
ar
X

iv
:c

s.
L

O
/0

10
60

35
 v

1
 1

4
Ju

n
20

01

Polymorphi
 type inferen
efor the relational algebraJan Van den Buss
heLimburgs Universitair CentrumBelgiumjan.vandenbuss
he�lu
.a
.beEmmanuel WallerLRI, Universit�e Paris SudFran
eemmanuel.waller�lri.frAbstra
tWe give a polymorphi
 a

ount of the relational algebra. We in-trodu
e a formalism of \type formulas" spe
i�
ally tuned for rela-tional algebra expressions, and present an algorithm that
omputesthe \prin
ipal" type for a given expression. The prin
ipal type ofan expression is a formula that spe
i�es, in a
lear and
on
ise man-ner, all assignments of types (sets of attributes) to relation names,under whi
h a given relational algebra expression is well-typed, aswell as the output type that expression will have under ea
h of theseassignments. Topi
s dis
ussed in
lude
omplexity and polymorphi
expressive power.1 Introdu
tionThe operators of the relational algebra (the basis of all relational query lan-guages) are polymorphi
. We
an take the natural join of any two relations,regardless of their sets of attributes. We
an take the union of any two rela-tions over the same set of attributes. We
an take the
artesian produ
t of1

any two relations having no attributes in
ommon. We
an perform a sele
-tion �A<B on any relation having at least the attributes A and B. Similartyping
onditions
an be formulated for the other operators of the relationalalgebra. When
ombining operators into expressions, these typing
onditions
an be
ome more involved. For example, for the expression�A<5(r 1 s) 1 ((r � u)� v)to be well-typed, the attribute A must be an attribute of r or s (or both).But if it is an attribute of r, then it must also be one of v. Moreover, by thesubexpression (r � u)� v, the relation s
hemas of r and s must be disjoint,and their union must be the type of v.A natural question thus arises: given a relational algebra expression e,under whi
h database s
hemas is e well-typed? And what is the result rela-tion s
hema of e under ea
h of these assignments? This is nothing but therelational algebra version of the
lassi
al type inferen
e problem. Type infer-en
e is an extensively studied topi
 in the theory of programming languages[1, 7, 9, 15, 5℄, and is used in industrial-strength fun
tional programminglanguages su
h as SML/NJ [16℄.Doing type inferen
e for some language involves setting up two things.First, we need a system of type rules that allow to derive the output type of aprogram given types for its input parameters. Typi
ally su
h an output type
an only be derived for some of all possible assignments of types to inputparameters; under these assignments the program is said to be well-typed.Se
ond, we need a formalism of type formulas. A type formula de�nes afamily of input type assignments, as well as an output type for ea
h typeassignment in the family. Every typable program should have a prin
ipaltype formula, whi
h de�nes all type assignments under whi
h the programis well-typed, as well as the output type of the program under ea
h of theseassignments. The task then is to
ome up with a type inferen
e algorithmthat will
ompute the prin
ipal type for any given program.In this paper, we do type inferen
e for the relational algebra. The re-lational algebra is very di�erent from the programming languages usually
onsidered in type inferen
e; two fundamental features of su
h languages,higher-order fun
tions and data
onstru
tors (fun
tion symbols) are
om-pletely absent here. On the other hand, the set-based nature of relationtypes, and the parti
ulars of the standard relational algebra operators whenviewed polymorphi
ally, present new
hallenges. As a
onsequen
e, our for-2

malism of type formulas is drasti
ally di�erent from the formalisms used inthe theory of programming languages.Our main motivation for this work was foundational and theoreti
al; afterall, query languages are spe
ialized programming languages, so importantideas from programming languages should be applied and adapted to thequery language
ontext as mu
h as possible. However, we also believe thattype inferen
e for database query languages is tied to the familiar prin
ipleof \logi
al data independen
e." By this prin
iple, a query formulated on thelogi
al level must not only be insensitive to
hanges on the physi
al level, butalso to
hanges to the database s
hema, as long as these
hanges are to partsof the s
hema on whi
h the query does not depend. To give a trivial example,the SQL query sele
t * from R where A<5 still works if we drop from Rsome
olumn B di�erent from A, but not if we drop
olumn A itself. Turningthis around, it is thus useful to infer, given a query, under exa
tly whi
hs
hemas it works, so that the programmer sees to whi
h s
hema
hanges thequery is sensitive.Some re
ent trends in database systems seem to add weight to the abovemotivation. Stored pro
edures [8℄ are 4GL and SQL
ode fragments storedin database di
tionary tables. Whenever the s
hema
hanges, some of thestored pro
edures may be
ome ill-typed, while others that were ill-typed maybe
ome well-typed. Knowing the prin
ipal type of ea
h stored pro
eduremay be helpful in this regard. Models of semi-stru
tured data [4, 3℄ loosen(or
ompletely abandon) the assumption of a given �xed s
hema. Querylanguages for these models are essentially s
hema-independent. Nevertheless,as argued by Buneman et al. [2℄, querying is more e�e
tive if at least someform of s
hema is available,
omputed from the parti
ular instan
e. Typeinferen
e
an be helpful in telling for whi
h s
hemas a given query is suitable.Ohori, Buneman and Breazu-Tannen were probably the �rst to introdu
etype inferen
e in the
ontext of database programming languages, in theirwork on the language Ma
hiavelli [11, 10℄. Ma
hiavelli features polymorphi
�eld sele
tion from nested re
ords, as well as a polymorphi
 join operator.However, the inferen
e of prin
ipal types for full-
edged relational algebraexpressions was not taken up in that work. We should also mention thework of Stemple et al. [14℄, who investigated re
e
tive implementations ofthe polymorphi
 relational algebra operators.Other important related work is that on the extension of fun
tional pro-gramming languages with polymorphi
 re
ord types. Some of the most so-phisti
ated proposals in that dire
tion were made by R�emy [12, 13℄. This3

work adds re
ord types to the type system of ML, featuring polymorphi
 �eldsele
tion and re
ord
on
atenation. While this system
aptures many realis-ti
 fun
tional programs involving re
ords, it
annot express the
onditions onthe types of relations implied by
ertain relational algebra expressions, su
has the example we gave earlier. Notably
onstraints su
h as set disjointness(needed for the operator �) or set equality (for the operator [),
annot beexpressed in other systems. The reason is probably the additional
on
ernof these systems for subtyping: a program appli
able to re
ords of a
ertaintype should more generally be appli
able to re
ords having all the �elds ofthat type and possibly more. This is
learly not true for relational algebraexpressions.If one is only interested in de
iding whether a given relational algebraexpression is typable (i.e., whether there exists at least one s
hema underwhi
h the expression is well-typed), we show that this problem is in the
omplexity
lass NP.In a �nal se
tion of this paper, we formally de�ne the notion of poly-morphi
 query. Using our type inferen
e algorithm, we prove that variousoperators usually
onsidered \derived," be
ause they
an be simulated usingthe standard relational algebra operators (e.g., semijoin),
an not be simu-lated in a polymorphi
 way. Thus, our work also brings up new issues in thedesign of appropriate polymorphi
 query languages.2 Preliminaries2.1 S
hemas, types, and expressionsAssume given suÆ
iently large supplies of relation variables and of attributenames. Relation variables will be denoted by lower
ase letters from the endof the alphabet. Attribute names will be denoted by upper
ase letters fromthe beginning of the alphabet.A s
hema is a �nite set S of relation variables. A type is a �nite set � ofattribute names. Let S be a s
hema. A type assignment on S is a mappingT on S, assigning to ea
h r 2 S a type T (r). So, we have split the usualnotion of database s
hema, whi
h spe
i�es both the relation names and theasso
iated sets of attributes, in two notions.The expressions of the relational algebra are de�ned by the following4

grammar: e ! rj (e [e) j (e� e) j (e 1 e) j (e� e)j ��(A1;::: ;An)(e) j �A1 ;::: ;An(e) j �A=B(e) j b�A(e)Here e denotes an expression, r denotes a relation variable, and A, B, andAi denote attribute names. The � denotes a sele
tion predi
ate.The s
hema
onsisting of all relation variables o

urring in expression eis denoted by Relvars(e).2.2 Well-typed expressionsLet S be a s
hema, e an expression with Relvars(e) � S, T a type assignmenton S, and � a type. The rules for when e has type � given T , denoted byT ` e : � , are the following:T (r) = �T ` r : � T ` e1 : � T ` e2 : �T ` (e1 [e2) : � T ` e1 : � T ` e2 : �T ` (e1 � e2) : �T ` e1 : �1 T ` e2 : �2T ` (e1 1 e2) : �1 [�2 T ` e1 : �1 T ` e2 : �2 �1 \ �2 = ?T ` (e1 � e2) : �1 [�2T ` e : � A1; : : : ; An 2 �T ` ��(A1;::: ;An)(e) : � T ` e : � A1; : : : ; An 2 �T ` �A1;::: ;An(e) : fA1; : : : ; AngT ` e : � A 2 � B 62 �T ` �A=B(e) : (� � fAg) [fBg T ` e : � A 2 �T ` b�A(e) : � � fAgWe have a �rst basi
 de�nition:De�nition 1 Let e be an expression and let T be a type assignment onRelvars(e). If there exists a type � su
h that T ` e : � , we say that e iswell-typed under T .Note that in this
ase � is unique and
an easily be derived from T byapplying the rules in an order determined by the syntax of the expression e.5

2.3 Semanti
sWe assume given a universe U of data elements.Let � be a type. A tuple of type � is a mapping t on � , assigning to ea
hA 2 � a data element t(A) 2 U. A relation of type � is a �nite set of tuplesof type � .Let S be a s
hema, and let T be a type assignment on S. A database oftype T is a mapping D on S, assigning to ea
h r 2 S a relation D(r) of typeT (r).The semanti
s of well-typed relational algebra expressions is the well-known one. If T ` e : � , and D is a database of type T , then the result ofevaluating e on D is a relation of type � de�ned in the well-known manner.The only operator worth mentioning is perhaps the not so usual b�A, whi
hproje
ts out the attribute A, leaving all others inta
t.At this point a remark is in order
on
erning the non-redundan
y of theset of relational operators we
onsider. We have in
luded both the naturaljoin 1 and the
artesian produ
t �, and also both the standard proje
tion�A1;::: ;An and the \
omplementary" proje
tion b�A. It is well known that ifthe type assignment is �xed and known, 1
an be simulated using � (plussele
tion and renaming), and
onversely, �
an be simulated using 1 (plusrenaming). Also, �
an be simulated by a series of b�'s, and b�
an be simulatedby �. To illustrate the latter, if we �x the type of r to fA;B;Cg, then �A(r)is equivalent to b�Bb�C(r), and b�A(r) is equivalent to �B;C(r). However, thesesimulations are not \polymorphi
," in the sense that they depend on theparti
ular type assignment.As a matter of fa
t, we will see in Proposition 2 that polymorphi
 simu-lations of 1 using �, or vi
e versa, and of � using b�, or vi
e versa, do notexist. Hen
e, from a polymorphi
 point of view, our
hosen set of relationalalgebra operators is non-redundant.3 Typable expressionsThe
entral notion of this paper is de�ned as follows:De�nition 2 Expression e is
alled typable if there exists a type assignmentT on Relvars(e) su
h that e is well-typed under T .A very simple example of an expression that is not typable is �A=B(�B;C(r)).6

Is typability a de
idable property? This question is easily answered by thefollowing lemma. We use the following notation. If T is a type assignmentand A is a set of attribute names, then we denote by T jA the type assignmentde�ned by T jA(r) := T (r) \ A. If e is an expression then we denote the setof all attribute names that expli
itly o

ur in e by Spe
attrs(e).Lemma 1 If T ` e : � and A � Spe
attrs(e), then T jA ` e : � \ A.The proof is straightforward. As a
onsequen
e, in order to de
ide whetherthere exists a type assignment under whi
h e is well-typed, it suÆ
es to
on-sider type assignments T with the property that T (r) � Spe
attrs(e) forevery r. It follows immediately that typability is in NP. Whether or not itis in P, or is NP-
omplete, remains open.Of
ourse, we are not satis�ed simply by knowing whether or not a givenexpression is typable. What we really want is a
lear,
on
ise pi
ture ofexa
tly under whi
h type assignments it is well-typed, as well as of whattype the expression will have under ea
h of these type assignments. (Notethat there will in general be in�nitely many su
h type assignments.)In the following, we will de�ne the formalism of type formulas, whi
h isspe
i�
ally tuned towards this task.4 Examples of type formulasConsider the expressione = �B=C((�A=B(r) [s) 1 u):This expression is well-typed under exa
tly those type assignments T satis-fying the following two
onditions:1. T (s) = (T (r)� fAg) [fBg;2. C must belong to at least one of T (u), T (r), or T (s).Given su
h a T , the type of e then will equal T (s) [T (u).7

All the above information is expressed by the following type formula fore: r : a1a2s : a1a2u : a2a3 7! e : a1a2a3A : r ^ :s A : uB : s ^ :r B : trueC : (r $ s) ^ (r _ s _ u) C : trueThis type formula will the output of our type inferen
e algorithm. It
an beintuitively read as follows. Expression e is well-typed under pre
isely all typeassignments that
an be produ
ed by the following pro
edure:1. Instantiate a1, a2 and a3 by any three types, on
ondition that they arepairwise disjoint, and do not
ontain A, nor B, nor C.2. Preliminarily assign type a1 [a2 to r; a1 [a2 to s; and a2 [a3 to u.3. In this preliminary type assignment, A must be added to the type of r,but must not be added to that of s; whether it is added to the type of uis a free
hoi
e.4. Similarly, B must be added to the type of s, not to that of r, and freelyto that of u.5. Finally, C must be added at least to one of the types of r, s, and u, butif we add it to r we must also add it to s and vi
e versa.The type of e under a type assignment thus produ
ed equals a1 [a2 [a3, towhi
h we must add B and C, and to whi
h we also add A on
ondition thatit belongs to the type of u.The symbols a1, a2 and a3 are
alled type variables. The attributes A,B and C, whi
h are expli
itly mentioned by the expression, are
alled thespe
ial attributes of the expression. The de
laration of ea
h relation variableas a string of type variables (where
on
atenation denotes union) providesthe polymorphi
 basis of the type assignments under whi
h the expression iswell-typed. An attribute
onstraint for ea
h spe
ial attribute then spe
i�es(by a Boolean formula) the allowed extensions of the polymorphi
 basis typeswith that attribute. The de
larations and
onstraints together form the type
ontext ; this is the left-hand side of the type formula. On the right-hand sidewe �nd the polymorphi
 basis of the output type, and again for ea
h spe
ial8

attribute, an output
ondition whi
h spe
i�es (by a Boolean formula) underwhi
h
ondition that attribute has to be added to the output type.Let us see two more examples. The type formula for the expressione = �A(r)� �A((�A(r) � s)� r);whi
h the reader will re
ognize as the textbook expression for the divisionoperator, is: r : as : a 7! e : ?A : r ^ :s A : trueSo r and s must have the same type ex
ept that r has an additional A (whi
hs has not). The output type is always fAg.The type formula for the expression dis
ussed in the Introdu
tion,e = �A<5(r 1 s) 1 ((r � u)� v);is: v : a1a2a3a4r : a1a3u : a2a4s : a3a4a5 7! e : a1a2a3a4a5A : (r _ s) ^ (v $ (r _ u)) ^ :(r ^ u) A : trueThe de
larations spe
ify exa
tly, in a manner similar to Venn diagrams, the
onditions required on the types of the relation variables for the expressionto be well-typed.5 Type formulas and type inferen
e | For-mal de�nitionsBefore we
an des
ribe our type inferen
e algorithm, we need pre
ise def-initions of the underlying formalism. In what follows, we assume given asuÆ
iently large supply of type variables.5.1 Type
ontextsA type
ontext is a stru
ture
onsisting of the following
omponents:9

1. A �nite set Relvars of relation variables.2. A �nite set Typevars of type variables.3. A mapping de
l from Relvars to 2Typevars ,
alled the de
laration map-ping.4. A �nite set Spe
attrs of attribute names (
alled the spe
ial attributes).5. A mapping
onstraint on Spe
attrs, assigning to ea
h spe
ial attributea Boolean formula over Relvars.We will usually denote a type
ontext by the letter � and, when ne
essaryto avoid ambiguities, will write Relvars(�), Typevars(�), et
.5.2 Semanti
s of type
ontextsFix a type
ontext �. The \models" of � will be type assignments onRelvars(�). We go from type
ontexts to type assignments via the notion ofinstantiation. An instantiation of � is a mapping I on Typevars [Spe
attrs,su
h that1. I assigns to ea
h type variable a type, su
h that� for di�erent type variables a1 and a2, I(a1) and I(a2) are disjoint;and� for ea
h type variable a and spe
ial attribute A; A 62 I(a).2. I assigns to ea
h spe
ial attribute a subset of Relvars, su
h that forea
h spe
ial attribute A, I(A) j=
onstraint(A). (Sin
e
onstraint(A)is a Boolean formula over Relvars, and I(A) is a subset of Relvars,the meaning of I(A) j=
onstraint(A) is the standard meaning frompropositional logi
.)If some of the Boolean formulas in � are unsatis�able, we
all also � unsat-is�able. In this
ase, � has no instantiations.From a type
ontext � and an instantiation I of �, we
an uniquelydetermine a type assignment T on Relvars, de�ned on ea
h relation variabler as follows:T (r) :=[fI(a) j a 2 de
l (r)g [fA 2 Spe
attrs j r 2 I(A)g:We
all this type assignment T the image of � under I, and
onvenientlydenote it by I(�). 10

5.3 Type formulasA type formula now is a quadruple (�; e;Outvars; outatt), where1. � is a type
ontext;2. e is a relational algebra expression with Relvars(e) = Relvars(�), andsu
h that Spe
attrs(�)
ontains all the attribute names that are expli
-itly mentioned in e.3. Outvars is a subset of Typevars(�); and4. outatt is a mapping on Spe
attrs(�), assigning to ea
h spe
ial attributea Boolean formula over Relvars(�).The way we write down
on
rete instan
es of type formulas has alreadybeen illustrated in Se
tion 4.5.4 Semanti
s of type formulasFrom a type formula (�; e;Outvars; outatt) and an instantiation I of �, we
an uniquely determine the following type:fI(a) j a 2 Outvarsg [fA 2 Spe
attrs j I(A) j= outatt(A)g:We
all this type the output type of the type formula under I.We are now ready to de�ne the following fundamental property of typeformulas:De�nition 3 A type formula (�; e;Outvars ; outatt) is
alled prin
ipal for eif for every type assignment T on Relvars(e) and every type � , T ` e : � ifand only if there is an instantiation I of � su
h that T is the image of �under I, and su
h that � is the output type of the type formula under I.The main result of this paper
an now su

in
tly stated as follows:Theorem 1 (Type inferen
e) For every relational algebra expression e,there exists a prin
ipal type formula for e, whi
h
an be e�e
tively
omputedfrom e.Note that if e is untypable, any unsatis�able type formula (type formula withan unsatis�able type
ontext) is prin
ipal for e.We will substantiate our main theorem in the following se
tions.11

6 Solving systems of set equationsType inferen
e algorithms for programming languages typi
ally work bystru
tural indu
tion on program expressions, enfor
ing the typing rules \inreverse," and using some form of uni�
ation to
ombine type formulas ofsubexpressions. In our
ase, relation types are sets, so we need a repla
ementfor
lassi
al uni�
ation on terms. This role will be played by the followingalgorithm for solving systems of set equations.Fix some universe U . In prin
iple U
an be any set, but in our intendedappli
ation U is the universe of attribute names. Assume further given asuÆ
iently large supply of variables. In our intended appli
ation, this rolewill be played by type variables.An equation is an expression of the form lhs = rhs, where both lhs andrhs are sets of variables.1 A system of equations
onsists of two disjoint sets Land R of variables, and a set of equations, su
h that every variable o

urringat the left-hand side (right-hand side) of some equation is in L (in R).A substitution on a set S of variables is a mapping from S to the subsetsof U . A substitution is
alled proper if di�erent variables are assigned disjointsets. A valuation of a system �
onsists of a proper substitution on L and aproper subsitution on R. A valuation (fL; fR) is a solution of � if for everyequation a1 : : : am = b1 : : : bnin �, we have fL(a1) [� � � [fL(am) = fR(b1) [� � � [fR(bn):A symboli
 valuation of �
onsists of a new set V of variables and amapping g from L[R to the subsets of V . Take some proper substitution hon V . Now de�ne the following substitution hL on L: for any a 2 L,hL(a) :=[fh(
) j
 2 g(a)g:In a
ompletely analogous way we also de�ne the substitution hR on R.We
all a symboli
 valuation a symboli
 solution of � if for every propersubstitution h on V , the pair (hL; hR) is a solution of �, and
onversely,every solution of �
an be written in this way. So, a symboli
 solution is a�nite representation of the set of all solutions.1A note on notation: we will write a set fa1; : : : ; ang as a1 : : :an.12

As a trivial example,
onsider the trivial system of equations where L =fag, R = fbg, and without any equations. Any valuation is also a solution.A symboli
 solution is given by V = f
1;
2;
3g andg(a) =
1
2 and g(b) =
2
3:Indeed, note that we always work with proper substitutions, so
1,
2 and
3stand for pairwise disjoint sets. In parti
ular,
1 stands for a � b,
2 standsfor a \ b, and
3 stands for b� a.Theorem 2 Every system of equations � has a symboli
 solution, whi
h
anbe
omputed from � in polynomial time.Proof. LetV := f�a j a 2 Lg [f�b j b 2 Rg [f(�a;�b) j (a; b) 2 (L�R)g;and de�ne the following symboli
 valuation g with V as its set of variables:for ea
h a 2 L, g(a) := f(�a;�b) j b 2 Rg [f�agand for ea
h b 2 R, g(b) := f(�a;�b) j a 2 Lg [f�bg:Then de�ne the subset V0 � V as follows. An element
 2 V is in V0 if thereis an equation a1 : : : am = b1 : : : bnin � su
h that
 belongs to one of the following two sets but not to the other:m[i=1 g(ai) and n[j=1 g(bj):Now
onsider the symboli
 valuation g0 with V 0 := V � V0 as its set ofvariables, de�ned by g0(x) := g(x)� V0. This g0
an easily be
onstru
ted inpolynomial time. We next show that g0 is indeed a symboli
 solution of �.Let h be a proper substitution on V 0, and let a1 : : : am = b1 : : : bn be anequation. By de�nition of g0, for every i 2 f1; : : : ;mg and every
 2 g0(ai),there is a j 2 f1; : : : ; ng su
h that
 2 g0(bj), and vi
e versa, for every13

j 2 f1; : : : ; ng and every
 2 g0(bj), there is an i 2 f1; : : : ; ng su
h that
 2 g0(ai). Hen
e,m[i=1[fh(
) j
 2 g0(ai)g| {z }hL(ai) = m[j=1[fh(
) j
 2 g0(bj)g| {z }hR(bj)and thus (hL; hR) is a solution of �.Conversely, let (fL; fR) be a solution of �. Then de�ne the followingproper valuation h on V : for a 2 L,h(�a) := fL(a)�[fR(R);for b 2 R, h(�b) := fR(b)�[fL(L);and for (a; b) 2 (L�R), h(�a;�b) := fL(a) \ fR(b):Clearly, for ea
h a 2 L,fL(a) =[fh(�a;�b) j b 2 Rg [h(�a);and for ea
h b 2 R, fR(b) =[fh(�a;�b) j a 2 Lg [h(�b):Put di�erently, fL(a) =[fh(
) j
 2 g(a)gfor ea
h a, and fR(b) =[fh(
) j
 2 g(b)gfor ea
h b. Sin
e we want to show that g0 is a symboli
 solution, we would liketo show the last two equalities with g0 instead of g. Sin
e g0(x) = g(x)� V0,it suÆ
es to show that h(
) is empty for ea
h
 2 V0,To see that these sets are indeed empty, we
onsider the three possibilitiesfor an element of V to be in V0. If �a 2 V0 with a 2 L, this means that thereis some equation a1 : : : am = b1 : : : bn14

where a is one of the a1, : : : , am. Sin
e (fL; fR) is a solution,fL(a) � m[j=1 fR(b);so in parti
ular, sin
e h(�a) � fL(a),h(�a) � m[j=1 fR(b):However, by de�nition of h, h(�a) is disjoint from ea
h fR(b). Hen
e, h(�a)must be empty.Analogously we see that if �b 2 V0 with b 2 R, then h(�b) is empty.So �nally, assume (�a;�b) 2 V0 with (a; b) 2 (L�R). This means that thereis either an equation of the form: : : a : : : = : : :with b not o

urring in the right-hand side, or of the form: : : = : : : b : : :with a not o

urring in the left-hand side. Let us fo
us on the �rst possibility(the se
ond is analogous) and write the equation in more detail as: : : a : : : = b1 : : : bm:Sin
e (fL; fR) is a solution, fL(a), and in parti
ular fL(a)\fR(b), is
ontainedin Smj=1 fR(bj). However, sin
e b is not among b1, : : : , bm, and ea
h fR(bj)is disjoint from fR(b), this
an only be if fL(a)\ fR(b), whi
h is the same ash(�a;�b), is empty.Let us see a worked-out example of this solution method. Consider �with L = fa1; a2; a3g, R = fb1; b2; b3g, and the equationsa1 = b1 and a2 = b1b2:From the �rst equation we dedu
e that�a1; (�a1;�b2); (�a1;�b3)15

as well as �b1; (�a2;�b1); (�a3;�b1)are in V0. From the se
ond equation we dedu
e that�a2; (�a2;�b3)as well as (�a1;�b1); �b2; (�a3;�b2)are also in V0. So V � V0 = f�a3;�b3; (�a2;�b2); (�a3;�b3)g;and the symboli
 solution g0 is given byg0(a1) = ? g0(b1) = ?g0(a2) = (�a2;�b2) g0(b2) = (�a2;�b2)g0(a3) = �a3; (�a3;�b3) g0(b3) = �b3; (�a3;�b3):If we rename the variables for added
larity, we obtain the symboli
 solutiona1 = ? b1 = ?a2 =
1 b2 =
1a3 =
2
3 b3 =
3
4whi
h
an be interpreted as spe
ifying that the only solutions to � are thosewhere we assign the same set to a2 and b2, whi
h is disjoint from the setsassigned to a3 and b3 (the latter two sets need not be disjoint), and where a1and b1 are empty.7 Prin
ipal type inferen
e algorithmWe are now ready to des
ribe our algorithm. A
omputer implementation isavailable from the authors [17℄.7.1 Two subroutines7.1.1 Extending a type formula with extra spe
ial attributesThe following
onstru
tion will be used as a subroutine in our algorithm. Let(�; e;Outvars; outatt) be a type formula, and let A be an attribute name notin Spe
attrs. By extending this type formula with A, we mean the following:16

1. add A to Spe
attrs;2. de�ne
onstraint(A) as(_r r)! _a2Typevars(^a2de
l(r) r ^ ^a 62de
l(r):r);3. de�ne outatt(A) as _fr j de
l(r) � Outvarsg:7.1.2 Conjugating two type
ontexts.This is another subroutine that will be used. Two type
ontexts �1 and �2are
alled
ompatible if (i) Typevars1 = Typevars2; (ii) de
l 1 and de
l 2 agreeon Relvars1\Relvars2; and (iii) Spe
attrs1 = Spe
attrs2. By the
onjun
tionof two
ompatible type
ontexts �1 and �2, we mean the type
ontext de�nedas follows:1. Relvars := Relvars1 [Relvars2.2. Typevars := Typevars1 (= Typevars2).3. de
l := de
l 1 [de
l 2.4. Spe
attrs := Spe
attrs1 (= Spe
attrs2).5. for ea
h A 2 Spe
attrs,
onstraint(A) :=
onstraint1(A) ^
onstraint2(A):7.2 The algorithm7.2.1 Base
aseOur algorithm pro
eeds by indu
tion on the stru
ture of the expression. Thebase
ase, where e is a relation variable r, is trivial:r : a 7! r : a:17

7.2.2 UnionLet e = (e1 [e2). By indu
tion, for i = 1; 2, we have prin
ipal type formulas(�i; ei;Outvars i; outatt i). We may assume that Typevars1 and Typevars2 aredisjoint. We perform the following steps:1. For ea
h A in Spe
attrs1 not in Spe
attrs2, extend the type formula fore2 by A. Conversely, for ea
h A in Spe
attrs2 not in Spe
attrs1, extendthe type formula for e1 by A. We now have Spe
attrs1 = Spe
attrs2,whi
h we denote by Spe
attrs.2. Now
onsider the system of set equations � with L = Typevars1, R =Typevars2, and the set of equationsfde
l 1(r) = de
l 2(r) j r 2 Relvars1 \ Relvars2g[fOutvars1 = Outvars2g:Find a symboli
 solution to this system, and apply it to the two typeformulas. Denote the result of applying the solution to Outvars1 byOutvars; by the equation Outvars1 = Outvars2, this is the same as theresult of applying the solution to Outvars2.3. The two type
ontexts �1 and �2 have now be
ome
ompatible; inparti
ular, they have the same set of type variables, whi
h we denoteby Typevars. Take their
onjun
tion �. The resulting set of relationvariables is denoted by Relvars. The resulting
onstraint mapping isdenoted by
onstraint 0.4. For ea
h A in Spe
attrs, de�ne
onstraint(A) as
onstraint 0(A) ^ (outatt 1(A)$ outatt 2(A));and de�ne outatt(A) as outatt 1(A).The result is a prin
ipal type formula (�; e;Outvars ; outatt) for e.7.2.3 Di�eren
eThe
ase e = (e1 � e2) is treated in exa
tly the same way as the
ase e =(e1 [e2). 18

7.2.4 Natural joinThe
ase e = (e1 1 e2) is treated as the
ase e = (e1 [e2), ex
ept for thefollowing important di�eren
es in two of the steps:2. We omit the equation Outvars1 = Outvars2 from the system of equa-tions. We now de�ne Outvars as the union of the results of applyingthe symboli
 solution to Outvars1 and Outvars2.4. For ea
hA in Spe
attrs,
onstraint(A) is now the same as
onstraint 0(A),and outatt(A) is now de�ned asoutatt 1(A) _ outatt2(A):7.2.5 Cartesian produ
tThe
ase e = (e1 � e2) is treated as the
ase e = (e1 1 e2), ex
ept for thefollowing two di�eren
es, again in steps 2 and 4:2. In the
omputation of the symboli
 solution, we put every pair (�a;�b)with a 2 Outvars1 and b 2 Outvars2 by default in V0 (
f. the solutionmethod des
ribed in the proof of Theorem 2). This will guarantee thatthe results of applying the solution to Outvars1 and Outvars2 will bedisjoint.4. For ea
h A in Spe
attrs, de�ne
onstraint(A) as
onstraint 0(A) ^ :(outatt1(A) ^ outatt2(A)):7.2.6 Sele
tionLet e = ��(A1;::: ;An)(e0).1. Initialize the desired type formula(�; e;Outvars; outatt)to the prin
ipal type formula (�0; e0;Outvars 0; outatt 0) for e0 (whi
h wealready have by indu
tion).2. For i = 1; : : : ; n, if Ai is not yet in Spe
attrs, extend the type formulawith Ai. 19

3. for i = 1; : : : ; n, repla
e
onstraint(Ai) by
onstraint(Ai) ^ outatt(Ai):4. For i = 1; : : : ; n, put outatt(Ai) := true.7.2.7 Proje
tionFor the
ase e = �A1;::: ;An(e0) we do the same as for the
ase e = ��(A1;::: ;An)(e0).In addition, we set� outatt(A) := false for ea
h A inSpe
attrs � fA1; : : : ; Ang;and� Outvars := ?.7.2.8 RenamingThe
ase e = �A=B(e0) is treated similarly to the
ase e = ��(A;B)(e0), ex
eptthat we treat B di�erently from A in step 3, as follows:3. Repla
e
onstraint(B) by
onstraint(B) ^ :outatt (B):Furthermore, step 4 is
hanged as follows:4. Put outatt (A) := false, and outatt(B) := true.7.2.9 Proje
ting outFinally, the
ase e = b�A(e0) is treated similarly to e = ��(A)(e0), with theex
eption that we set outatt(A) := false instead of true.20

7.3 ExampleWe illustrate the working of our algorithm on the expressione = �B=C ((�A=B(r)| {z }e1 [s)| {z }e2 1 u)| {z }e3 :We will en
ounter only rather trivial systems of equations in doing this ex-ample; the reader is invited to try the example expression dis
ussed in theIntrodu
tion for more interesting systems of equations.To �nd the type formula for e1, we start from the trival type formular : a 7! r : a for r. Extending this type formula with A and B yieldsr : a 7! r : aA : r ! r A : rB : r ! r B : r:Then we
hange the
onstraint r ! r (or simply true) for A by true^ r, orsimply r, and we
hange the
onstraint for B by true ^ :r, or :r. Finally,we set outatt(A) to false and outatt(B) to true, yielding:r : a 7! e1 : aA : r A : falseB : :r B : true:To �nd the type formula for e2, we start from that for e1 and the trivialformula for s, whi
h we extend with A and B ass : b 7! s : bA : true A : sB : true B : s:We now
onsider the rather trivial system of set equations with L = fag,R = fbg, and the single equation a = b. The symboli
 solution is obviouslya =
; b =
. Applying this solution to the two type formulas simply
hangesboth a and b into
. Conjugating the two type
ontexts yields the
onstraintr ^ true for A, whi
h
an be simpli�ed to r, and the
onstraint :r ^ truefor B, whi
h
an be simpli�ed to :r. Then we add the
onjun
t false$ s21

to the
onstraint for A, yielding r ^ :s, and we add the
onjun
t true$ sfor B, yielding :r ^ s. Finally, outatt(A) is set to false, and outatt(B) totrue, yielding: r :
s :
 7! e2 :
A : r ^ :s A : falseB : s ^ :r B : true:To �nd the type formula for e3, we start from the one for e2 and thetrivial formula for u, whi
h we extend with A and B asu : d 7! u : dA : true A : uB : true B : u:We now get the even more trivial system of set equations with L = f
g,R = fdg, and no equations, whi
h has as symboli
 solution
 =
1
2; d =
2
3.We set Outvars to
1
2
3. Conjugating the two type
ontexts (after having�lled in the solution) yields nothing surprising. Finally we set outatt(A) tofalse _ u, whi
h simpli�es to u, and set outatt (B) to true _ u, or simplytrue, yielding: r :
1
2s :
1
2u :
2
3 7! e3 :
1
2
3A : r ^ :s A : uB : s ^ :r B : true:Finally, to �nd the type formula for e itself, we �rst extend the one fore3 with C: r :
1
2s :
1
2u :
2
3 7! e3 :
1
2
3A : r ^ :s A : uB : s ^ :r B : trueC : ' C : r _ s _ u:Here, ' is the formula(r _ s _ u)! ((r ^ s ^ :u) _ (r ^ s ^ u) _ (:r ^ :s ^ u));or simply r $ s. Then we add the
onjun
t true to the
onstraint forB (whi
h has no e�e
t), and the
onjun
t (r _ s _ u) to the
onstraint for22

C. Finally, we set outatt(B) = outatt (C) = true, yielding indeed the typeformula we gave for e in Se
tion 4 (modulo renaming of type variables).7.4 Corre
tness proofExtension of a type formula with extra spe
ial attributes (Se
tion 7.1.1) is aheavily used subroutine in our type inferen
e algorithm, and one might evengo as far as saying that it is the only part of the algorithm whose
orre
tnessis not self-evident. Hen
e, the following lemma is of
ru
ial importan
e:Lemma 2 The extension of any type formula, generated by our algorithm,with an extra spe
ial attribute, always produ
es an equivalent type formula.Here, equivalen
e naturally means the following. Consider two type formulas�1 and �2 whose type
ontexts �1 and �2 have the same Relvars, and let I1(I2) be an instantiation of �1 (�2). We say that I1 and I2 are equivalent withrespe
t to �1 and �2 if I1(�1) = I2(�2), and the output type of �1 under I1equals the output type of �2 under I2. We say that �1 and �2 are equivalentif for every instantiation of �1 there is an equivalent instantiation of �2, andvi
e versa.Now to the proof of Lemma 2. Let � = (�; e; outatt ;Outvars) be a typeformula, and let �0 = (�0; e; outatt 0;Outvars) be its extension with the extraspe
ial attribute A. We have to show that � and �0 are equivalent.From � to �0. Let I be an instantiation of �. We have to �nd an equivalentinstantiation I 0 of �0.If A 62 I(a) for every a 2 Typevars, we
an simply put I 0(a) := I(a) forea
h type variable a, I 0(B) := I(B) for ea
h spe
ial attribute B 6= A, andI 0(A) := ?. In this
ase, it is
lear that I 0 is a legal instantiation of �0, thatI(�) = I 0(�0), and that the output type of � under I equals the output typeof �0 under I 0.If A 2 I(a) for some a 2 Typevars, we put I 0(a) := I(a) � fAg forthis a, and put I 0(b) := I(b) for every type variable b 6= a. We also putI 0(B) := I(B) for ea
h spe
ial attribute B 6= A. We �nally put I 0(A) :=fr j a 2 de
l (r)g. It is
lear that I 0 is a legal instantiation of �0, and thatI(�) = I 0(�0). To show that the output type of � under I equals the outputtype of �0 under I 0, we must show that if a 2 Outvars , then there exists anr 2 I 0(A) su
h that de
l (r) � Outvars. We will do this in Lemma 3.23

From �0 to �. Let I 0 be an instantiation of �0. We have to �nd anequivalent instantiation I of �.If I 0(A) = ?, then we put I(a) := I 0(a) for ea
h type variable a, andI(B) := I 0(B) for ea
h spe
ial attribute B 6= A. In this
ase it is
lear thatI 0(�) = I(�), and that the output type of �0 under I 0 equals the outputtype of � under I.If I 0(A) 6= ?, we know (be
ause I 0(A) j=
onstraint 0(A)) that thereexists an a 2 Typevars su
h that I 0(A) = fr j a 2 de
l(r)g. Then we putI(a) := I 0(a) [fAg, and I(b) := I 0(b) for ea
h type variable b 6= a. Wealso put I(B) := I 0(B) for ea
h spe
ial attribute B 6= A. It is now again
lear that I 0(�0) = I(�), and that the output type of �0 under I 0 equals theoutput type of � under I.We still owe:Lemma 3 In any type formula generated by our algorithm, the followingholds. Let a be a type variable in Outvars. Then there exists a relationvariable r su
h that a 2 de
l (r) and de
l (r) � Outvars.Proof. By indu
tion. The base
ase, r : a 7! r : a, is trivial.For the
ase e = (e1 [e2) we reason as follows. Let g be the sym-boli
 solution to the system of equations. Then Outvars = S g(Outvars1) =S g(Outvars2). Let
 2 Outvars . Then
 2 g(a) for some a 2 Outvars1.By indu
tion, we know that for some relation variable r, a 2 de
l 1(r) andde
l 1(r) � Outvars1. This implies that
 2 S g(de
l 1(r)) = de
l (r), and thatde
l (r) � Outvars .For the
ase e = (e1 1 e2) we have Outvars equal to S g(Outvars1) [S g(Outvars2), g again being the symboli
 solution. Let
 2 Outvars. So,
 2 S g(Outvars1) or
 2 S g(Outvars2). By symmetry we may assume that
 2 S g(Outvars1). Then
 2 g(a) for some a 2 Outvars1. By indu
tion, weknow that for some r, a 2 de
l 1(r) and de
l1(r) � Outvars1. This impliesagain that
 2 de
l(r) and de
l (r) � Outvars .For the
ase e = (e1 � e2), we
an use exa
tly the same reasoning asfor (e1 1 e2), be
ause no parti
ular properties of the symboli
 solution havebeen used.The
ases e = �, � and b� are trivial be
ause they don't
hange Outvarsand de
l . The
ase e = � is trivial be
ause it sets Outvars to ?.By indu
tion on the stru
ture of relational algebra expressions we
annow prove that ea
h
ase of our algorithm
orre
tly produ
es a type formula24

that is prin
ipal. The
ases
orresponding to unary operators are all proven
orre
t in an analogous way; we treat the sele
tion as an example below.The
ases
orresponding to binary operators heavily rely in addition on the
orre
tness of our algorithm for solving systems of set equations, whi
h wealready proved
orre
t in Se
tion 6.So, let e = ��(A1;::: ;An)(e0). Let the type formulas
omputed by our algo-ritm for e and e0 be � and �0, respe
tively. By indu
tion, we may assumethat �0 is prin
ipal for e0; we must show that � is prin
ipal for e.By Lemma 2, we may ignore step 2 of the algorithm and assume withoutloss of generality that for i = 1; : : : ; n, Ai is already in Spe
attrs0. Moregenerally, we may assume that � di�ers from �0 only in that for i = 1; : : : ; n,
onstraint(Ai) =
onstraint 0(Ai) ^ outatt 0(Ai)and outatt(Ai) = true:Now suppose T ` e : � . We must �nd an instantiation I of � su
h that Tequals I(�) and � equals the output type of � under I. Sin
e T ` e : � , weknow that T ` e0 : � and that for i = 1; : : : ; n, Ai 2 � . Sin
e �0 is prin
ipalfor e0, we know furthermore that there exists an instantiation I 0 of �0 su
hthat T equals I 0(�0) and � equals the output type of �0 under I 0. We set thedesired I simply equal to I 0, and verify:� I is a valid instantiation of �: Thereto, we must
he
k for i = 1; : : : ; nthat I(Ai) j=
onstraint(Ai), or I 0(Ai) j=
onstraint 0(Ai)^ outatt 0(Ai),whi
h is equivalent. That I 0(Ai) j=
onstraint 0(Ai) is trivial, by de�ni-tion. That I 0(Ai) j= outatt(Ai) is also
lear, sin
e Ai 2 � and � equalsthe output type of �0 under I 0.� T = I(�): This is
lear, sin
e T = I 0(�0) and I(�) = I 0(�0).� � equals the output type of � under I: Sin
e outatt di�ers from outatt 0only in that the output
onstraints for the Ai are loosened, the outputtype of �0 under I 0, whi
h equals � ,
an only be a subset of the outputtype of � under I. However, as every Ai is already in � , this subsetrelationship
annot be a stri
t one, and hen
e the two types are indeedequal.Conversely, suppose I is an instantiation of �, and let � be the outputtype of � under I. We must now show that I(�) ` e : � . To show this,25

we note that I is a valid instantiation of �0 (as the attribute
onstraints of� are tighter than those of �0). Hen
e, sin
e �0 is prin
ipal for e0, we knowthat I(�) = I(�0) ` e0 : � 0, where � 0 is the output type of �0 under I. Butthis output type is the same as the output type of � under I; indeed, outattdi�ers only from outatt 0 on the Ai, but all Ai are members of both typesanyway (for �0 this is be
ause I(Ai) satis�es outatt 0(Ai) by de�nition, andfor � this is trivial be
ause outatt(Ai) = true). Hen
e, we have I(�) ` e0 : � .Sin
e all the Ai are in � , we
an
on
lude that I(�) ` e : � .7.5 Complexity and typabilitySin
e every step of the indu
tion
an be implemented in time polynomialin the size of the output of its
hild steps, a rough upper bound on thetime
omplexity of our algorithm is 22O(n). It remains open whether this
omplexity
an be improved. Note that type formulas
an be exponentiallylarge; for example, the type formula for r1 1 (r2 1 (� � � 1 rm) � � �) uses O(2m)di�erent type variables.If the input expression was untypable, the algorithm will output an un-satis�able type formula. Hen
e, an alternative way to
he
k typability isto
he
k satis�ability of the prin
ipal type formula. We do not have to waituntil the end, however, to test satis�ability. In prin
iple, as soon as an unsat-is�able attribute
onstraint arises during type inferen
e, the algorithm
anstop and report that the expression is untypable. This is more useful, sin
eit tells exa
tly where the expression breaks down. In a pra
ti
al implemen-tation, one
ould do this by keeping the attribute
onstraints in disjun
tivenormal form. Doing this might a
tually have a better
omplexity than ex-pe
ted, sin
e the attribute
onstraints generated by the algorithm have aquite spe
ial form, whi
h might be exploited.Note that unsatis�able attribute
onstraints
an only be generated in thefollowing pla
es:� Step 4 of
ases [and �, and its adaptation for
ase �. A simpleexample of a type error that will be spotted in this pla
e is �A(r)[�B(s).� Step 3 of
ase �, and its analogues for �, �, and b�. A simple exampleof a type error that will be spotted in this pla
e is ��(A)(�B(r)).Sin
e the above-mentioned steps in the algorithm are
learly only exe
utedif there are spe
ial attributes, we thus have:26

Proposition 1 Every expression without spe
ial attributes is typable.The reader might wonder about
ontrived examples su
h as(r � s) 1 (r [s);whi
h has no spe
ial attributes, but does not seem typable. However, thisexpression is well-typed under the type assignment by whi
h the types of rand s are empty.8 Polymorphi
 queriesUsually, a query is de�ned as a mapping from databases of some �xed typeto relations of some �xed type. We
an de�ne a polymorphi
 generalizationof the notion of query, to allow databases of di�erent types as input. Fix as
hema S.De�nition 4 1. Let T be a type assignment on S, and let � be a type. Aquery of type T ! � is a mapping from databases of type T to relationsof type � .2. An input-output type family is a partial fun
tion F from all type as-signments on S to all types. We denote the de�nition domain of F bydomF .3. A polymorphi
 query of type F is a family (QT)T 2domF of queries, whereea
h QT is a query of type T ! F (T).Viewed from this perspe
tive, a type formula
 with type
ontext � is,of
ourse, nothing but a spe
i�
ation of an input-output family F
: we havedomF
 = fI(�) j I an instantiation of �g, and F
(I(�)) equals the outputtype of
 under I. As a
onsequen
e, every relational algebra expressione expresses a polymorphi
 query of type F
, where
 is the prin
ipal typeformula for e.The following notion now naturally presents itself:De�nition 5 Two relational algebra expressions e1 and e2 are polymorphi-
ally equivalent if they express the same polymorphi
 query.27

For example, the equivalen
e�A=B(r � �A;B;C(s)) � r � �A=B�A;B;C(s)is polymorphi
, but the equivalen
e�A(r 1 �A;B(s)) � �A(r 1 s)is not, as it is only valid under a type assignment T su
h that T (r) \ T (s)is a subset of fA;Bg.We are now weaponed to return to the issue of non-redundan
y alreadytou
hed upon at the end of Se
tion 2.Proposition 2 1. There is no expression not using 1 that is polymor-phi
ally equivalent to r 1 s. We say that 1 is polymorphi
ally non-redundant. The same holds for the operator �.2. There is no expression not using � that is polymorphi
ally equivalent to�A(r). So, also � is polymorphi
ally non-redundant. The same holdsfor the operator b�.Proof. Any expression e polymorphi
ally equivalent to r 1 s must haveprin
ipal type r : a1a2s : a2a3 7! e : a1a2a3:Inspe
ting the prin
ipal type inferen
e algorithm, we see that a type formulawhere Outvars
ontains the union of de
l (r) and de
l (s), where the latter twosets are di�erent and have a non-empty interse
tion,
an only be produ
edin the
ase of 1. An analogous argument deals with �.As for �A(r), any polymorphi
ally equivalent expression emust have prin-
ipal type r : a 7! e : ?A : r A : true :Inspe
ting the prin
ipal type inferen
e algorithm, we see that a type formulawhere Outvars is made empty, depending on some spe
ial attribute,
an onlybe produ
ed in the
ase of �. An analogous argument deals with b�.We
an also show polymorphi
 inexpressibility results for the full lan-guage. For example: 28

Proposition 3 The semijoin rn s is not polymorphi
ally expressible in thestandard relational algebra.Proof. Suppose e is an expression polymorphi
ally equivalent to rn s. Theprin
ipal type of e must be r : a1a2s : a2a3 7! e : a1a2:Sin
e there are no spe
ial attributes, the operators �, �, b�, and �
annoto

ur in e, ex
ept for �? (proje
tion on the empty sequen
e of attributes).Now
onsider the type assignment T on fr; sg given by T (r) = fA;Bg andT (s) = fB;Cg, and the database D of type T de�ned by D(r) = f[A : x;B : y℄; [A : u;B : v℄g and D(s) = f[B : y;C : z℄g. Given T , the type of e isfA;Bg. Using the above knowledge of e, we
an see that in the value of e onD, either [A : x;B : y℄ and [A : u;B : v℄ both o

ur, or none of them o

urs.However, this is in
ontradi
tion with the fa
t that e is equivalent to r n s.Hen
e, e does not exist.9 Con
luding remarksWe have seen in the previous se
tion that
lassi
al \derived" operators of thestandard relational algebra
an be
ome primitive in the polymorphi
 setting.The same holds for many other su
h operators. Note that it is a
tually easy toextend our type inferen
e algorithm to in
lude semijoin and similar operators,so Proposition 3 should not be misinterpreted as a negative result. Rather,it indi
ates that the new issue arises as to how a basi
 polymorphi
 querylanguage should be designed. This is an interesting dire
tion for furtherwork.As already mentioned in the Introdu
tion, other obvious dire
tions forfurther work in
lude (i) applying type inferen
e in pra
ti
e to SQL ratherthan to the relational algebra; (ii) developing type inferen
e in the
ontext ofsemi-stru
tured data models rather than the relational data model; or (iii) todo the same for obje
t-oriented query languages su
h as OQL. When movingto the OO
ontext, one has to deal with the additional subtilities
reated byinheritan
e and subtyping. Current resear
h in programming languages isgiving these issues
onsiderable attention.We have also ignored types on the level of individual attribute values,although su
h types are almost always present in pra
ti
e, e.g., in SQL. For29

example, for �A=\John"(r) to be well-typed it suÆ
es for us that the type ofr has an A-attribute. However, in reality, A must in addition be of typestring. In
orporating types on the attribute value level only has an e�e
ton the spe
ial attributes of an expression; it has no e�e
t on its polymor-phi
 basis (re
all the notion of polymorphi
 basis from Se
tion 4). Hen
e, atype inferen
e algorithm
an still be based on solving systems of set equa-tions. When
onjugating two type
ontexts, however (re
all Se
tion 7.1.2),a uni�
ation on the value types asso
iated to the spe
ial attributes has tobe performed. A similar uni�
ation is indu
ed by the natural join operator.Moreover, in the
ase of the sele
tion operator, the sele
tion predi
ate (whi
hin our approa
h has remained abstra
t) will perform
ertain operations on
ertain spe
ial attributes, whi
h will indu
e
ertain
onstraints on the valuetypes asso
iated to these attributes. In general, if the programming languagein whi
h we write sele
tion predi
ates has a uni�
ation-based type system,then we
an simply a
tivate type inferen
e for this system at the appropriatepla
es.A
knowledgmentWe thank Serge Abiteboul, who suggested the idea of type inferen
e forrelational algebra to the se
ond author many years ago; Didier R�emy andLimsoon Wong, for helpful
onversations; and Julien Forest and VeroniqueFis
her, who implemented preliminary versions of the algorithm.Referen
es[1℄ A.V. Aho, R. Sethi, and J.D. Ullman. Compilers. Addison-Wesley, 1986.[2℄ P. Buneman, S. Davidson, M. Fernandez, and D. Su
iu. Adding stru
-ture to unstru
tured data. In F. Afrati and Ph. Kolaitis, editors,Database Theory|ICDT'97, volume 1186 of Le
ture Notes in ComputerS
ien
e, pages 336{350. Springer, 1997.[3℄ P. Buneman, S. Davidson, G. Hillebrand, and D. Su
iu. A query lan-guage and optimization te
hniques for unstru
tured data. In Pro
eedingsof the 1996 ACM SIGMOD International Conferen
e on Management ofData, issue 25:2 of SIGMOD Re
ord, pages 505{516. ACM Press, 1996.30

[4℄ H. Gar
ia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman,Y. Sagiv, J. Ullman, V. Vassalos, and J. Widom. The TSIMMIS ap-proa
h to mediation: data models and languages. Journal of IntelligentInformation Systems, 8(2):117{132, 1997.[5℄ P. Giannini, F. Honsell, and S. Ron
hi della Ro

a. Type inferen
e: someresults, some problems. Fundamenta Informati
ae, 19:87{125, 1993.[6℄ C.A. Gunter and J.C. Mit
hell, editors. Theoreti
al Aspe
ts of Obje
t-Oriented Programming. MIT Press, 1994.[7℄ J.R. Hindley. Basi
 Simple Type Theory. Cambridge University Press,1997.[8℄ J. Melton. Understanding SQL's Stored Pro
edures. Morgan Kaufmann,1998.[9℄ J.C. Mit
hell. Foundations for Programming Languages. MIT Press,1996.[10℄ A. Ohori and P. Buneman. Polymorphismand type inferen
e in databaseprogramming. ACM Transa
tions on Database Systems, 21(1):30{76,1996.[11℄ A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programmingin Ma
hiavelli|a polymorphi
 language with stati
 type inferen
e. InPro
eedings of the 1989 ACM SIGMOD International Conferen
e on theManagement of Data, issue 18:2 of SIGMOD Re
ord, pages 46{57. ACMPress, 1989.[12℄ D. R�emy. Type inferen
e for re
ords in a natural extension of ML. InGunter and Mit
hell [6℄, pages 67{96.[13℄ D. R�emy. Typing re
ord
on
atenation for free. In Gunter and Mit
hell[6℄, pages 351{372.[14℄ D. Stemple et al. Ex
eeding the limits of polymorphism in database pro-gramming languages. In F. Ban
ilhon, C. Thanos, and D. Tsi
hritzis,editors, Advan
es in Database Te
hnology|EDBT'90, volume 416 ofLe
ture Notes in Computer S
ien
e, pages 269{285. Springer-Verlag,1990. 31

[15℄ J. Tiuryn. Type inferen
e problems: a survey. In B. Rovan, editor,Mathemati
al Foundations of Computer S
ien
e, volume 452 of Le
tureNotes in Computer S
ien
e, pages 105{120, 1990.[16℄ J.D. Ullman. Elements of ML Programming. Prenti
e-Hall, 1998.[17℄ S. Vansummeren. An implementation of polymorphi
 type inferen
e forthe relational algebra, written in the programming language ML. Mas-ter's thesis, University of Maastri
ht, 2001.

32

