
Dra
ft

A Tool-supported Refinement Method for
Object-oriented Data Models

Achim D. Brucker1 and Burkhart Wolff2

1 SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2 Universität des Saarlandes, 66041 Saarbrücken, Germany
wolff@wjpserver.cs.uni-sb.de

Abstract We present a tool-supported method for the analysis and re-
finement of object-oriented specifications using UML/OCL. Conceptually,
our analysis is based on the proof of satisfiability of invariants and im-
plementability of operations, while the refinement notion is an adop-
tion of the well-known forward-simulation (as used in Z) to packages in
UML/OCL.
The tool-support is essentially based on a generator of proof obligations,
which is used both for the analysis of UML/OCL specification as well as for
refinement conditions (for which syntactic side-conditions are checked).
Both types of proof obligations can then be proven by automated and
interactive techniques provided by the HOL-OCL proof environment.
Thus, we provide an integrated method for formal data refinement of
object-oriented specifications.
Key words: Data Refinement, HOL-OCL, UML, OCL, Formal Method

1 Introduction

The transition from abstract to concrete system models, in particular to concrete
code, via a formally defined and well-understood relation is known as refinement.
Even if considering only data-oriented refinement methods, the body of litera-
ture is very substantial. Common approaches have been intensively discussed for
formal methods such as Z [17] or B [1]. Moreover, some implementations [18, 9]
of these methods have been used in relevant case-studies, demonstrating that
refinement methods represent an effective alternative to code-verification.

On the one hand, many industrial modeling languages, like UML/OCL offer a
very broad support for semi-formal modeling. On the other hand, they are often
criticized for lacking a formally defined semantics and a tool-supported formal
development process. Even though the first criticism is wide-spread, there are
at least formal foundations for parts of the UML (e. g., class models annotated
with OCL constraints). Nevertheless, it is true that implementations of formal
analysis and refinement techniques are rare.

Generally speaking, a tool-supported refinement notion that is integrated
into a UML/OCL-based Model-driven Engineering (MDE) process requires:
1. a tool-supported formal semantics for UML/OCL,

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ft

2 Achim D. Brucker and Burkhart Wolff

2. formal notions of consistency or well-formedness for UML/OCL,
3. formal refinement notions for UML/OCL, and
4. an integration of both into one framework.
In [5], we presented an MDE toolchain meeting the first and last requirement:
built within an interactive theorem prover environment, HOL-OCL [6, 4] provides
a formal semantic definition in HOL, interactive and automated proof-support
as well as a model-repository and model-transformation environment for object-
oriented specifications.

In this paper, we present a solution for the second and third requirement:
based on a formal semantics for UML/OCL [4, 12], we define and implement
within the HOL-OCL framework a formal analysis as well as a formal data re-
finement allowing to relate abstract class models to more concrete ones. Since
our refinement notion is transitive, an original abstract design can be converted
stepwise into a version that can be automatically converted into code.

The rest of this paper is structured as follows: after introducing the necessary
preliminaries in Section 2, we present an approach for analyzing the consistency
of a UML/OCL model in Section 3 which we see as a prerequisite for the data-
refinement approach for UML/OCL specifications we present in Section 4. Finally,
we draw conclusions and discuss related work in Section 5.

2 Background

2.1 UML/OCL by Example: The SimpleChair System

The Unified Modeling Language (UML) comprises a variety of model types for
describing static (e. g., class models, object models) and dynamic (e. g., state-
machines, activity graphs) system properties. One of the more prominent model
types of the UML is the class model (visualized as class diagram) for modeling the
underlying data model of a system in an object-oriented manner. As a running
example, we model a part of a conference management system. Such a system
usually supports the conference organizing process, e. g., creating a conference
Website, reviewing submissions, registering attendees, organizing the different
sessions and tracks, and indexing and producing the resulting proceedings. In
this example, we constrain ourselves to the process of organizing conference ses-
sions; Figure 1 visualizes the underlying class model. We model the hierarchy of
roles of our system as a hierarchy of classes (e. g., Hearer, Speaker, or Chair)
using an inheritance relation (also called generalization). In particular, inheri-
tance establishes a subtyping relationship, i. e., every Speaker (subclass) is also
a Hearer (superclass). Moreover, classes can be grouped into packages, e. g., in
our example all classes are part of the package AbstractSimpleChair.

A class does not only describe a set of instances (called objects), i. e., record-
like data consisting of attributes such as name of class Session, but also op-
erations defined over them. For example, for the class Session we model an
operation findRole(p:Person):Role that should return the role of a Person
in the context of a specific session; later, we will describe the behavior of this

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ft

A Tool-supported Refinement Method for Object-oriented Data Models 3

Role

Hearer

Speaker

CoChair

Chair

Person
name:String

Session
name:String
findRole(p:Person):Role

Participant

AbstractSimpleChair

Person
name:String

Role

Participant
Hearer CoChair

ChairSpeaker

Session
name:String
findRole(p:Person):Role

person
0..*

role
0..*

0..*
session0..1

Figure 1. An abstract UML/OCL model of a simple conference management
system. A person can participate in a session of a conference playing different
roles, e. g., being a chair of a session or a speaker presenting a paper.

operation in more detail using OCL. In the following, the term object describes
a (run-time) instance of a class or one of its subclasses.

Relations between classes (called associations in UML) can be represented in
a class diagram by connecting lines, e. g., Participant and Session or Person
and Role. Associations may be labeled by a particular constraint calledmultiplic-
ity, e. g., 0..* or 0..1, which means that in a relation between participants and
sessions, each Participant object is associated to at most one Session object,
while each Session object may be associated to arbitrarily many Participant
objects. Furthermore, associations may be labeled by projection functions like
person and role; these implicit function definitions allow for OCL-expressions
like self.person, where self is a variable of the class Role. The expression
self.person denotes persons being related to the a specific object self of type
role. A particular feature of the UML are association classes (Participant in our
example) which represent a concrete tuple of the relation within a system state
as an object; i. e., associations classes allow also for defining attributes and oper-
ations for such tuples. In a class diagram, association classes are represented by
a dotted line connecting the class with the association. Associations classes can
take part in other associations. Moreover, UML supports also n-ary associations.

We refine this data model using the Object Constraint Language (OCL) for
specifying additional invariants, preconditions and postconditions of operations.
For example, we specify that objects of the class Person is uniquely determined
by the value of the name attribute:

context Person
inv: name 6 .= ’’ ∧

Person :: allInstances ()-> isUnique (p: Person | p.name)

Dra
ft

4 Achim D. Brucker and Burkhart Wolff

Moreover, we specify that every session has exactly one chair by the following
invariant (called onlyOneChair) of the class Session:

context Session
inv onlyOneChair :

self. participants ->one(p: Participant | isTypeChair (p.role))

where isTypeChair (p.role) evaluates to true, if p.role is of dynamic type Chair.
Besides the usual static types (i. e., the types inferred by a static type inference),
objects in UML and other object-oriented languages have a second dynamic type
concept. This is a consequence of a family of casting functions (written o[C]
for an object o into another class type C) that allows for converting the static
type of objects along the class hierarchy. The dynamic type of an object can be
understood as its “initial static type” and is unchanged by casts. We complete
our example by describing the behavior of the operation findRole as follows:

context Session :: findRole (person : Person): Role
pre: person ∈ self. participates . person
post: result =self. participants -> select (p: Participant |

p. person
.= person). role

∧ self. participants
.= self. participants@pre

∧ self.name
.= self. name@pre

where @pre allows for accessing the previous state in post-conditions.
In UML, classes can contain attributes of the type of the defining class. Thus,

UML can represent (mutually) recursive datatypes, while OCL provides means
to specify contracts of operations.

A key idea of defining the semantics of UML is to translate the diagrammatic
UML features into a combination of more elementary features of UML and OCL
expressions [10]. For example, associations are usually represented by collection-
valued class attributes together with OCL constraints expressing the multiplicity.
Thus, having a semantics for a subset of UML and OCL is tantamount for the
foundation of the entire method.

2.2 Formal and Technical Background of HOL in Isabelle

The Meta-language Isabelle/HOL. higher-order logic (HOL) [8, 3] is a clas-
sical logic based on the typed λ-calculus, where quantifiers may range over arbi-
trary types. It has been implemented as instance in the generic proof-assistant
Isabelle [11]; nowadays, Isabelle/HOL is the instance of Isabelle which is mostly
used and developed. A few axioms describe the logical core system based on the
logical type bool with the logical connectives ¬_, _ ∧ _, _ ∨ _ and _ → _
which are constants of type bool⇒ bool or [bool,bool]⇒ bool. Quantifiers are
represented by higher-order abstract syntax; this means that ∀_._ and ∃_._
are usual constants of type (α ⇒ bool) ⇒ bool and that terms of the form
∀(λx. P x) are written ∀x. P . The Hilbert operator ε x. P returns an arbitrary
x that makes P x true. Further, there is the universal equality _ = _ of type
[α, α]→ bool.

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ft

A Tool-supported Refinement Method for Object-oriented Data Models 5

This core language can be extended via axiomatic (“conservative”) definitions
to large libraries comprising Cartesian product types _ × _ with the usual
projections fst and snd as well as type sums _ + _, with the injections Inl
and Inr. The set type α set can be introduced isomorphic to the function space
α⇒ bool, i. e., to characteristic functions, and a typed set theory is introduced
with the usual operators, e. g., _ ∈ _, _ ∪_, _ ∩_.

The HOL type constructor τ⊥ assigns to each type τ a type lifted by ⊥. The
function x_y : α ⇒ α⊥ denotes the injection, the function p_q : α⊥ ⇒ α its
inverse for defined values. Partial functions α ⇀ β are just functions α ⇒ β⊥
over which the usual concepts of domain dom f and range ran f are defined.
Moreover, on each type α⊥ a test for definedness is available via def x ≡ (x 6= ⊥).

2.3 HOL-OCL

HOL-OCL [7, 6] (http://www.brucker.ch/projects/hol-ocl/) is an interac-
tive proof environment for UML/OCL that is integrated into an MDE toolchain.
Figure 2 shows this toolchain. HOL-OCL consists of:
– theories representing UML/OCL semantics as a conservative, shallow embed-

ding into IsabelleHOL (following as closely as possible the standard [12]; in
particular, HOL-OCL is based on three-valued, Strong Kleene Logic with laws
like true or OclUndefined = true),

– libraries of derived rules based on this definition (as a consequence of the
conservative methodology restricting ourselves to axiomatic definitions, we
can guarantee their correctness and consistency),

– programmed proof-procedures for automated proof, and
– special support for UML/OCL class models which were automatically con-

verted into logical theories representing their object-oriented datatypes.

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

ArgoUML

...

UML/OCL

(XMI)

or
SecureUML/OCL AC

Config

C#
+OCL

Code
Generator

Repository
Model

(su4sml)

Transformation
Model

Test
Harness

Model−Analysis
and Verification

(HOL−OCL)

Validation

Proof Obligations Test Data

Figure 2. A MDE Framework and Toolchain integrating formal analysis allowing
for a close relation between well-known MDE techniques (e. g., code-generation)
and formal techniques (e. g., refinement).

http://www.brucker.ch/projects/hol-ocl/

Dra
ft

6 Achim D. Brucker and Burkhart Wolff

Some fundamental remarks on the semantics are necessary here. The stan-
dard [12]) provides two semantic functions IJP K σ and IJP K (σ, σ′) for OCL
formulae P and states σ or σ′. These states are necessary to interpret the acces-
sor functions (like _.participants or _.participants@pre in our example).
Formulae containing no @pre accessors can be interpreted by both semantic
functions. Since Isabelle/HOL uses overloading, the types will always provide an
implicit distinction between them; Throughout this paper, however, we will use
the variables τ , τ ′, τ ′′ for state-pairs, i. e., system transitions, to avoid confusion.
Consequently, two notions of validity of OCL formulae are defined by:(

σ � P
)
≡
(
IJP K σ = xtruey

)(
τ � P

)
≡
(
IJP K τ = xtruey

)
,

i. e., a formula is valid if its semantic interpretation evaluates to true. Recall that
the carrier set of the OCL type is three-valued and is interpreted by the three
HOL values xtruey,xfalsey and ⊥ of HOL-type bool⊥.

The semantics of an operation self .mop(a1, ..., an) is defined in the standard
by the conjunction(

σ � (preop self a1 . . . an)
)
∧
(
(σ, σ′) � postop self a1 . . . an result

)
where preop and postop denote the formula for the (syntactic) precondition or
postcondition. Thus, similarly to the Z specification language, a collection of
operations describes a state transition system.

3 Analyzing the Consistency of Class Models

When capturing the requirements for a larger software system, the problem
arises how to detect potential inconsistencies, contradictions or redundancies
in larger numbers of class invariants or method specifications. Thus, prior to
any implementation or refinement attempt, there is the need for a consistency
analysis of the specification. In the following, we concentrate on a specific kind
of consistency that is desirable, but strictly speaking not required by the data
refinement methodology we present later.

Most object-oriented languages support access specifiers. In UML this is called
visibility which can be described as an enumeration ranging over private, pro-
tected, package, public. Whereas private members of a class are only accessible
inside the class itself, protected parts are also accessible by subclasses, parts with
visibility package are only accessible within the package and public members are
accessible from everywhere. In contrast to many programming languages, e. g.,
Java, in UML also classes have a visibility. For example, a class with visibility
package can only be used within the same package.

3.1 Formal Preliminaries
On the semantic side, we need constraints on states σ, not state transitions τ ,
therefore we need some formal machinery to switch between these two interpreta-
tions. Instead of using syntactic side-conditions (e. g., as in the OCL standard [12,

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ft

A Tool-supported Refinement Method for Object-oriented Data Models 7

Appendix A]) like “the assertion does not contain the @pre-operator,” we use a
slightly more general semantic characterization which is amenable in calculi. As
a prerequisite, we define two assertions φ, φ′ pre-state equivalent in σ, written
(σ � φ) pre= (σ � φ′) formally as follows:

(σ � φ) pre= (σ � φ′) ≡ ∀x, y.
(
(σ, x) � φ

)
=
(
(σ, y) � φ′

)
,

i. e., all post-states x and y are irrelevant. For example, this is the case for
assertions φ,φ′ where all accessors occurring in them refer to the pre-state (i. e.,
using _@pre) and where φ = φ′. Analogously, we define the concept of post-state
equivalence, written (σ � φ) post= (σ � φ′). Moreover, we introduce the notion
pre-state validity:

(σ �pre φ) ≡ (σ � φ) pre= (σ � true)

and also analogously post-date validity (σ �post φ).
Finally, we define a syntactic transformation _pre of assertions to support the

syntactical conventions of OCL. φpre results from φ by substituting all accessor
functions by their _@pre-counterparts. Thus, we can express lemmas that link
the standard semantic validity for invariants or preconditions (introduced as
σ � φ in Section 2.3) to formulae that can be interpreted within the validity of
transitions:

σ � φ =⇒ σ �pre (φ)pre and
σ � φ =⇒ σ �post φ .

provided that in formula φ no @pre operator occurs. For formulae of this form
(e. g., preconditions and invariants), the following property can also be proven
automatically:

(σ �post φ) ⇐⇒ (σ �pre (φ)pre) .

Based on these operations, we rephrase the notion of operation semantics for
self .mop(a1, . . . , an) as follows:

τ � (preop self a1 . . . an)pre ∧ τ � postop self a1 . . . an result

This notion of operation semantics brings all semantic interpretation functions
into a uniform format and therefore eases deduction:

Recall that a state σ is a partial map from object-identifiers to objects;
following the OCL standard, we call states valid if and only if each object in
its range satisfies the class invariants. We write V for the set of valid states. The
empty state λ oid.⊥ is always in V . Obviously, valid states enjoy the property:

∀σ ∈ V ; self ∈ ran σ. σ |= invC(self)

where invC denotes the invariant of an arbitrary class C.

Dra
ft

8 Achim D. Brucker and Burkhart Wolff

3.2 Formal Foundations of Model Consistency

Informally, we call a class model consistent if we can instantiate each class. More-
over, we require that the operations defined over the classes are executable in the
sense that there exists a consistent post-state. While not strictly required by our
refinement notions, we recommend a formal analysis showing the consistency of
the overall class model in general and the packages that should be refined in
particular.

Formally, we require for a consistent UML/OCL package:
1. For all (public) classes C1, . . . , Cn, there must exist a state satisfying the

class invariants that contains objects of each class, i. e.,

∃{σ1, . . . , σn} ∈ V, a1 ∈ ran σ1, . . . , an ∈ ran σn.
σ1 �post invC1(a1) ∧ · · · ∧ σn �post invCn(an)

where invC1 , . . . , invCn represent the class invariants.
2. For all (public) operations op of class C with arguments p1, . . . , pn of the

class model, there must be a pre-state satisfying the class invariants and
input variables satisfying the precondition, i. e.,

∃σ ∈ V ; {self , p1, . . . , pn} ⊆ ran σ. σ �pre (preop self p1 · · · pn)pre.

This condition is also called the enabling condition in the literature.
3. For each valid pre-state all input variables satisfying the precondition, there

must be a result and a post-state satisfying the class invariants and the
postcondition, i. e.,

∀σ ∈ V, {self , p1, . . . , pn} ⊆ ran σ. σ �pre (preop self p1 . . . pn)pre

→ ∃σ′ ∈ V, result. (σ, σ′) � postop self p1 · · · pn result

for all public operations op of class C with arguments self , p1, . . . , pn and
with the return value result. This condition is also called implementability
in the literature.

The first condition admits states, where not for all classes actually exist objects
satisfying the invariants at the same time. Such systems exist in practice such
that we were forced to relax the “intuitive” possibility “there exists a state with
objects satisfying all invariants.”

Overall, these proof-obligations ensure that each class can be instantiated
(i. e., no invariant has an unsatisfiable class invariant) and that no operation
specification describes the empty transition relation which is semantically pos-
sible, but methodologically not desirable.

3.3 Proving Consistency of our Example

To explain the first real HOL-OCL code-fragments, some general remarks are in
place: HOL-OCL inherits from its underlying framework Isabelle [11] the con-
cept of hierarchical proof documents that can be processed incrementally block

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ft

A Tool-supported Refinement Method for Object-oriented Data Models 9

by block. In proof-documents (called theory files), blocks for declarations, def-
initions, axioms, documentation, SML-code, and proofs can be mixed arbitrar-
ily. The input language of HOL-OCL is a super-set of the input language of
Isabelle/HOL. Among others, HOL-OCL provides new commands for defining,
analyzing, reasoning over object-oriented specifications.

Recall our abstract model of a conference system presented in Section 2.1
(e. g., Figure 1) and assume that this model is defined in a package called
AbstractSimpleChair. We start our consistency analysis by importing (and
type-checking) the UML/OCL specification in HOL-OCL:

import_model "SimpleChair.zargo" "AbstractSimpleChair.ocl"
include_only "AbstractSimpleChair"

This results in an environment holding all definitions and various automat-
ically derived simplification rules of the data model defined in the package
AbstractSimpleChair. In particular, this includes the class invariants for the
classes Person, Role, Participant and Session as well as the specification of
the operation findRole. We continue with the statement:

analyze_consistency [data_refinement] "AbstractSimpleChair"

which checks the syntactic requirements of our refinement methodology and,
moreover, results in the generation of five proof obligations according to the
schema described in the previous section. Each proof obligation is given an own
name which can be used to process it. For example, if we discharge the second
obligation resulting from the statement above, we can refer to it by:

po "AbstractSimpleChair.findRole_enabled"

The system reacts by changing to proof mode and displaying the assertions:

∃σ ∈ V, self , P,R. σ �pre ¬ (P ∈ self . participantspre) .

This assertion can be refined through backward-reasoning by a sequence of reg-
ular Isabelle proof commands or by specific HOL-OCL ones. The proof essen-
tially consists in providing a witness for σ in form of an object graph with one
Person and one Session object, where the participants list is just empty. Thus,
the proof proceeds by establishing that (σ, x) � self .participantspre , []; the
HOL-OCL simplifier will then complete the proof. After reaching the final proof
state consisting of the formula true, one can state:

discharged

whereby this proof obligation will be erased from the database of proof obliga-
tions and added to the database of proven theorems.

4 Object-oriented Refinement

In this section, we present our object-oriented refinement method. We start with
introducing the concrete version of our Simple Chair example (which refines

Dra
ft

10 Achim D. Brucker and Burkhart Wolff

the abstract version). Thereafter, we present the two phases of our refinement
notion: first we introduce the syntactical well-formedness checks and second, we
introduce semantical foundation. We conclude this section with applying our
refinement method to our running example.

4.1 Example: The Concrete SimpleChair Model

Role

Hearer

Speaker

CoCair

Chair

Person
name:String

Session
name:String
findRole(p:Person):Role

ConcreteSimpleChair

Person
name:String

Role

Hearer CoCair

ChairSpeaker

Session
name:String
findRole(p:Person):Role

participants
{ordered}

0..*

sessions0..*

sessions
0..*

{ordered}
roles
0..*

Figure 3. The concrete model of our simple conference management systems
represents the participation directly in the Session class, omitting the private
class Participant.

While the abstract version of the system is a “classical” data-model concen-
trating on data entities and its relations, such a model is difficult to implement;
partly because high-level notations such as association classes are not supported
directly by many tools, partly because a conversion to sequence attributes con-
taining direct links to associated objects is more efficient, but more difficult since
the state must be kept valid.

Figure 3 illustrates the class model of the concrete model that we define
within the package ConcreteSimpleChair. The HOL-OCL specification differs
mainly in the specification of the findRole operation which now uses the features
of sequences.

context Session :: findRole (person : Person): Role
pre: person ∈ self. participants
post: result

.= roles.at(participants . indexOf (p))

In contrast to the abstract variant, this specification is efficiently executable.
Moreover, an additional invariant constraining the Session class describes that
the sequences storing the roles and participants are of equal length:

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ft

A Tool-supported Refinement Method for Object-oriented Data Models 11

context Session
inv: ‖participants‖ .= ‖roles‖

The specification of the class Person remains unchanged:

context Person
inv: name 6 .= ’’ ∧ Person :: allInstances ()

->isUnique (p: Person | p.name)

4.2 Syntax and Well-Formedness

On the diagrammatic side, we use the UML notation, using stereotypes, for
expressing refinement on the level of packages (see Figure 4). Our refinement

AbstractSimpleChair ConcreteSimpleChair
<<refines>>

Figure 4. UML notation for refining on the level of packages.

method has both syntactic (also called well-formedness requirements) and se-
mantic requirements. We discuss the former in this section.

The informal motivation for our refinement method is as follows: if package
B refines a package A, then one should be able to substitute every usage of
package A with package B. Thus, package B must at least provide all public
operations (which define the signature of a package) that packages A provides.
In more detail, we require
1. The concrete package must provide at a corresponding public class for each

public class of the abstract model. For example, if the abstract package
contains a class with name A, the concrete package must also contain a class
with name A. As packages in UML define their own namespaces, these two
classes can be distinguished by their fully qualified name.

2. For public attributes we require that their type and for public operations
we require that the return type and their argument types are either basic
datatypes (e. g., Integer, String) or public classes.

3. For each public class of the abstract package, we require that the correspond-
ing concrete class provides at least
(a) public attributes with the same name and
(b) public operations with the same name.
Moreover, we require that the types of corresponding abstract and concrete
attributes and operations are compatible, i. e., either the same (e. g., in our
running example, the attribute name of the abstract and concrete variant
of the class Session, which is in both cases of type String) or are them-
selves in a refinement relation (e. g., in our running example, the return

Dra
ft

12 Achim D. Brucker and Burkhart Wolff

type of the operation findRole(...) which returns in the abstract model
the type AbstractSimpleChair::Role and ConcreteSimpleChair::Role
in the concrete model).

Assuming that all classes of our running example, with the exception of the
class Participant in the package AbstractSimpleChair, are public, is is quite
obvious, that our example fulfills all well-formed requirements mentioned above.

4.3 Refining OCL Specifications

Data refinement is a well-known formal development technique; a standard-
example for data refinement is Spivey’s Birthday Book [17]. The key idea is to
refine abstract, but easy-to-understand system models to more concrete, complex
ones that are closer to an (executable) implementation. In prominent instances
of the refinement method such as the B-Method, the final concrete model is
converted to code via a trusted code-generator. According to a concrete formal
refinement notion (such as forward simulation or backward simulation, c.f. [19]),
stating that one model is a refinement of another can be verified by checking
syntactic constraints and by discharging (proving) the generated proof obliga-
tions.

Again, we will build our refinement method on the level of UML-packages:
one containing the abstract model, another one the concrete model. We make the
correspondence (“matching”) between abstract and concrete public classes and
public operations on the basis of their name, i. e., classes or operations with same
name correspond. This syntactic constraint allows for the direct substitutivity
of the abstract package, i. e., in any place, where the specification requires the
abstract package, we can also use the concrete one. To make refinements on
packages semantically working, several side-conditions have to be imposed:
– the set of public classes of the abstract model must be included in the set of

public classes of the concrete model;
– the set of public operations in a concrete class must be a subset of the public

operations in the corresponding abstract class, and
– the types of the corresponding operations must match.
Refinement notions are typically based on putting the abstract states σa and

concrete states σc into relation. This relation is defined by an abstraction relation
R which must be provided by the user. An important special case is when R is
in fact a function mapping concrete states to abstract states; although the proof
obligations can be simplified in the functional case, we present the general case
here. A forward simulation refinement S vRFS T ≡ po1(S,R, T) ∧ po2(S,R, T)
comes in two parts which turn into proof obligations when stated as proof goals.
They are best explained with a diagram, such as Figure 5. The first condition
po1 (see Figure 5a) means that whenever an abstract operation S can make a
transition, the corresponding concrete operation T can make a transition too.
The second condition po2 appears in Figure 5b. It states that whenever the
concrete operation can make a step to a new state σ′c, then the abstract operation
must be able to reach a state σ′a that is in the abstraction relation to σ′c.

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ft

A Tool-supported Refinement Method for Object-oriented Data Models 13

opc
R

σa

σc

⇒ R

σa

σc

σ′aσ′a

σ′c

opaopa

(a) Proof Obligation I: whenever an abstract operation S can make a transition,
the corresponding concrete operation T can make a transition too

opa

opc σ′c
opc

RR

σa

σc

⇒
σa

σc

σ′a

σ′c

R

(b) Proof Obligation II: whenever the concrete operation can make a step to a
new system state σ′c, then the abstract operation must be able to reach a state
σ′a that is in the abstraction relation to σ′c.

Figure 5. Showing a forward simulation refinement relations requires results in
two proof obligations that need to be shown.

To formalize these two conditions, two prerequisites are necessary that are
related to the three-valuedness of OCL:

τ �M S ≡ (τ � S ∨ τ � ¬ ∂ S)
and

pre S ≡ {σ ∈ V | ∃σ′ ∈ V. (σ, σ′) �M S} .

The former definition relaxes our notion of validity to “evaluating to true or to
exception,” which makes the exception view of ⊥ explicit. The second definition
characterizes the set of pre states in which an assertion S becomes valid. In these
terms, the two proof obligations for an operation declared public in the abstract
model can be expressed formally as follows:

po1(S,R, T) ≡ ∀σa ∈ pre(S), σc ∈ V. (σa, σc) ∈ R
→ σc ∈ pre(T)

and
po2(S,R, T) ≡ ∀σa ∈ pre(S), σc ∈ V. σc′ . (σa, σc) ∈ R

∧ (σc, σ′c) �M T

→ ∃σ′a ∈ V. (σa, σ′a) �M S ∧ (σa′ , σc′) ∈ R .

However, these definitions leave open how to construct this global abstraction
relation and how arguments of the operations are handled.

As a means to solve both problems, we suggest that the user provides a family
of local abstraction relations RC indexed by the public classes of the abstract
model. Thus, we can relate input and result objects in the abstract state to
corresponding objects in the concrete state. The global abstraction relation R

Dra
ft

14 Achim D. Brucker and Burkhart Wolff

can be constructed automatically by requiring that all abstract public objects
can be associated “one-to-one” to concrete objects and that abstract objects
relate to concrete objects with respect to a local abstraction relation RC . There
may be public objects in the concrete model that do not correspond to public
objects in the abstract model.

4.4 Proving Data Refinements of the SimpleChair-Example

We load the concrete model, analogously to the abstract model, into its own
HOL-OCL theory:

import_model "SimpleChair.zargo" "ConcreteSimpleChair.ocl"
include_only ["ConcreteSimpleChair"]

Now we can import both theories into a refinement theory and declare the ab-
straction relations. This task is supported by the statement

refine "AbstractSimpleChair" "ConcreteSimpleChair"

of the HOL-OCL refinement component. The execution of the statement performs
the following activities:
1. checking the syntactic side-conditions mentioned in Section 4.2,
2. declaring the local abstraction relation for the public classes, e. g., Person,

Role, Session, of the abstract model,
3. constructing a predicate isPublica working for the objects of the abstract

model, i. e., the AbstractSimpleChair data universe,
4. constructing a predicate isPublicc working for the objects of the concrete

model, i. e., the ConcreteSimpleChair data universe,
5. defining the global abstraction relation R (using the up-to-now undefined

class abstractions), and
6. generating the refinement related proof-obligations for the public operations

findRole.
The motivation for the declaration of local class abstractions, which leave the
definition to the user to a later stage, is a pragmatic one: giving the correct
(HOL) type for an encoded HOL-OCL expression is usually quite sophisticated
and requires experimenting in finding a suitable abstraction. For example, the
definition that relates Person objects just relates objects with same name at-
tribute:

RPerson σa σc obja objc ≡
∃s. (σa � AbstractSimpleChair.Person.name obja , s)

∧ (σc � ConcreteSimpleChair.Person.name objc , s) .

Recall that the class invariant for Person requires that its objects are uniquely
defined by their name attribute.

We now turn to the question of how to combine the family of local abstraction
relations RC to a global abstraction relation on states R. The core piece is

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ft

A Tool-supported Refinement Method for Object-oriented Data Models 15

the already mentioned requirement that there must be a one-to-one assignment
between objects belonging to classes declared public in the abstract package.
Furthermore, all assigned objects must be in the local abstraction relation, and
public-ness must be preserved. Altogether, this is expressed as follows:

R σ σ′ ≡ ∃fg. ∀x ∈ ran σ. isPublica σ(K x)→ f(g x) = x ∧
∀y ∈ ran σ′. isPublicc σ′(K y)→ g(f y) = y ∧

∀x ∈ ran σ. isPublica σ(K x)→ isPublicc σ′(K(g x)) ∧
∀x ∈ ran σ. isPublica σ(K x)→ Robj σ σ

′(K x)(K(g x))

where K a = λσ. a and isPublica and isPublicc are generated predicates that
decide if an object belongs to a public class in the abstract package. These
predicates are just disjunctions of all dynamic type tests. Similarly, Robj is a
generated predicate combining the local abstraction relations by casting them
appropriately to the common superclass, i. e., OclAny, and conjoining them dis-
jointly. Finally, from the above refinement, two proof obligations arise expressing
the refinement condition for each operation. Conceptually, we need to show the
following lemma for findRole:

∀σ ∈ pre S, σ′ ∈ pre T. RSession σ σ′ self self ′
∀σ ∈ pre S, σ ∈ pre T. RPerson σ σ′ p p′

∀σ ∈ pre S, σ ∈ pre T. RRole σ σ′ result result′
.

AbstractSimpleChair.Session.findRole self p result
vRFS ConcreteSimpleChair.Session.findRole self ′ p′ result′

Within HOL-OCL, the proof attempt would be started by

po "refine_findRole"

which opens a proof state requiring a proof for the refinement of the operation
findRole. This proof obligation is then shown by a sequence of interactive proof
steps. After the successful completion of the proof, we can close our proof attempt
and thereby mark this proof obligation as proved with the command:

discharged

Table 1 depicts a sketch (due to space reasons we skipped the actual proofs
that po1 and po2 hold, i. e., this sketch only describes the high-level structure of
the refinement proof) of such an interactive proof showing that our example is a
valid refinement, i. e.., the refinement related proof obligations hold. This exam-
ple should give a flavor how proofs of this form look like: the three assumptions
constrain the intended refinement relation to input and output parameters that
are representable in the corresponding system state of the refining system. That
is, for a person p in an abstract state, we must be able to relate it to a p′-object
in the concrete state. This complication is a tribute to object-orientation: we
cannot require, in a world of objects, that the arguments are simply equal as
we could in a world of values. Rather, we must translate objects of one state to

Dra
ft

16 Achim D. Brucker and Burkhart Wolff

po "refine_findRole"
this opens a proof state requiring a poof for:
assumes Session_relates : ∀ τ τ ′.

R_AbstractSimpleChair_ConcreteSimpleChair_Session τ τ ’ self self’
assumes Person_relates : ∀ τ τ ′.

R_AbstractSimpleChair_ConcreteSimpleChair_Person τ τ ′ p p’
assumes Role_relates : ∀ τ τ ’.

R_AbstractSimpleChair_ConcreteSimpleChair_Role τ τ ′ result result’
shows
refine (AbstractSimpleChair.Session.findRole self p result)

(R_glob_St is_public_abs is_public_conc
R_AbstractSimpleChair_ConcreteSimpleChair_obj_St)

(ConcreteSimpleChair.Session.findRole self’ p’ result’)
we start the proof by unfolding the definitions of therefinement related
proof obligations, i. e.., refine, po1, and po2:

proof(auto simp: refine_def po1_def po2_def)
the first case shows po1, i. e., findRole reflects enabledness.
case goal1 then show ?case

apply(auto simp: refinement_simpset)
due to space reasons, we apply a previously proven lemma that po1 holds.
apply(rule findRole_po1)
apply(simp_all add: findRole_conc_spec)
done

the shows case shows po2, i. e., findRoleproduces states in refinement relation.
case goal2 then show ?case

apply(auto simp: refinement_simpset)
apply(frule find_Role_reads_only)
du to space reasons, we apply a previously proven lemma that po2 holds.
apply(rule findRole_po2)
apply(auto simp: findRole_conc_spec)

done
next

discharged

Table 1. A skeleton showing the main proof steps needed for proving data
refinement within HOL-OCL: after unfolding the main definitions, the proof can
be split into two cases, one showing po1 and one showing po2.

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/

Dra
ft

A Tool-supported Refinement Method for Object-oriented Data Models 17

objects in another state to express the relation of object-graphs via its structure
and not using the object-identifiers (references) that establishes it. Fortunately,
since our example does not involve “deep” object graphs representing input of
an operation to be refined, the local abstraction relations boil down to forgetting
the object-id’s and turning the person-objects into values (strings for names).
Overall, the proof is fairly straightforward and involves mostly the proof that
whenever the abstract precondition is satisfied, the corresponding concrete pre-
condition is also satisfied, as well as that the concrete postcondition is translat-
able into the abstract postcondition.

5 Conclusion and Related Work

In this section, we summarize related work, draw conclusions and give a short
outlook on future work.

5.1 Related Work

[13, 14] presents a OCL-based refinement notions for UML classes which in fact
is based on the refinement notions for Object-Z [15]. Both approaches are only
discussing the refinement conditions for class-wise refinement, i. e.. a class refines
another one. Moreover, neither of these approaches supports the formal verifica-
tion of the refinement within an integrated MDE environment: [13, 14] describes
a validation approach using simulation and Object-Z is supported by generic
analysis tools, e. g., [16], that do not provide specialized refinement support.

In contrast, our approach provides a refinement methodology (including well-
formedness checks) for UML packages. Moreover, it is integrated into a formal
MDE environment supporting the well-formedness checks, the generation of re-
finement conditions, and their formal analysis in a theorem prover.

As such, HOL-OCL [7] as a methodology is most closely related to the B-
Method [1] and its most recent incarnation: Event-B [2]. Both variants of the
B-Method method are centered around the idea of having formal, tool-supported
refinement notion.

With our work, we try to transfer this setting to object-oriented specifications
and programs. Besides subtyping and inheritance, this means that formulae are
assertions over a graph of objects linked via object-identifiers. This also leads to
additional challenges, for example, the equality on values must be replaced by
other user-defined equivalence relations, be it by using object-identifiers or recur-
sive predicates representing bi-simulations. Thus, compared to the non-object-
oriented B Method, refinement proofs for object-oriented systems are substantial
more complicated, and, thus, require more advance tool support.

5.2 Conclusion and Future Work

In this paper, we presented a formal refinement methodology for object-oriented
specifications. Our object-oriented refinement methods support the refinement

Dra
ft

18 Achim D. Brucker and Burkhart Wolff

on the level of packages, ı.e., it generalizes class-wise refinement approaches,
e. g., [13, 16]. Moreover, both the syntactic well-formedness checks required by
our refinement notions and the generation of semantic proof obligations is sup-
ported by a tool. In fact, our refinement methodology is seamlessly integrated
into an MDE toolchain [5].

We see several lines for future work, aiming mainly on increasing the overall
usability and usefulness of our tool support for object-oriented refinement. This
comprises, among others,
– increase specialized proof support for proving refinement conditions, ı.e par-

ticular variants for functional refinement relations or systems with more
liberal object-relations that “one-to-one,”

– integrate fully automatic proof attempts into the proof-obligation generator,
– provide automatic heuristics for defining the refinement relations, and
– relaxing the syntactical requirements by providing means for defining a more

flexible refinement relation.

References
[1] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University

Press, New York, NY, USA, 1996.
[2] J.-R. Abrial. Modeling in Event-B: System and Software Design. Cambridge,

2008. To appear.
[3] P. B. Andrews. Introduction to Mathematical Logic and Type Theory: To Truth

through Proof. Kluwer Academic Publishers, Dordrecht, 2nd ed., 2002.
[4] A. D. Brucker. An Interactive Proof Environment for Object-oriented Specifica-

tions. Ph.d. thesis, ETH Zurich, 2007. ETH Dissertation No. 17097.
[5] A. D. Brucker, J. Doser, and B. Wolff. An MDA framework supporting OCL.

Electronic Communications of the EASST, 5, 2006.
[6] A. D. Brucker and B. Wolff. The HOL-OCL book. Tech. Rep. 525, ETH Zurich,

2006.
[7] A. D. Brucker and B. Wolff. HOL-OCL – A Formal Proof Environment for

UML/OCL. In J. Fiadeiro and P. Inverardi, eds., Fundamental Approaches to
Software Engineering (FASE08), no. 4961 in Lecture Notes in Computer Science,
pp. 97–100. Springer-Verlag, 2008.

[8] A. Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5(2):56–68, 1940.

[9] Clearsy Inc. Atelier B, 2008. http://www.atelierb.eu/.
[10] M. Gogolla and M. Richters. Expressing UML class diagrams properties with OCL.

In T. Clark and J. Warmer, eds., Object Modeling with the OCL: The Rationale
behind the Object Constraint Language, Lecture Notes in Computer Science, vol.
2263, pp. 85–114. Springer-Verlag, Heidelberg, 2002.

[11] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL—A Proof Assistant
for Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer-
Verlag, Heidelberg, 2002.

[12] UML 2.0 OCL specification. 2003. Available as OMG document ptc/03-10-14.
[13] C. Pons and D. Garcia. An OCL-based technique for specifying and verify-

ing refinement-oriented transformations in MDE. In O. Nierstrasz, J. Whittle,
D. Harel, and G. Reggio, eds., MoDELS, Lecture Notes in Computer Science, vol.
4199, pp. 646–660. Springer-Verlag, Heidelberg, 2006.

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/wolffb/
http://www.atelierb.eu/
http://www.omg.org/cgi-bin/doc?ptc/03-10-14

Dra
ft

A Tool-supported Refinement Method for Object-oriented Data Models 19

[14] C. Pons and D. Garcia. Practical verification strategy for refinement conditions in
UML models. In S. F. Ochoa and G.-C. Roman, eds., IFIP Workshop on Advanced
Software Engineering, IFIP, vol. 219, pp. 47–61. Springer, 2006.

[15] G. Smith. The Object Z Specification Language. Advances in Formal Methods
Series. Kluwer Academic Publishers, Dordrecht, 2000.

[16] G. Smith, F. Kammüller, and T. Santen. Encoding Object-Z in Isabelle/HOL. In
D. Bert, J. P. Bowen, M. C. Henson, and K. Robinson, eds., ZB 2002: Formal
Specification and Development in Z and B, Lecture Notes in Computer Science,
vol. 2272, pp. 82–99. Springer-Verlag, Heidelberg, 2002.

[17] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, Inc., Upper
Saddle River, NJ, USA, 2nd ed., 1992.

[18] M. Wenzel and B. Wolff. Building formal method tools in the Isabelle/Isar frame-
work. In K. Schneider and J. Brandt, eds., TPHOLS 2007, Lecture Notes in Com-
puter Science, pp. 351–366. Springer-Verlag, Heidelberg, 2007.

[19] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof. Pren-
tice Hall International Series in Computer Science. Prentice Hall, 1996.

	A Tool-supported Refinement Method for Object-oriented Data Models
	Achim D. Brucker and Burkhart Wolff
	1 Introduction
	2 Background
	2.1 uml/ocl by Example: The SimpleChair System
	2.2 Formal and Technical Background of HOL in Isabelle
	2.3 HOL-OCL

	3 Analyzing the Consistency of Class Models
	3.1 Formal Preliminaries
	3.2 Formal Foundations of Model Consistency
	3.3 Proving Consistency of our Example

	4 Object-oriented Refinement
	4.1 Example: The Concrete SimpleChair Model
	4.2 Syntax and Well-Formedness
	4.3 Refining OCL Specifications
	4.4 Proving Data Refinements of the SimpleChair-Example

	5 Conclusion and Related Work
	5.1 Related Work
	5.2 Conclusion and Future Work

