
ar
X

iv
:c

s.
L

O
/0

10
60

35
 v

1
 1

4
Ju

n
20

01

Polymorphi type inferenefor the relational algebraJan Van den BussheLimburgs Universitair CentrumBelgiumjan.vandenbusshe�lu.a.beEmmanuel WallerLRI, Universit�e Paris SudFraneemmanuel.waller�lri.frAbstratWe give a polymorphi aount of the relational algebra. We in-trodue a formalism of \type formulas" spei�ally tuned for rela-tional algebra expressions, and present an algorithm that omputesthe \prinipal" type for a given expression. The prinipal type ofan expression is a formula that spei�es, in a lear and onise man-ner, all assignments of types (sets of attributes) to relation names,under whih a given relational algebra expression is well-typed, aswell as the output type that expression will have under eah of theseassignments. Topis disussed inlude omplexity and polymorphiexpressive power.1 IntrodutionThe operators of the relational algebra (the basis of all relational query lan-guages) are polymorphi. We an take the natural join of any two relations,regardless of their sets of attributes. We an take the union of any two rela-tions over the same set of attributes. We an take the artesian produt of1

any two relations having no attributes in ommon. We an perform a sele-tion �A<B on any relation having at least the attributes A and B. Similartyping onditions an be formulated for the other operators of the relationalalgebra. When ombining operators into expressions, these typing onditionsan beome more involved. For example, for the expression�A<5(r 1 s) 1 ((r � u)� v)to be well-typed, the attribute A must be an attribute of r or s (or both).But if it is an attribute of r, then it must also be one of v. Moreover, by thesubexpression (r � u)� v, the relation shemas of r and s must be disjoint,and their union must be the type of v.A natural question thus arises: given a relational algebra expression e,under whih database shemas is e well-typed? And what is the result rela-tion shema of e under eah of these assignments? This is nothing but therelational algebra version of the lassial type inferene problem. Type infer-ene is an extensively studied topi in the theory of programming languages[1, 7, 9, 15, 5℄, and is used in industrial-strength funtional programminglanguages suh as SML/NJ [16℄.Doing type inferene for some language involves setting up two things.First, we need a system of type rules that allow to derive the output type of aprogram given types for its input parameters. Typially suh an output typean only be derived for some of all possible assignments of types to inputparameters; under these assignments the program is said to be well-typed.Seond, we need a formalism of type formulas. A type formula de�nes afamily of input type assignments, as well as an output type for eah typeassignment in the family. Every typable program should have a prinipaltype formula, whih de�nes all type assignments under whih the programis well-typed, as well as the output type of the program under eah of theseassignments. The task then is to ome up with a type inferene algorithmthat will ompute the prinipal type for any given program.In this paper, we do type inferene for the relational algebra. The re-lational algebra is very di�erent from the programming languages usuallyonsidered in type inferene; two fundamental features of suh languages,higher-order funtions and data onstrutors (funtion symbols) are om-pletely absent here. On the other hand, the set-based nature of relationtypes, and the partiulars of the standard relational algebra operators whenviewed polymorphially, present new hallenges. As a onsequene, our for-2

malism of type formulas is drastially di�erent from the formalisms used inthe theory of programming languages.Our main motivation for this work was foundational and theoretial; afterall, query languages are speialized programming languages, so importantideas from programming languages should be applied and adapted to thequery language ontext as muh as possible. However, we also believe thattype inferene for database query languages is tied to the familiar prinipleof \logial data independene." By this priniple, a query formulated on thelogial level must not only be insensitive to hanges on the physial level, butalso to hanges to the database shema, as long as these hanges are to partsof the shema on whih the query does not depend. To give a trivial example,the SQL query selet * from R where A<5 still works if we drop from Rsome olumn B di�erent from A, but not if we drop olumn A itself. Turningthis around, it is thus useful to infer, given a query, under exatly whihshemas it works, so that the programmer sees to whih shema hanges thequery is sensitive.Some reent trends in database systems seem to add weight to the abovemotivation. Stored proedures [8℄ are 4GL and SQL ode fragments storedin database ditionary tables. Whenever the shema hanges, some of thestored proedures may beome ill-typed, while others that were ill-typed maybeome well-typed. Knowing the prinipal type of eah stored proeduremay be helpful in this regard. Models of semi-strutured data [4, 3℄ loosen(or ompletely abandon) the assumption of a given �xed shema. Querylanguages for these models are essentially shema-independent. Nevertheless,as argued by Buneman et al. [2℄, querying is more e�etive if at least someform of shema is available, omputed from the partiular instane. Typeinferene an be helpful in telling for whih shemas a given query is suitable.Ohori, Buneman and Breazu-Tannen were probably the �rst to introduetype inferene in the ontext of database programming languages, in theirwork on the language Mahiavelli [11, 10℄. Mahiavelli features polymorphi�eld seletion from nested reords, as well as a polymorphi join operator.However, the inferene of prinipal types for full-edged relational algebraexpressions was not taken up in that work. We should also mention thework of Stemple et al. [14℄, who investigated reetive implementations ofthe polymorphi relational algebra operators.Other important related work is that on the extension of funtional pro-gramming languages with polymorphi reord types. Some of the most so-phistiated proposals in that diretion were made by R�emy [12, 13℄. This3

work adds reord types to the type system of ML, featuring polymorphi �eldseletion and reord onatenation. While this system aptures many realis-ti funtional programs involving reords, it annot express the onditions onthe types of relations implied by ertain relational algebra expressions, suhas the example we gave earlier. Notably onstraints suh as set disjointness(needed for the operator �) or set equality (for the operator [), annot beexpressed in other systems. The reason is probably the additional onernof these systems for subtyping: a program appliable to reords of a ertaintype should more generally be appliable to reords having all the �elds ofthat type and possibly more. This is learly not true for relational algebraexpressions.If one is only interested in deiding whether a given relational algebraexpression is typable (i.e., whether there exists at least one shema underwhih the expression is well-typed), we show that this problem is in theomplexity lass NP.In a �nal setion of this paper, we formally de�ne the notion of poly-morphi query. Using our type inferene algorithm, we prove that variousoperators usually onsidered \derived," beause they an be simulated usingthe standard relational algebra operators (e.g., semijoin), an not be simu-lated in a polymorphi way. Thus, our work also brings up new issues in thedesign of appropriate polymorphi query languages.2 Preliminaries2.1 Shemas, types, and expressionsAssume given suÆiently large supplies of relation variables and of attributenames. Relation variables will be denoted by lowerase letters from the endof the alphabet. Attribute names will be denoted by upperase letters fromthe beginning of the alphabet.A shema is a �nite set S of relation variables. A type is a �nite set � ofattribute names. Let S be a shema. A type assignment on S is a mappingT on S, assigning to eah r 2 S a type T (r). So, we have split the usualnotion of database shema, whih spei�es both the relation names and theassoiated sets of attributes, in two notions.The expressions of the relational algebra are de�ned by the following4

grammar: e ! rj (e [e) j (e� e) j (e 1 e) j (e� e)j ��(A1;::: ;An)(e) j �A1 ;::: ;An(e) j �A=B(e) j b�A(e)Here e denotes an expression, r denotes a relation variable, and A, B, andAi denote attribute names. The � denotes a seletion prediate.The shema onsisting of all relation variables ourring in expression eis denoted by Relvars(e).2.2 Well-typed expressionsLet S be a shema, e an expression with Relvars(e) � S, T a type assignmenton S, and � a type. The rules for when e has type � given T , denoted byT ` e : � , are the following:T (r) = �T ` r : � T ` e1 : � T ` e2 : �T ` (e1 [e2) : � T ` e1 : � T ` e2 : �T ` (e1 � e2) : �T ` e1 : �1 T ` e2 : �2T ` (e1 1 e2) : �1 [�2 T ` e1 : �1 T ` e2 : �2 �1 \ �2 = ?T ` (e1 � e2) : �1 [�2T ` e : � A1; : : : ; An 2 �T ` ��(A1;::: ;An)(e) : � T ` e : � A1; : : : ; An 2 �T ` �A1;::: ;An(e) : fA1; : : : ; AngT ` e : � A 2 � B 62 �T ` �A=B(e) : (� � fAg) [fBg T ` e : � A 2 �T ` b�A(e) : � � fAgWe have a �rst basi de�nition:De�nition 1 Let e be an expression and let T be a type assignment onRelvars(e). If there exists a type � suh that T ` e : � , we say that e iswell-typed under T .Note that in this ase � is unique and an easily be derived from T byapplying the rules in an order determined by the syntax of the expression e.5

2.3 SemantisWe assume given a universe U of data elements.Let � be a type. A tuple of type � is a mapping t on � , assigning to eahA 2 � a data element t(A) 2 U. A relation of type � is a �nite set of tuplesof type � .Let S be a shema, and let T be a type assignment on S. A database oftype T is a mapping D on S, assigning to eah r 2 S a relation D(r) of typeT (r).The semantis of well-typed relational algebra expressions is the well-known one. If T ` e : � , and D is a database of type T , then the result ofevaluating e on D is a relation of type � de�ned in the well-known manner.The only operator worth mentioning is perhaps the not so usual b�A, whihprojets out the attribute A, leaving all others intat.At this point a remark is in order onerning the non-redundany of theset of relational operators we onsider. We have inluded both the naturaljoin 1 and the artesian produt �, and also both the standard projetion�A1;::: ;An and the \omplementary" projetion b�A. It is well known that ifthe type assignment is �xed and known, 1 an be simulated using � (plusseletion and renaming), and onversely, � an be simulated using 1 (plusrenaming). Also, � an be simulated by a series of b�'s, and b� an be simulatedby �. To illustrate the latter, if we �x the type of r to fA;B;Cg, then �A(r)is equivalent to b�Bb�C(r), and b�A(r) is equivalent to �B;C(r). However, thesesimulations are not \polymorphi," in the sense that they depend on thepartiular type assignment.As a matter of fat, we will see in Proposition 2 that polymorphi simu-lations of 1 using �, or vie versa, and of � using b�, or vie versa, do notexist. Hene, from a polymorphi point of view, our hosen set of relationalalgebra operators is non-redundant.3 Typable expressionsThe entral notion of this paper is de�ned as follows:De�nition 2 Expression e is alled typable if there exists a type assignmentT on Relvars(e) suh that e is well-typed under T .A very simple example of an expression that is not typable is �A=B(�B;C(r)).6

Is typability a deidable property? This question is easily answered by thefollowing lemma. We use the following notation. If T is a type assignmentand A is a set of attribute names, then we denote by T jA the type assignmentde�ned by T jA(r) := T (r) \ A. If e is an expression then we denote the setof all attribute names that expliitly our in e by Speattrs(e).Lemma 1 If T ` e : � and A � Speattrs(e), then T jA ` e : � \ A.The proof is straightforward. As a onsequene, in order to deide whetherthere exists a type assignment under whih e is well-typed, it suÆes to on-sider type assignments T with the property that T (r) � Speattrs(e) forevery r. It follows immediately that typability is in NP. Whether or not itis in P, or is NP-omplete, remains open.Of ourse, we are not satis�ed simply by knowing whether or not a givenexpression is typable. What we really want is a lear, onise piture ofexatly under whih type assignments it is well-typed, as well as of whattype the expression will have under eah of these type assignments. (Notethat there will in general be in�nitely many suh type assignments.)In the following, we will de�ne the formalism of type formulas, whih isspei�ally tuned towards this task.4 Examples of type formulasConsider the expressione = �B=C((�A=B(r) [s) 1 u):This expression is well-typed under exatly those type assignments T satis-fying the following two onditions:1. T (s) = (T (r)� fAg) [fBg;2. C must belong to at least one of T (u), T (r), or T (s).Given suh a T , the type of e then will equal T (s) [T (u).7

All the above information is expressed by the following type formula fore: r : a1a2s : a1a2u : a2a3 7! e : a1a2a3A : r ^ :s A : uB : s ^ :r B : trueC : (r $ s) ^ (r _ s _ u) C : trueThis type formula will the output of our type inferene algorithm. It an beintuitively read as follows. Expression e is well-typed under preisely all typeassignments that an be produed by the following proedure:1. Instantiate a1, a2 and a3 by any three types, on ondition that they arepairwise disjoint, and do not ontain A, nor B, nor C.2. Preliminarily assign type a1 [a2 to r; a1 [a2 to s; and a2 [a3 to u.3. In this preliminary type assignment, A must be added to the type of r,but must not be added to that of s; whether it is added to the type of uis a free hoie.4. Similarly, B must be added to the type of s, not to that of r, and freelyto that of u.5. Finally, C must be added at least to one of the types of r, s, and u, butif we add it to r we must also add it to s and vie versa.The type of e under a type assignment thus produed equals a1 [a2 [a3, towhih we must add B and C, and to whih we also add A on ondition thatit belongs to the type of u.The symbols a1, a2 and a3 are alled type variables. The attributes A,B and C, whih are expliitly mentioned by the expression, are alled thespeial attributes of the expression. The delaration of eah relation variableas a string of type variables (where onatenation denotes union) providesthe polymorphi basis of the type assignments under whih the expression iswell-typed. An attribute onstraint for eah speial attribute then spei�es(by a Boolean formula) the allowed extensions of the polymorphi basis typeswith that attribute. The delarations and onstraints together form the typeontext ; this is the left-hand side of the type formula. On the right-hand sidewe �nd the polymorphi basis of the output type, and again for eah speial8

attribute, an output ondition whih spei�es (by a Boolean formula) underwhih ondition that attribute has to be added to the output type.Let us see two more examples. The type formula for the expressione = �A(r)� �A((�A(r) � s)� r);whih the reader will reognize as the textbook expression for the divisionoperator, is: r : as : a 7! e : ?A : r ^ :s A : trueSo r and s must have the same type exept that r has an additional A (whihs has not). The output type is always fAg.The type formula for the expression disussed in the Introdution,e = �A<5(r 1 s) 1 ((r � u)� v);is: v : a1a2a3a4r : a1a3u : a2a4s : a3a4a5 7! e : a1a2a3a4a5A : (r _ s) ^ (v $ (r _ u)) ^ :(r ^ u) A : trueThe delarations speify exatly, in a manner similar to Venn diagrams, theonditions required on the types of the relation variables for the expressionto be well-typed.5 Type formulas and type inferene | For-mal de�nitionsBefore we an desribe our type inferene algorithm, we need preise def-initions of the underlying formalism. In what follows, we assume given asuÆiently large supply of type variables.5.1 Type ontextsA type ontext is a struture onsisting of the following omponents:9

1. A �nite set Relvars of relation variables.2. A �nite set Typevars of type variables.3. A mapping del from Relvars to 2Typevars , alled the delaration map-ping.4. A �nite set Speattrs of attribute names (alled the speial attributes).5. A mapping onstraint on Speattrs, assigning to eah speial attributea Boolean formula over Relvars.We will usually denote a type ontext by the letter � and, when neessaryto avoid ambiguities, will write Relvars(�), Typevars(�), et.5.2 Semantis of type ontextsFix a type ontext �. The \models" of � will be type assignments onRelvars(�). We go from type ontexts to type assignments via the notion ofinstantiation. An instantiation of � is a mapping I on Typevars [Speattrs,suh that1. I assigns to eah type variable a type, suh that� for di�erent type variables a1 and a2, I(a1) and I(a2) are disjoint;and� for eah type variable a and speial attribute A; A 62 I(a).2. I assigns to eah speial attribute a subset of Relvars, suh that foreah speial attribute A, I(A) j= onstraint(A). (Sine onstraint(A)is a Boolean formula over Relvars, and I(A) is a subset of Relvars,the meaning of I(A) j= onstraint(A) is the standard meaning frompropositional logi.)If some of the Boolean formulas in � are unsatis�able, we all also � unsat-is�able. In this ase, � has no instantiations.From a type ontext � and an instantiation I of �, we an uniquelydetermine a type assignment T on Relvars, de�ned on eah relation variabler as follows:T (r) :=[fI(a) j a 2 del (r)g [fA 2 Speattrs j r 2 I(A)g:We all this type assignment T the image of � under I, and onvenientlydenote it by I(�). 10

5.3 Type formulasA type formula now is a quadruple (�; e;Outvars; outatt), where1. � is a type ontext;2. e is a relational algebra expression with Relvars(e) = Relvars(�), andsuh that Speattrs(�) ontains all the attribute names that are expli-itly mentioned in e.3. Outvars is a subset of Typevars(�); and4. outatt is a mapping on Speattrs(�), assigning to eah speial attributea Boolean formula over Relvars(�).The way we write down onrete instanes of type formulas has alreadybeen illustrated in Setion 4.5.4 Semantis of type formulasFrom a type formula (�; e;Outvars; outatt) and an instantiation I of �, wean uniquely determine the following type:fI(a) j a 2 Outvarsg [fA 2 Speattrs j I(A) j= outatt(A)g:We all this type the output type of the type formula under I.We are now ready to de�ne the following fundamental property of typeformulas:De�nition 3 A type formula (�; e;Outvars ; outatt) is alled prinipal for eif for every type assignment T on Relvars(e) and every type � , T ` e : � ifand only if there is an instantiation I of � suh that T is the image of �under I, and suh that � is the output type of the type formula under I.The main result of this paper an now suintly stated as follows:Theorem 1 (Type inferene) For every relational algebra expression e,there exists a prinipal type formula for e, whih an be e�etively omputedfrom e.Note that if e is untypable, any unsatis�able type formula (type formula withan unsatis�able type ontext) is prinipal for e.We will substantiate our main theorem in the following setions.11

6 Solving systems of set equationsType inferene algorithms for programming languages typially work bystrutural indution on program expressions, enforing the typing rules \inreverse," and using some form of uni�ation to ombine type formulas ofsubexpressions. In our ase, relation types are sets, so we need a replaementfor lassial uni�ation on terms. This role will be played by the followingalgorithm for solving systems of set equations.Fix some universe U . In priniple U an be any set, but in our intendedappliation U is the universe of attribute names. Assume further given asuÆiently large supply of variables. In our intended appliation, this rolewill be played by type variables.An equation is an expression of the form lhs = rhs, where both lhs andrhs are sets of variables.1 A system of equations onsists of two disjoint sets Land R of variables, and a set of equations, suh that every variable ourringat the left-hand side (right-hand side) of some equation is in L (in R).A substitution on a set S of variables is a mapping from S to the subsetsof U . A substitution is alled proper if di�erent variables are assigned disjointsets. A valuation of a system � onsists of a proper substitution on L and aproper subsitution on R. A valuation (fL; fR) is a solution of � if for everyequation a1 : : : am = b1 : : : bnin �, we have fL(a1) [� � � [fL(am) = fR(b1) [� � � [fR(bn):A symboli valuation of � onsists of a new set V of variables and amapping g from L[R to the subsets of V . Take some proper substitution hon V . Now de�ne the following substitution hL on L: for any a 2 L,hL(a) :=[fh() j 2 g(a)g:In a ompletely analogous way we also de�ne the substitution hR on R.We all a symboli valuation a symboli solution of � if for every propersubstitution h on V , the pair (hL; hR) is a solution of �, and onversely,every solution of � an be written in this way. So, a symboli solution is a�nite representation of the set of all solutions.1A note on notation: we will write a set fa1; : : : ; ang as a1 : : :an.12

As a trivial example, onsider the trivial system of equations where L =fag, R = fbg, and without any equations. Any valuation is also a solution.A symboli solution is given by V = f1; 2; 3g andg(a) = 12 and g(b) = 23:Indeed, note that we always work with proper substitutions, so 1, 2 and 3stand for pairwise disjoint sets. In partiular, 1 stands for a � b, 2 standsfor a \ b, and 3 stands for b� a.Theorem 2 Every system of equations � has a symboli solution, whih anbe omputed from � in polynomial time.Proof. LetV := f�a j a 2 Lg [f�b j b 2 Rg [f(�a;�b) j (a; b) 2 (L�R)g;and de�ne the following symboli valuation g with V as its set of variables:for eah a 2 L, g(a) := f(�a;�b) j b 2 Rg [f�agand for eah b 2 R, g(b) := f(�a;�b) j a 2 Lg [f�bg:Then de�ne the subset V0 � V as follows. An element 2 V is in V0 if thereis an equation a1 : : : am = b1 : : : bnin � suh that belongs to one of the following two sets but not to the other:m[i=1 g(ai) and n[j=1 g(bj):Now onsider the symboli valuation g0 with V 0 := V � V0 as its set ofvariables, de�ned by g0(x) := g(x)� V0. This g0 an easily be onstruted inpolynomial time. We next show that g0 is indeed a symboli solution of �.Let h be a proper substitution on V 0, and let a1 : : : am = b1 : : : bn be anequation. By de�nition of g0, for every i 2 f1; : : : ;mg and every 2 g0(ai),there is a j 2 f1; : : : ; ng suh that 2 g0(bj), and vie versa, for every13

j 2 f1; : : : ; ng and every 2 g0(bj), there is an i 2 f1; : : : ; ng suh that 2 g0(ai). Hene,m[i=1[fh() j 2 g0(ai)g| {z }hL(ai) = m[j=1[fh() j 2 g0(bj)g| {z }hR(bj)and thus (hL; hR) is a solution of �.Conversely, let (fL; fR) be a solution of �. Then de�ne the followingproper valuation h on V : for a 2 L,h(�a) := fL(a)�[fR(R);for b 2 R, h(�b) := fR(b)�[fL(L);and for (a; b) 2 (L�R), h(�a;�b) := fL(a) \ fR(b):Clearly, for eah a 2 L,fL(a) =[fh(�a;�b) j b 2 Rg [h(�a);and for eah b 2 R, fR(b) =[fh(�a;�b) j a 2 Lg [h(�b):Put di�erently, fL(a) =[fh() j 2 g(a)gfor eah a, and fR(b) =[fh() j 2 g(b)gfor eah b. Sine we want to show that g0 is a symboli solution, we would liketo show the last two equalities with g0 instead of g. Sine g0(x) = g(x)� V0,it suÆes to show that h() is empty for eah 2 V0,To see that these sets are indeed empty, we onsider the three possibilitiesfor an element of V to be in V0. If �a 2 V0 with a 2 L, this means that thereis some equation a1 : : : am = b1 : : : bn14

where a is one of the a1, : : : , am. Sine (fL; fR) is a solution,fL(a) � m[j=1 fR(b);so in partiular, sine h(�a) � fL(a),h(�a) � m[j=1 fR(b):However, by de�nition of h, h(�a) is disjoint from eah fR(b). Hene, h(�a)must be empty.Analogously we see that if �b 2 V0 with b 2 R, then h(�b) is empty.So �nally, assume (�a;�b) 2 V0 with (a; b) 2 (L�R). This means that thereis either an equation of the form: : : a : : : = : : :with b not ourring in the right-hand side, or of the form: : : = : : : b : : :with a not ourring in the left-hand side. Let us fous on the �rst possibility(the seond is analogous) and write the equation in more detail as: : : a : : : = b1 : : : bm:Sine (fL; fR) is a solution, fL(a), and in partiular fL(a)\fR(b), is ontainedin Smj=1 fR(bj). However, sine b is not among b1, : : : , bm, and eah fR(bj)is disjoint from fR(b), this an only be if fL(a)\ fR(b), whih is the same ash(�a;�b), is empty.Let us see a worked-out example of this solution method. Consider �with L = fa1; a2; a3g, R = fb1; b2; b3g, and the equationsa1 = b1 and a2 = b1b2:From the �rst equation we dedue that�a1; (�a1;�b2); (�a1;�b3)15

as well as �b1; (�a2;�b1); (�a3;�b1)are in V0. From the seond equation we dedue that�a2; (�a2;�b3)as well as (�a1;�b1); �b2; (�a3;�b2)are also in V0. So V � V0 = f�a3;�b3; (�a2;�b2); (�a3;�b3)g;and the symboli solution g0 is given byg0(a1) = ? g0(b1) = ?g0(a2) = (�a2;�b2) g0(b2) = (�a2;�b2)g0(a3) = �a3; (�a3;�b3) g0(b3) = �b3; (�a3;�b3):If we rename the variables for added larity, we obtain the symboli solutiona1 = ? b1 = ?a2 = 1 b2 = 1a3 = 23 b3 = 34whih an be interpreted as speifying that the only solutions to � are thosewhere we assign the same set to a2 and b2, whih is disjoint from the setsassigned to a3 and b3 (the latter two sets need not be disjoint), and where a1and b1 are empty.7 Prinipal type inferene algorithmWe are now ready to desribe our algorithm. A omputer implementation isavailable from the authors [17℄.7.1 Two subroutines7.1.1 Extending a type formula with extra speial attributesThe following onstrution will be used as a subroutine in our algorithm. Let(�; e;Outvars; outatt) be a type formula, and let A be an attribute name notin Speattrs. By extending this type formula with A, we mean the following:16

1. add A to Speattrs;2. de�ne onstraint(A) as(_r r)! _a2Typevars(^a2del(r) r ^ ^a 62del(r):r);3. de�ne outatt(A) as _fr j del(r) � Outvarsg:7.1.2 Conjugating two type ontexts.This is another subroutine that will be used. Two type ontexts �1 and �2are alled ompatible if (i) Typevars1 = Typevars2; (ii) del 1 and del 2 agreeon Relvars1\Relvars2; and (iii) Speattrs1 = Speattrs2. By the onjuntionof two ompatible type ontexts �1 and �2, we mean the type ontext de�nedas follows:1. Relvars := Relvars1 [Relvars2.2. Typevars := Typevars1 (= Typevars2).3. del := del 1 [del 2.4. Speattrs := Speattrs1 (= Speattrs2).5. for eah A 2 Speattrs,onstraint(A) := onstraint1(A) ^ onstraint2(A):7.2 The algorithm7.2.1 Base aseOur algorithm proeeds by indution on the struture of the expression. Thebase ase, where e is a relation variable r, is trivial:r : a 7! r : a:17

7.2.2 UnionLet e = (e1 [e2). By indution, for i = 1; 2, we have prinipal type formulas(�i; ei;Outvars i; outatt i). We may assume that Typevars1 and Typevars2 aredisjoint. We perform the following steps:1. For eah A in Speattrs1 not in Speattrs2, extend the type formula fore2 by A. Conversely, for eah A in Speattrs2 not in Speattrs1, extendthe type formula for e1 by A. We now have Speattrs1 = Speattrs2,whih we denote by Speattrs.2. Now onsider the system of set equations � with L = Typevars1, R =Typevars2, and the set of equationsfdel 1(r) = del 2(r) j r 2 Relvars1 \ Relvars2g[fOutvars1 = Outvars2g:Find a symboli solution to this system, and apply it to the two typeformulas. Denote the result of applying the solution to Outvars1 byOutvars; by the equation Outvars1 = Outvars2, this is the same as theresult of applying the solution to Outvars2.3. The two type ontexts �1 and �2 have now beome ompatible; inpartiular, they have the same set of type variables, whih we denoteby Typevars. Take their onjuntion �. The resulting set of relationvariables is denoted by Relvars. The resulting onstraint mapping isdenoted by onstraint 0.4. For eah A in Speattrs, de�ne onstraint(A) asonstraint 0(A) ^ (outatt 1(A)$ outatt 2(A));and de�ne outatt(A) as outatt 1(A).The result is a prinipal type formula (�; e;Outvars ; outatt) for e.7.2.3 Di�ereneThe ase e = (e1 � e2) is treated in exatly the same way as the ase e =(e1 [e2). 18

7.2.4 Natural joinThe ase e = (e1 1 e2) is treated as the ase e = (e1 [e2), exept for thefollowing important di�erenes in two of the steps:2. We omit the equation Outvars1 = Outvars2 from the system of equa-tions. We now de�ne Outvars as the union of the results of applyingthe symboli solution to Outvars1 and Outvars2.4. For eahA in Speattrs, onstraint(A) is now the same as onstraint 0(A),and outatt(A) is now de�ned asoutatt 1(A) _ outatt2(A):7.2.5 Cartesian produtThe ase e = (e1 � e2) is treated as the ase e = (e1 1 e2), exept for thefollowing two di�erenes, again in steps 2 and 4:2. In the omputation of the symboli solution, we put every pair (�a;�b)with a 2 Outvars1 and b 2 Outvars2 by default in V0 (f. the solutionmethod desribed in the proof of Theorem 2). This will guarantee thatthe results of applying the solution to Outvars1 and Outvars2 will bedisjoint.4. For eah A in Speattrs, de�ne onstraint(A) asonstraint 0(A) ^ :(outatt1(A) ^ outatt2(A)):7.2.6 SeletionLet e = ��(A1;::: ;An)(e0).1. Initialize the desired type formula(�; e;Outvars; outatt)to the prinipal type formula (�0; e0;Outvars 0; outatt 0) for e0 (whih wealready have by indution).2. For i = 1; : : : ; n, if Ai is not yet in Speattrs, extend the type formulawith Ai. 19

3. for i = 1; : : : ; n, replae onstraint(Ai) byonstraint(Ai) ^ outatt(Ai):4. For i = 1; : : : ; n, put outatt(Ai) := true.7.2.7 ProjetionFor the ase e = �A1;::: ;An(e0) we do the same as for the ase e = ��(A1;::: ;An)(e0).In addition, we set� outatt(A) := false for eah A inSpeattrs � fA1; : : : ; Ang;and� Outvars := ?.7.2.8 RenamingThe ase e = �A=B(e0) is treated similarly to the ase e = ��(A;B)(e0), exeptthat we treat B di�erently from A in step 3, as follows:3. Replae onstraint(B) byonstraint(B) ^ :outatt (B):Furthermore, step 4 is hanged as follows:4. Put outatt (A) := false, and outatt(B) := true.7.2.9 Projeting outFinally, the ase e = b�A(e0) is treated similarly to e = ��(A)(e0), with theexeption that we set outatt(A) := false instead of true.20

7.3 ExampleWe illustrate the working of our algorithm on the expressione = �B=C ((�A=B(r)| {z }e1 [s)| {z }e2 1 u)| {z }e3 :We will enounter only rather trivial systems of equations in doing this ex-ample; the reader is invited to try the example expression disussed in theIntrodution for more interesting systems of equations.To �nd the type formula for e1, we start from the trival type formular : a 7! r : a for r. Extending this type formula with A and B yieldsr : a 7! r : aA : r ! r A : rB : r ! r B : r:Then we hange the onstraint r ! r (or simply true) for A by true^ r, orsimply r, and we hange the onstraint for B by true ^ :r, or :r. Finally,we set outatt(A) to false and outatt(B) to true, yielding:r : a 7! e1 : aA : r A : falseB : :r B : true:To �nd the type formula for e2, we start from that for e1 and the trivialformula for s, whih we extend with A and B ass : b 7! s : bA : true A : sB : true B : s:We now onsider the rather trivial system of set equations with L = fag,R = fbg, and the single equation a = b. The symboli solution is obviouslya = ; b = . Applying this solution to the two type formulas simply hangesboth a and b into . Conjugating the two type ontexts yields the onstraintr ^ true for A, whih an be simpli�ed to r, and the onstraint :r ^ truefor B, whih an be simpli�ed to :r. Then we add the onjunt false$ s21

to the onstraint for A, yielding r ^ :s, and we add the onjunt true$ sfor B, yielding :r ^ s. Finally, outatt(A) is set to false, and outatt(B) totrue, yielding: r : s : 7! e2 : A : r ^ :s A : falseB : s ^ :r B : true:To �nd the type formula for e3, we start from the one for e2 and thetrivial formula for u, whih we extend with A and B asu : d 7! u : dA : true A : uB : true B : u:We now get the even more trivial system of set equations with L = fg,R = fdg, and no equations, whih has as symboli solution = 12; d = 23.We set Outvars to 123. Conjugating the two type ontexts (after having�lled in the solution) yields nothing surprising. Finally we set outatt(A) tofalse _ u, whih simpli�es to u, and set outatt (B) to true _ u, or simplytrue, yielding: r : 12s : 12u : 23 7! e3 : 123A : r ^ :s A : uB : s ^ :r B : true:Finally, to �nd the type formula for e itself, we �rst extend the one fore3 with C: r : 12s : 12u : 23 7! e3 : 123A : r ^ :s A : uB : s ^ :r B : trueC : ' C : r _ s _ u:Here, ' is the formula(r _ s _ u)! ((r ^ s ^ :u) _ (r ^ s ^ u) _ (:r ^ :s ^ u));or simply r $ s. Then we add the onjunt true to the onstraint forB (whih has no e�et), and the onjunt (r _ s _ u) to the onstraint for22

C. Finally, we set outatt(B) = outatt (C) = true, yielding indeed the typeformula we gave for e in Setion 4 (modulo renaming of type variables).7.4 Corretness proofExtension of a type formula with extra speial attributes (Setion 7.1.1) is aheavily used subroutine in our type inferene algorithm, and one might evengo as far as saying that it is the only part of the algorithm whose orretnessis not self-evident. Hene, the following lemma is of ruial importane:Lemma 2 The extension of any type formula, generated by our algorithm,with an extra speial attribute, always produes an equivalent type formula.Here, equivalene naturally means the following. Consider two type formulas�1 and �2 whose type ontexts �1 and �2 have the same Relvars, and let I1(I2) be an instantiation of �1 (�2). We say that I1 and I2 are equivalent withrespet to �1 and �2 if I1(�1) = I2(�2), and the output type of �1 under I1equals the output type of �2 under I2. We say that �1 and �2 are equivalentif for every instantiation of �1 there is an equivalent instantiation of �2, andvie versa.Now to the proof of Lemma 2. Let � = (�; e; outatt ;Outvars) be a typeformula, and let �0 = (�0; e; outatt 0;Outvars) be its extension with the extraspeial attribute A. We have to show that � and �0 are equivalent.From � to �0. Let I be an instantiation of �. We have to �nd an equivalentinstantiation I 0 of �0.If A 62 I(a) for every a 2 Typevars, we an simply put I 0(a) := I(a) foreah type variable a, I 0(B) := I(B) for eah speial attribute B 6= A, andI 0(A) := ?. In this ase, it is lear that I 0 is a legal instantiation of �0, thatI(�) = I 0(�0), and that the output type of � under I equals the output typeof �0 under I 0.If A 2 I(a) for some a 2 Typevars, we put I 0(a) := I(a) � fAg forthis a, and put I 0(b) := I(b) for every type variable b 6= a. We also putI 0(B) := I(B) for eah speial attribute B 6= A. We �nally put I 0(A) :=fr j a 2 del (r)g. It is lear that I 0 is a legal instantiation of �0, and thatI(�) = I 0(�0). To show that the output type of � under I equals the outputtype of �0 under I 0, we must show that if a 2 Outvars , then there exists anr 2 I 0(A) suh that del (r) � Outvars. We will do this in Lemma 3.23

From �0 to �. Let I 0 be an instantiation of �0. We have to �nd anequivalent instantiation I of �.If I 0(A) = ?, then we put I(a) := I 0(a) for eah type variable a, andI(B) := I 0(B) for eah speial attribute B 6= A. In this ase it is lear thatI 0(�) = I(�), and that the output type of �0 under I 0 equals the outputtype of � under I.If I 0(A) 6= ?, we know (beause I 0(A) j= onstraint 0(A)) that thereexists an a 2 Typevars suh that I 0(A) = fr j a 2 del(r)g. Then we putI(a) := I 0(a) [fAg, and I(b) := I 0(b) for eah type variable b 6= a. Wealso put I(B) := I 0(B) for eah speial attribute B 6= A. It is now againlear that I 0(�0) = I(�), and that the output type of �0 under I 0 equals theoutput type of � under I.We still owe:Lemma 3 In any type formula generated by our algorithm, the followingholds. Let a be a type variable in Outvars. Then there exists a relationvariable r suh that a 2 del (r) and del (r) � Outvars.Proof. By indution. The base ase, r : a 7! r : a, is trivial.For the ase e = (e1 [e2) we reason as follows. Let g be the sym-boli solution to the system of equations. Then Outvars = S g(Outvars1) =S g(Outvars2). Let 2 Outvars . Then 2 g(a) for some a 2 Outvars1.By indution, we know that for some relation variable r, a 2 del 1(r) anddel 1(r) � Outvars1. This implies that 2 S g(del 1(r)) = del (r), and thatdel (r) � Outvars .For the ase e = (e1 1 e2) we have Outvars equal to S g(Outvars1) [S g(Outvars2), g again being the symboli solution. Let 2 Outvars. So, 2 S g(Outvars1) or 2 S g(Outvars2). By symmetry we may assume that 2 S g(Outvars1). Then 2 g(a) for some a 2 Outvars1. By indution, weknow that for some r, a 2 del 1(r) and del1(r) � Outvars1. This impliesagain that 2 del(r) and del (r) � Outvars .For the ase e = (e1 � e2), we an use exatly the same reasoning asfor (e1 1 e2), beause no partiular properties of the symboli solution havebeen used.The ases e = �, � and b� are trivial beause they don't hange Outvarsand del . The ase e = � is trivial beause it sets Outvars to ?.By indution on the struture of relational algebra expressions we annow prove that eah ase of our algorithm orretly produes a type formula24

that is prinipal. The ases orresponding to unary operators are all provenorret in an analogous way; we treat the seletion as an example below.The ases orresponding to binary operators heavily rely in addition on theorretness of our algorithm for solving systems of set equations, whih wealready proved orret in Setion 6.So, let e = ��(A1;::: ;An)(e0). Let the type formulas omputed by our algo-ritm for e and e0 be � and �0, respetively. By indution, we may assumethat �0 is prinipal for e0; we must show that � is prinipal for e.By Lemma 2, we may ignore step 2 of the algorithm and assume withoutloss of generality that for i = 1; : : : ; n, Ai is already in Speattrs0. Moregenerally, we may assume that � di�ers from �0 only in that for i = 1; : : : ; n,onstraint(Ai) = onstraint 0(Ai) ^ outatt 0(Ai)and outatt(Ai) = true:Now suppose T ` e : � . We must �nd an instantiation I of � suh that Tequals I(�) and � equals the output type of � under I. Sine T ` e : � , weknow that T ` e0 : � and that for i = 1; : : : ; n, Ai 2 � . Sine �0 is prinipalfor e0, we know furthermore that there exists an instantiation I 0 of �0 suhthat T equals I 0(�0) and � equals the output type of �0 under I 0. We set thedesired I simply equal to I 0, and verify:� I is a valid instantiation of �: Thereto, we must hek for i = 1; : : : ; nthat I(Ai) j= onstraint(Ai), or I 0(Ai) j= onstraint 0(Ai)^ outatt 0(Ai),whih is equivalent. That I 0(Ai) j= onstraint 0(Ai) is trivial, by de�ni-tion. That I 0(Ai) j= outatt(Ai) is also lear, sine Ai 2 � and � equalsthe output type of �0 under I 0.� T = I(�): This is lear, sine T = I 0(�0) and I(�) = I 0(�0).� � equals the output type of � under I: Sine outatt di�ers from outatt 0only in that the output onstraints for the Ai are loosened, the outputtype of �0 under I 0, whih equals � , an only be a subset of the outputtype of � under I. However, as every Ai is already in � , this subsetrelationship annot be a strit one, and hene the two types are indeedequal.Conversely, suppose I is an instantiation of �, and let � be the outputtype of � under I. We must now show that I(�) ` e : � . To show this,25

we note that I is a valid instantiation of �0 (as the attribute onstraints of� are tighter than those of �0). Hene, sine �0 is prinipal for e0, we knowthat I(�) = I(�0) ` e0 : � 0, where � 0 is the output type of �0 under I. Butthis output type is the same as the output type of � under I; indeed, outattdi�ers only from outatt 0 on the Ai, but all Ai are members of both typesanyway (for �0 this is beause I(Ai) satis�es outatt 0(Ai) by de�nition, andfor � this is trivial beause outatt(Ai) = true). Hene, we have I(�) ` e0 : � .Sine all the Ai are in � , we an onlude that I(�) ` e : � .7.5 Complexity and typabilitySine every step of the indution an be implemented in time polynomialin the size of the output of its hild steps, a rough upper bound on thetime omplexity of our algorithm is 22O(n). It remains open whether thisomplexity an be improved. Note that type formulas an be exponentiallylarge; for example, the type formula for r1 1 (r2 1 (� � � 1 rm) � � �) uses O(2m)di�erent type variables.If the input expression was untypable, the algorithm will output an un-satis�able type formula. Hene, an alternative way to hek typability isto hek satis�ability of the prinipal type formula. We do not have to waituntil the end, however, to test satis�ability. In priniple, as soon as an unsat-is�able attribute onstraint arises during type inferene, the algorithm anstop and report that the expression is untypable. This is more useful, sineit tells exatly where the expression breaks down. In a pratial implemen-tation, one ould do this by keeping the attribute onstraints in disjuntivenormal form. Doing this might atually have a better omplexity than ex-peted, sine the attribute onstraints generated by the algorithm have aquite speial form, whih might be exploited.Note that unsatis�able attribute onstraints an only be generated in thefollowing plaes:� Step 4 of ases [and �, and its adaptation for ase �. A simpleexample of a type error that will be spotted in this plae is �A(r)[�B(s).� Step 3 of ase �, and its analogues for �, �, and b�. A simple exampleof a type error that will be spotted in this plae is ��(A)(�B(r)).Sine the above-mentioned steps in the algorithm are learly only exeutedif there are speial attributes, we thus have:26

Proposition 1 Every expression without speial attributes is typable.The reader might wonder about ontrived examples suh as(r � s) 1 (r [s);whih has no speial attributes, but does not seem typable. However, thisexpression is well-typed under the type assignment by whih the types of rand s are empty.8 Polymorphi queriesUsually, a query is de�ned as a mapping from databases of some �xed typeto relations of some �xed type. We an de�ne a polymorphi generalizationof the notion of query, to allow databases of di�erent types as input. Fix ashema S.De�nition 4 1. Let T be a type assignment on S, and let � be a type. Aquery of type T ! � is a mapping from databases of type T to relationsof type � .2. An input-output type family is a partial funtion F from all type as-signments on S to all types. We denote the de�nition domain of F bydomF .3. A polymorphi query of type F is a family (QT)T 2domF of queries, whereeah QT is a query of type T ! F (T).Viewed from this perspetive, a type formula with type ontext � is,of ourse, nothing but a spei�ation of an input-output family F: we havedomF = fI(�) j I an instantiation of �g, and F(I(�)) equals the outputtype of under I. As a onsequene, every relational algebra expressione expresses a polymorphi query of type F, where is the prinipal typeformula for e.The following notion now naturally presents itself:De�nition 5 Two relational algebra expressions e1 and e2 are polymorphi-ally equivalent if they express the same polymorphi query.27

For example, the equivalene�A=B(r � �A;B;C(s)) � r � �A=B�A;B;C(s)is polymorphi, but the equivalene�A(r 1 �A;B(s)) � �A(r 1 s)is not, as it is only valid under a type assignment T suh that T (r) \ T (s)is a subset of fA;Bg.We are now weaponed to return to the issue of non-redundany alreadytouhed upon at the end of Setion 2.Proposition 2 1. There is no expression not using 1 that is polymor-phially equivalent to r 1 s. We say that 1 is polymorphially non-redundant. The same holds for the operator �.2. There is no expression not using � that is polymorphially equivalent to�A(r). So, also � is polymorphially non-redundant. The same holdsfor the operator b�.Proof. Any expression e polymorphially equivalent to r 1 s must haveprinipal type r : a1a2s : a2a3 7! e : a1a2a3:Inspeting the prinipal type inferene algorithm, we see that a type formulawhere Outvars ontains the union of del (r) and del (s), where the latter twosets are di�erent and have a non-empty intersetion, an only be produedin the ase of 1. An analogous argument deals with �.As for �A(r), any polymorphially equivalent expression emust have prin-ipal type r : a 7! e : ?A : r A : true :Inspeting the prinipal type inferene algorithm, we see that a type formulawhere Outvars is made empty, depending on some speial attribute, an onlybe produed in the ase of �. An analogous argument deals with b�.We an also show polymorphi inexpressibility results for the full lan-guage. For example: 28

Proposition 3 The semijoin rn s is not polymorphially expressible in thestandard relational algebra.Proof. Suppose e is an expression polymorphially equivalent to rn s. Theprinipal type of e must be r : a1a2s : a2a3 7! e : a1a2:Sine there are no speial attributes, the operators �, �, b�, and � annotour in e, exept for �? (projetion on the empty sequene of attributes).Now onsider the type assignment T on fr; sg given by T (r) = fA;Bg andT (s) = fB;Cg, and the database D of type T de�ned by D(r) = f[A : x;B : y℄; [A : u;B : v℄g and D(s) = f[B : y;C : z℄g. Given T , the type of e isfA;Bg. Using the above knowledge of e, we an see that in the value of e onD, either [A : x;B : y℄ and [A : u;B : v℄ both our, or none of them ours.However, this is in ontradition with the fat that e is equivalent to r n s.Hene, e does not exist.9 Conluding remarksWe have seen in the previous setion that lassial \derived" operators of thestandard relational algebra an beome primitive in the polymorphi setting.The same holds for many other suh operators. Note that it is atually easy toextend our type inferene algorithm to inlude semijoin and similar operators,so Proposition 3 should not be misinterpreted as a negative result. Rather,it indiates that the new issue arises as to how a basi polymorphi querylanguage should be designed. This is an interesting diretion for furtherwork.As already mentioned in the Introdution, other obvious diretions forfurther work inlude (i) applying type inferene in pratie to SQL ratherthan to the relational algebra; (ii) developing type inferene in the ontext ofsemi-strutured data models rather than the relational data model; or (iii) todo the same for objet-oriented query languages suh as OQL. When movingto the OO ontext, one has to deal with the additional subtilities reated byinheritane and subtyping. Current researh in programming languages isgiving these issues onsiderable attention.We have also ignored types on the level of individual attribute values,although suh types are almost always present in pratie, e.g., in SQL. For29

example, for �A=\John"(r) to be well-typed it suÆes for us that the type ofr has an A-attribute. However, in reality, A must in addition be of typestring. Inorporating types on the attribute value level only has an e�eton the speial attributes of an expression; it has no e�et on its polymor-phi basis (reall the notion of polymorphi basis from Setion 4). Hene, atype inferene algorithm an still be based on solving systems of set equa-tions. When onjugating two type ontexts, however (reall Setion 7.1.2),a uni�ation on the value types assoiated to the speial attributes has tobe performed. A similar uni�ation is indued by the natural join operator.Moreover, in the ase of the seletion operator, the seletion prediate (whihin our approah has remained abstrat) will perform ertain operations onertain speial attributes, whih will indue ertain onstraints on the valuetypes assoiated to these attributes. In general, if the programming languagein whih we write seletion prediates has a uni�ation-based type system,then we an simply ativate type inferene for this system at the appropriateplaes.AknowledgmentWe thank Serge Abiteboul, who suggested the idea of type inferene forrelational algebra to the seond author many years ago; Didier R�emy andLimsoon Wong, for helpful onversations; and Julien Forest and VeroniqueFisher, who implemented preliminary versions of the algorithm.Referenes[1℄ A.V. Aho, R. Sethi, and J.D. Ullman. Compilers. Addison-Wesley, 1986.[2℄ P. Buneman, S. Davidson, M. Fernandez, and D. Suiu. Adding stru-ture to unstrutured data. In F. Afrati and Ph. Kolaitis, editors,Database Theory|ICDT'97, volume 1186 of Leture Notes in ComputerSiene, pages 336{350. Springer, 1997.[3℄ P. Buneman, S. Davidson, G. Hillebrand, and D. Suiu. A query lan-guage and optimization tehniques for unstrutured data. In Proeedingsof the 1996 ACM SIGMOD International Conferene on Management ofData, issue 25:2 of SIGMOD Reord, pages 505{516. ACM Press, 1996.30

[4℄ H. Garia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman,Y. Sagiv, J. Ullman, V. Vassalos, and J. Widom. The TSIMMIS ap-proah to mediation: data models and languages. Journal of IntelligentInformation Systems, 8(2):117{132, 1997.[5℄ P. Giannini, F. Honsell, and S. Ronhi della Roa. Type inferene: someresults, some problems. Fundamenta Informatiae, 19:87{125, 1993.[6℄ C.A. Gunter and J.C. Mithell, editors. Theoretial Aspets of Objet-Oriented Programming. MIT Press, 1994.[7℄ J.R. Hindley. Basi Simple Type Theory. Cambridge University Press,1997.[8℄ J. Melton. Understanding SQL's Stored Proedures. Morgan Kaufmann,1998.[9℄ J.C. Mithell. Foundations for Programming Languages. MIT Press,1996.[10℄ A. Ohori and P. Buneman. Polymorphismand type inferene in databaseprogramming. ACM Transations on Database Systems, 21(1):30{76,1996.[11℄ A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programmingin Mahiavelli|a polymorphi language with stati type inferene. InProeedings of the 1989 ACM SIGMOD International Conferene on theManagement of Data, issue 18:2 of SIGMOD Reord, pages 46{57. ACMPress, 1989.[12℄ D. R�emy. Type inferene for reords in a natural extension of ML. InGunter and Mithell [6℄, pages 67{96.[13℄ D. R�emy. Typing reord onatenation for free. In Gunter and Mithell[6℄, pages 351{372.[14℄ D. Stemple et al. Exeeding the limits of polymorphism in database pro-gramming languages. In F. Banilhon, C. Thanos, and D. Tsihritzis,editors, Advanes in Database Tehnology|EDBT'90, volume 416 ofLeture Notes in Computer Siene, pages 269{285. Springer-Verlag,1990. 31

[15℄ J. Tiuryn. Type inferene problems: a survey. In B. Rovan, editor,Mathematial Foundations of Computer Siene, volume 452 of LetureNotes in Computer Siene, pages 105{120, 1990.[16℄ J.D. Ullman. Elements of ML Programming. Prentie-Hall, 1998.[17℄ S. Vansummeren. An implementation of polymorphi type inferene forthe relational algebra, written in the programming language ML. Mas-ter's thesis, University of Maastriht, 2001.

32

