-
Then forall o in X},

Yb F o

and since no clauses in X,,,;, resolve, this means that there exists an o’ in ¥, such
that o/ subsumes a.

That is, every clause in X{,, is subsumed by some clause in ¥,,. Suppose
each clause in X,,, subsumed a different clause in i, ; then |Sp'| > [Ziubl,
a contradiction. Therefore there is a proper subset ¥,,” of ¥, such that each
clause in X, is subsumed by some clause in X,,,".

Then ¥," E Y, and therefore ¥p,," | Y. But this is impossible,
because we saw that X, is irredundant. Therefore there is no smaller set of
clauses equivalent to X,,, which is shorter than X,,;,. O

Proof of Theorem 7

Suppose such a representation of the LUB always existed. We then show that
3-SAT over n variables can be determined in O(r?) time. Because the choice of
n is arbitrary, and 3-SAT is an NP-complete problem, this would mean that NP C
non-uniform P.

Let the variables be a set of main variables {p, ..., p, } together with a set of
auxiliary variables

{¢sy-|2,y,z € LITS}

where LITS is the set of literals constructed from the main variables (the variables
or their negations). Let the source theory ¥ be the conjunction of clauses:

Y= /\ {tVyVzV-oc,.}
I.,y,ZELITS

Note that X is of length O(r?®). The idea behind the construction is that any 3-
SAT clause over . variables can be constructed by selecting a subset of the clauses
from ¥ and eliminating the auxiliary variables.

37

Now suppose we have been able to compute a representation of the Horn LUB
of X that has the property that one can test Horn queries against it in polynomial
time. We noted before that a Horn formula follows from the LUB if and only if it
follows from the source theory.

Suppose A is an arbitrary 3-CNF formula over . variables that we wish to test
for satisfiability. We construct a Horn clause « containing only auxiliary variables
by including a negative auxiliary variable ¢ that corresponds to each clause 4 in
A. For example, if A'is

(P V =ps Vps) A (=pLVp2 V —ps)
then the corresponding Horn clause is

TCpy,mpaps Y TCpypa,pa

Now we claim that this Horn clause is implied by the LUB if and only if A is not
satisfiable.
(—) Suppose the query is implied by the LUB. It follows that

YE-cVadvVvadv...

where the {¢, ¢/, ¢", .. .} are the auxiliary variables in the query that correspond to
clauses {4,4",6", ...} in A. Equivalently,

YU {=(-eV = V="V,)} is unsatisfiable.

That is,
Y UA{e d, " ...} is unsatisfiable.

Note that any clause in X containing an auxiliary variable other than {c, ¢’,¢" ...}
can be eliminated, since that clause is satisfied in any model in which its auxiliary
variable is assigned false, and no other instance of that variable appears in the
formula. Thus it must be the case that

{6V =, 8"V =, 8" v = 3 Uude d, .}

is unsatisfiable. Because the auxiliary variables each appear exactly once nega-
tively and once positively above, they can can be resolved away. Therefore

{6,6',6",...} = Ais unsatisfiable.

38

(+) Note that each step in the previous section can be reversed, to go from the
assumption that A is unsatisfiable to the conclusion that ¥ = «. And, since « is
Horn, it follows that the LUB implies a.

We assumed that the test whether the LUB implies « could be performed in
time polynominal in the length of the source theory plus the length of the query.
Since both the source theory and query are polynomial in the length of A, it fol-
lows that the satisfiability of A can be determined in time polynomial in the length
of A. Since the choice of n was arbitrary, and 3-SAT is an NP-complete problem,
this means that NP C non-uniform P. O

Proof of strengthened Theorem 7

We can strengthen the theorem to an equivalence by showing that NP C non-
uniform P implies that small and tractable representations of the LUB always
exist. Suppose we are given a source theory ¥ of length m containing » variables.
Assuming NP C non-uniform P, there exists a circuit that determines satisfiability
of formulas of length m + n that has complexity polynomial in m + n. We use
this circuit to construct program to test queries of the form X, = « as follows:
given «, first check that is not a tautology, and eliminate any duplicated literals.
The resulting query is of length < n. Then pad out the query to exactly length »
by duplicating any of its literals. Then the negation of the query together with X
is a formula of exactly length m + n, SO we can use the circuit to determine if the
formula is unsatisfiable, or equivalently, that o follows from X. Since « is Horn,
then the latter condition is equivalent to saying ¥,,, = «. Since the circuit is of
size polynomial in m + n it must execute in time polynomial in m + n — that is,
in time polynomial in (|X| + |af). O

References

[Agre and Chapman, 1987] P.E. Agre and D. Chapman. Pengi: An implementa-
tion of a theory of activity. In Proceedings of AAAI-87, pages 268-272, Seattle,
Wa, 1987.

[Amarel, 1968] Saul Amarel. On representations of problems of reasoning about
actions. In Michie, editor, Machine Intelligence 3, pages 131-171. Edinburgh
University Press, 1968.

39

[Aspvall et al., 1979] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time
algorithm for testing the truth of certain quantified boolean formulae. Informa-
tion Processing Letters, 8(121), 1979.

[Boddy and Dean, 1988] Mark Boddy and Thomas Dean. Solving time depen-
dent planning problems. Technical report, Department of Computer Science,
Brown University, 1988.

[Boppana and Sipser, 1990] R. B. Boppana and M. Sipser. The complexity of fi-
nite functions. In J. an Leeuwen, editor, Handbook of Theoretical Computer
Science, Volume A: Algorithms and Compexity, pages 757-804. Elsevier, Am-
sterdam (and MIT Press, Cambridge), 1990.

[Borgida and Etherington, 1989] Alex Borgida and David W. Etherington. Hier-
archical knowledge bases and efficient disjunctive reasoning. In Proceedings
of the First International Conference on Principles of Knowledge Representa-
tion and Reasoning, pages 33-43, Toronto, Ontario, 1989. Morgan Kaufmann
Publishers, Inc.

[Buro and Biining, 1992] M. Buro and H. Kleine Biining. Report on a sat compe-
tition. Technical Memorandum 110, Mathematik/Informatik Universitat Pader-
born, November 1992.

[Bylander, 1991] T. Bylander. Complexity results for planning. In Proceedings
of IJCAI-91, pages 274-279, Sidney, Australia, 1991.

[Cadoli and Schaerf, 1992] Marco Cadoli and Marco Schaerf. Approximation
in concept description languages. In Proceedings of the Third International
Conference on Principles of Knowledge Representation and Reasoning (KR-
92), pages 330-341, Cambridge, MA, 1992.

[Cadoli, 1993] Marco Cadoli. Semantical and computational aspects of horn ap-
proximations. In Proceedings of 1JCAI-93, pages 39—-44, Chambery, France,
1993.

[Cook, 1971] S. A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the 3rd Annual ACM Symposium on the Theory of Computing,
pages 151-158, 1971.

40

[Crawford and Auton, 1993] J. Crawford and L. Auton. Experimental results on
the crossover point in satisfiability problems. In Proceedings of AAAI-93, pages
21-27, Washington, DC, 1993.

[Dalal and Etherington, 1992] Mukesh Dalal and David W. Etherington.
Tractable approximate deduction using limited vocabularies. In Proceedings
of the Ninth Canadian Conference on Artificial Intelligence (Al ’92), pages
206-212, Vancouver, British Columbia, 1992.

[Davis and Putnam, 1960] M. Davis and H. Putnam. A computing procedure for
quantification theory. Journal of the Association for Computing Machinery,
7:201-215, 1960.

[de Kleer, 1990] Johan de Kleer. Exploiting locality in the tms. In Proceedings
of AAAI-91, pages 264-271, Anaheim, CA, 1990.

[Dean, 1985] Tom Dean. Artificial Intelligence, Theory and Practice. Ben-
jamin/Cummings, Redwood City, CA, 1985.

[Dechter and Pearl, 1992] Rina Dechter and Judea Pearl. Structure identification
in relational data. Artificial Intelligence, 58(1-3):237-270, 1992.

[Dechter, 1992] Rina Dechter. Constraint networks. In Encyclopedia of Artificial
Intelligence, pages 276-285. John Wiley & Sons, New York, 1992.

[del Val, 1985] A. del Val. An analysis of approximate knowledge compilation.
In Proceedings of IJCAI-95, Montreal, Canada, 1985.

[Donini et al., 1991] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi,
and Werner Nutt. The complexity of concept languages. In Proceedings of the
Second International Conference on Principles of Knowledge Representation
and Reasoning (KR-91), pages 151-162, Cambridge, MA, 1991.

[Dowling and Gallier, 1984] William F. Dowling and Jean H. Gallier. Linear time
algorithms for testing the satisfiability of propositional horn formula. Journal
of Logic Programming, 3:267-284, 1984.

[Doyle and Patil, 1991] J. Doyle and R. Patil. Two theses of knowledge repre-
sentation: Language restrictions, taxonomic classification, and the utility of
representation services. Artificial Intelligence, 48(3):261-298, 1991.

41

[Dubois et al., 1995] O. Dubois, P. Andre, Y. Boufkhad, and J. Carlier. Sat versus
unsat. In David S. Johnson and Michael A. Trick, editors, Cliques, Coloring,
and Satisfiability: Second DIMACS Implementation Challenge, DIMACS Se-
ries in Discrete Mathematics and Theoretical Computer Science. AMS Press,
Providence, RI, 1995.

[Ellman, 1993] Thomas Ellman. Abstraction via approximate symmetry. In Pro-
ceedings of IJCAI-93, volume 2, pages 916-921, Chambery, France, 1993.

[Erol et al., 1992] K. Erol, D.S. Nau, and V.S. Subrahmanian. On the complexity
of domain-independent planning. In Proceedings AAAI-92, pages 381-386,
San Jose, CA, 1992.

[Etherington et al., 1989] David W. Etherington, Alex Borgida, Ronald J. Brach-
man, and Henry Kautz. Vivid knowledge and tractable reasoning: Preliminary
report. In Proceedings of IJCAI-89, pages 1146-1152, Detroit, MI, 1989.

[Frisch, 1985] Alan M. Frisch. Using model theory to specify Al programs. In
Proceedings of IJCAI-85, pages 148-154, Los Angeles, CA, 1985.

[Garey and Johnson, 1979] Michael R. Garey and David S. Johnson. Computers
and Intractability: a Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, San Francisco, 1979.

[Gelernter, 1959] H. Gelernter. Realization of a geometry theorem-proving ma-
chine. In Proceedings of the International Conference on Information Process-
ing, pages 273-282, Paris, 1959. UNESCO House. (Reprinted in Computers
and Thought, E. Feigenbaum and J. Feldman (Eds.), McGraw-Hill, NY, pages
134-152, 1963.).

[Greiner and Schuurmans, 1992] Russ Greiner and Dale Schuurmans. Learning
useful horn approximations. In Proceedings of the Third International Con-
ference on Principles of Knowledge Representation and Reasoning (KR-92),
pages 383-392, Cambridge, MA, 1992.

[Greiner, 1992] Russell Greiner. Learning near-optimal horn approximations. In
Preprints of the AAAI Spring Symposium on Knowledge Assimilation. Stanford
University, Stanford, CA, March 1992.

42

[Gupta and Nau, 1991] Naresh Gupta and Dana S. Nau. Complexity results for
blocks-world planning. In Proceedings of AAAI-91, pages 629635, Anaheim,
CA, 1991.

[Heintze and Jaffar, 1990] Nevin Heintze and Joxan Jaffar. A finite presentation
theorem for approximating logic programs. In Proceedings of POPL-90, pages
197-201, 1990.

[Henschen and Wos, 1974] L. Henschen and L. Wos. Unit refutations and horn
sets. Journal of the ACM, 21(4):590-605, 1974.

[Horvitz et al., 1989] Eric J. Horvitz, Gregory F. Cooper, and David E. Hecker-
man. Reflection and action under scarce resources: Theoretical principles and
empirical study. In Proceedings of 1JCAI-89, pages 1121-1126, Detroit, Ml,
May 1989.

[Imielinski, 1987] Thomsz Imielinski. Domain abstraction and limited reasoning.
In Proceedings of 1JCAI-87, volume 2, pages 997-1002, 1987.

[Johnson, 1990] D. S. Johnson. A catalog of complexity classes. In J. Van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume A, chap-
ter 2. Elsevier Science Publishers B. V., North Holland, 1990.

[Johnson, 1993] D. S. Johnson, 1993. personal communication.

[Karp and Lipton, 1982] R. M. Karp and R. Lipton. Turing machines that take
advice. Enseign. Math., 28:191-209, 1982.

[Kautz and Selman, 1991] Henry Kautz and Bart Selman. A general framework
for knowledge compilation. In Proceedings of the International Workshop
on Processing Declarative Knowledge (PDK), Kaiserslautern, Germany, July
1991.

[Kautz and Selman, 1992a] Henry Kautz and Bart Selman. Forming concepts for
fast inference. In Proceedings of AAAI-92, pages 786—793, San Jose, CA, 1992.

[Kautz and Selman, 1992b] Henry Kautz and Bart Selman. Planning as satisfi-
ability. In Bernd Neumann, editor, Proceedings of the 10th European Con-
ference on Artificial Intelligence (ECAI-92), pages 359-364, Vienna, Austria,
1992.

43

[Kautz and Selman, forthcoming] Henry Kautz and Bart Selman. Efficient ap-
proximations of quantified formulas. (In Preparation), forthcoming.

[Kautz et al., 1994] Henry A. Kautz, Michael J. Kearns, and Bart Selman. Horn
approximations of empirical data. Artificial Intelligence, 74:129-145, 1994,

[Knoblock et al., 1991a] Craig A. Knoblock, Steven Minton, and Oren Etzioni.
Integrating abstraction and explanation-based learning in prodigy. In Proceed-
ings of AAAI-91, pages 541-546, Anaheim, CA, 1991.

[Knoblock et al., 1991b] Craig A. Knoblock, Josh D. Tenenberg, and Qiang
Yang. Characterizing abstraction hierarchies for planning. In Proceedings of
AAAI-91, pages 692—-697, Anaheim, CA, 1991.

[Larrabee, 1992] T. Larrabee. Test pattern generation using boolean satisfiability.
IEEE Transactions on Computer-Aided Design, January 1992.

[Lee, 1967] R. C.T. Lee. A Completeness Theorem and a Computer Program for
Finding Theorems Derivable From Given Axioms. PhD thesis, University of
California at Berkeley, Berkeley, CA, 1967.

[Levesque and Brachman, 1985] H.J. Levesque and R.J. Brachman. A fundamen-
tal tradeoff in knowledge representation and reasoning (revised version). In R.J.
Brachman and H.J. Levesque, editors, Readings in Knowledge Representation,
pages 41-70. Morgan Kaufmann, Los Altos, CA, 1985.

[Levesque, 1984] Hector J. Levesque. A logic of implicit and explicit belief. In
Proceedings of AAAI-84, pages 198-202, Austin, TX, 1984.

[Levesque, 1986] Hector Levesque. Making believers out of computers. Artificial
Intelligence, 30(1):81-108, October 1986.

[Lewis, 1978] H.R. Lewis. Renaming a set of clauses as a horn set. JACM,
25(1):134-135, 1978.

[McAllester and Givan, 1992] David A. McAllester and Robert Givan. Natu-
ral language syntax and first-order inference. Artificial Intelligence, 56:1-20,
1992.

[Mitchell et al., 1992] D. Mitchell, B. Selman, and H.J. Levesque. Hard and easy
distribution of sat problems. In Proceedings of AAAI-92, San Jose, CA, 1992.

44

[Muggleton and Buntine, 1988] Stephen Muggleton and Wray Buntine. Machine
invention of first-order predicates by inverting resolution. In J. Laird, editor,
Proceedings of the Fifth International Conference on Machine Learning, pages
339-344, 1988.

[Patel-Schneider, 1986] Peter F. Patel-Schneider. A four-valued semantics for
frame-based description languages. In Proceedings of AAAI-86, pages 344—
348, Philadelphia, PA, 1986.

[Plaisted, 1981] D. Plaisted. Theorem proving with abstraction. Artificial Intelli-
gence, 16:47-65, 1981.

[Reiter and de Kleer, 1987] Raymond Reiter and Johan de Kleer. Foundations of
assumption based truth maintance systems: Preliminary report. In Proceedings
of AAAI-87, pages 183-187, Seattle, WA, 1987.

[Reiter and Mackworth, 1989] R. Reiter and A. Mackworth. A logical framework
for depiction and image interpretation. Artificial Intelligence, 41(2):125-155,
1989.

[Sacerdoti, 1974] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces.
Artificial Intelligence, 5(2):115-135, 1974.

[Schoppers, 1987] M. J. Schoppers. Universal plans for reactive robots in un-
predictable environments. In Proceedings of AAAI-87, volume 2, pages 1039-
1046, 1987.

[Selman and Kautz, 1991] Bart Selman and Henry Kautz. Knowledge compila-
tion using horn approximations. In Proceedings of AAAI-91, pages 904-9009,
Anaheim, CA, 1991.

[Selman and Levesque, 1990] Bart Selman and Hector J. Levesque. Abductive
and default reasoning: a computational core. In Proceedings of AAAI-90, pages
343-348, Boston, MA, 1990.

[Selman et al., 1992] B. Selman, Levesque H.J., and D. Mitchell. A new method
for solving hard satisfiability problems. In Proceedings of AAAI-92, pages
440-446, San Jose, CA, 1992.

45

[Selman, 1990] Bart Selman. Tractable default reasoning. Ph.D. Thesis, Depart-
ment of Computer Science, University of Toronto, Toronto, Ontario, 1990.

[Subramanian and Genesereth, 1987] Devika Subramanian and Michael R.
Genesereth. The relevance of irrelevance. In Proceedings of 1JCAI-87, vol-
ume 1, pages 416-422, Milan, Italy, 1987.

[Tseitin, 1968] G. S. Tseitin. On the complexity of derivation in propositional
calculus. In A. O. Slisenko, editor, Studies in Constructive Mathematics and
Mathematical Logic, Part 11. 1968.

[Valiant and V.V, 1986] R.G. Valiantand Vazirani V.V. Np is as easy as detecting
unique solutions. Theoretical Computer Science, 47:85-93, 1986.

[Valiant, 1983] Leslie G. Valiant. A theory of the learnable. Communications of
the ACM, 27(11):1134-1142, 1983.

46

