
Infeasible Paths Elimination by Symbolic
Execution Techniques:

Proof of Correctness and Preservation of Paths

Romain Aissat, Frédéric Voisin, Burkhart Wolff

LRI, Univ Paris-Sud, CNRS, CentraleSupélec, Université Paris-Saclay, France
wolff@lri.fr

Abstract TRACER [8] is a tool for verifying safety properties of se-
quential C programs. TRACER attempts at building a finite symbolic
execution graph which over-approximates the set of all concrete reach-
able states and the set of feasible paths.
We present an abstract framework for TRACER and similar CEGAR-like
systems [2, 3, 5, 6, 9]. The framework provides 1) a graph-transforma-
tion based method for reducing the feasible paths in control-flow graphs,
2) a model for symbolic execution, subsumption, predicate abstraction
and invariant generation. In this framework we formally prove two key
properties: correct construction of the symbolic states and preservation
of feasible paths. The framework focuses on core operations, leaving to
concrete prototypes to “fit in” heuristics for combining them.
Keywords: TRACER, CEGAR, Symbolic Execution, Feasible
Paths, Control-Flow Graphs, Graph Transformation

1 Introduction

TRACER [8] is a symbolic execution-based tool for verifying safety properties
of imperative programs. TRACER tries to build from a program control-flow
graph (CFG) a finite symbolic execution tree which over-approximates the set of
reachable states. To this end, TRACER avoids the full enumeration of symbolic
paths by learning from infeasible paths, i. e. from paths for which no input state
exists allowing their execution. This learning phase uses interpolants for each
program point. An interpolant is a formula characterizing a set of program states.
If an interpolant allows to establish that a symbolic state is subsumed by a
previous state in its path, TRACER annotates the symbolic execution tree by
so-called subsumption links turning the tree into a graph. Thus, this annotated
tree can represent infinite sets over-approximating the feasible paths.

Finding accurate approximations of the feasible paths of a program is of
wide-spread interest for static analysis techniques, worst-time analyzers, code
optimization and code-slicing techniques and structural test-case generation.
Since in many programs the ratio of infeasible paths to feasible ones may be
very high, a lot of computing power in a static analyser could be addressed
at more rewarding targets, while dramatically improving the quality of results
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by discarding information stemming from infeasible paths. Our motivation is
in random-testing of imperative programs: there exist efficient algorithms that
draw in a statistically uniform way long paths from very large graphs [4]. If the
probability to find a feasible path from a (transformed) CFG is high, one could
use these methods to randomly draw long paths, compute their path predicate,
and test the program along an instance of the path predicate against a user-
defined post-predicate (note that this method does not depend on user-defined
loop-invariants). Thus, the method could be extended to an effective statistical
structural (white-box) testing method.

When adapting TRACER mechanisms to our own purposes, we found that
the presented proof sketches in the accompanying literature revealed a sensible
gap to a formal proof development. We therefore built a formal theory in Is-
abelle/HOL of an abstract version of the TRACER algorithm, called ATRACER.
ATRACER is a highly non-deterministic model of TRACER, consisting on five
graph transformations of a so-called red-black graph, where the red part roughly
corresponds to the analyzed symbolic execution tree gained by partial unfolding
of the CFG and the black part is the initial CFG of the program. For ATRACER,
two major theoretic results were established:

1. correctness: for every path in the new graph, there exists a path with the
same trace in the original one, and

2. preservation of feasible paths: each transformation preserves the set of feasi-
ble paths. This very important property is often claimed in papers without
a complete proof.

These results extend to an entire family of TRACER-like algorithms, which
add to ATRACER specific heuristics in their goal to provide approximations
of feasible paths of a given program. These heuristics fill in the non-determin-
istic “gaps” of ATRACER: which node to select, which interpolant to choose,
which learned invariant to inject, etc. Note that our goal is not to provide a
formal proof of TRACER implementation: heuristics aspects are not modeled,
and ATRACER uses completely diferent data-structures. ATRACER is a ra-
tional reconstruction of TRACER identifying the core operations performed on
symbolic execution graphs (SEGs) in order to prove the two above properties.
In this paper, TRACER is essentially used as an instance of such systems.

This paper proceeds as follows: After providing a short introduction into Is-
abelle/HOL and the notations we need, we present in Sec. 3 ATRACER by a
small example. Sec. 4.1 is devoted to the introduction of the formal machinery of
red-black graphs and their symbolic execution. We present in Sec. 4.2 the formal-
ization of graph-transformations. In Sec. 4.3 we state formally the correctness
and preservation properties and outline the proofs. The entire formalization and
proof effort in Isabelle/HOL consists of about one hundred definitions or abbre-
viations and two hundred lemmas, representing about 8k lines of code. All proofs
were written using the Isar proof language in a structured manner. No fancy the-
orem proving technologies were needed: the most expensive tactic used is force.
The sources are available under https://www.lri.fr/~wolff/atracer.zip.
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2 Background: Isabelle and Isabelle/HOL

Isabelle/HOL [10] is an interactive theorem proving environment for Church’s
higher-order logic (HOL), a classical logic based on a simply typed λ-calculus
extended by parametric polymorphism. HOL provides the usual logical connec-
tives like _ ∧ _, _ → _, ¬_ as well as the object-logical quantifiers ∀x. P x
and ∃x. P x; in contrast to first-order logic, quantifiers may range over arbitrary
types, including total functions f ::α ⇒ β. HOL is centered around extensional
equality _ = _ ::α⇒ α⇒ bool.

Isabelle/HOL comes with rich libraries for lists, typed sets, total and partial
functions, etc. We introduce some library notations used throughout this paper:
wrt. to sets, we use the usual {x. P(x)} for set comprehensions, x ∈ S for in-
clusion, A ∪ B, A ∩ B for union and intersection, etc. Lists were built by the
constructors Nil and _ # _. Of particular importance for this paper is the use of
record notation; records are basically cartesian products where the components
have a tag-name. As example, we declare a record by the specification construct:

record (’α, ’β) point = x :: "’α" y :: "’β"

This specification construct introduces a number of operations on record types
(such as (’α, ’β)point). For example, P = (| x = 4, y = True |) is a constructor
of a record (of type (int, bool)point), where as P’ = P(x := 3) is an update
function of the record at the component x. The tag-names implicitly define se-
lector functions on records; thus y P’ is equivalent to True.

3 A Guided Run of ATRACER

TRACER avoids the full enumeration of symbolic paths by learning from infea-
sible paths and computing interpolants for program points. In this context, an
interpolant is a logical formula associated with a program point that constraints
a set of program states: whenever symbolic execution reaches that program point
in a state satisfying the interpolant, it is ensured that the final program point
can be reached from that point (without going through a given error statement).
Once an interpolant has been synthesized for a program point, any symbolic exe-
cution path that reaches that point in a symbolic state satisfying the interpolant
needs not to be extended further: it is ensured that it will reach the final program
point. The new path is said to be subsumed by the previous one.

To avoid unrolling loops infinitely, when reaching a loop header TRACER
checks if that program point can be subsumed by one of its prior occurrences on
the path. Detection of subsumptions at loop headers is performed by comput-
ing abstraction between symbolic states, that is weakening constraints on the
symbolic states for that point. Abstraction can be performed, for example, by
removing or weakening (e.g. turning equalities into inequalities) constraints from
the path predicates. Abstraction can be seen as a synthesis of a loop invariant.
If the synthesized invariant is not strong enough, this can result in “false nega-
tives” where paths that are infeasible in the original program are not ruled out



by the abstraction of the program states. Such abstractions have to be refined:
Whenever a symbolic path leading to an error statement is produced from a
point where an abstraction occurred, TRACER checks if that path exists with-
out the abstraction. If this is the case, the error statement is truly reachable.
Otherwise, information about the unfeasability is collected and an interpolant
characterizing the unreachability of the error statement is attached to the node
where the faulty abstraction was made. The analysis is restarted from that point,
with its new interpolant serving as a safeguard for abstractions: abstractions at
that point must now satisfy the interpolant. When it is not possible to find an
abstraction between different occurrences of a loop header, the loop is unrolled
one more time in the hope of later subsumptions. Absence of valid subsumptions
leads TRACER to unroll loops infinitely. Otherwise, abstraction and subsump-
tion result in a SEG that includes all the behaviors of the original program with
respect to the reachability of error statements.

3.1 Presenting ATRACER by an Example

Our abstraction of the original TRACER is conceived as a set of graph trans-
formations of an annotated CFG we call red-black graph. Its transitions are
annotated with basic blocks of assignments, the skip-statement, or a guard that
has to hold when executing this transition. A red-black graph represents the
over-approximated set of feasible paths and is is made of two parts : the black
part is the initial CFG and remains unchanged throughout the transformations;
the red part consists initially of a single vertex and is extended by unfolding the
initial CFG using our graph-transformation operators, i. e. by adding transitions
that are symbolically executed, subsumption links, etc. The red and black parts
are the known and unknown parts, respectively.

We illustrate ATRACER with the example drawn from Jaffar et al. [7]. The
program in Fig. 1a implements a lock acquisition algorithm. The goal of the
authors is to check that statement at line 8 is not reachable on any feasible
path, ensuring that the lock is held when the execution exits the loop. The
condition of statement if (*) at line 4 abstracts a call to an external condition
(like a function or a system call) that returns true if the lock is held by another
process. Hence at each traversal either branch of such a conditional can be taken
independently of the current state of the execution. Doing so is equivalent to
executing a true-guard. In Fig. 1b we give the CFG for the lock program.

Since we are interested in illustrating the graph transformation operators, not
in finding how to combine them in an actual system, in ATRACER we proceed
as if we always guess correctly the next step. Thus, our sequence of elementary
transformations differs from the one described by the authors in [7], whose order
is controlled by several heuristics. However, we end up with the same final SEG
as the original algorithm.

Notation: to distinguish the different occurrences of program points in the red
part, we decorate the original location label (the line number) with a superscript.
Superscripts start at 0 and increase with every further visit. Vertices labels



without superscript refer to the black part, those with a superscript to the red
part. In Fig. 2a and latter, some red vertices are linked to their black counterpart
by dotted edges. These links represent the continuation of the computation in
the original program, i. e. parts that has not been symbolically executed yet.

1 lock = 0; new = old + 1;
2 while (new != old){
3 lock = 1; old = new;
4 if (∗){
5 lock = 0; new = new + 1;}
6 }
7 if (lock == 0)
8 error ();

(a)
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true
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error ()
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(b)

Fig. 1

In the red part (depicted with square vertices), vertices are implicitly anno-
tated with configurations. Configurations are tuples: the first component, called
the symbolic state, is a function associating symbolic variables with program
variables; the second component is the path predicate, i. e. the conjunction of
constraints over symbolic variables that are accumulated during symbolic execu-
tion of the current path up to that point. Path predicates are written under static
single assignment form, introducing new symbolic variables for each assignment.

Initialization: We start the symbolic execution of the program in Fig. 1a with
the configuration ({lock 7→ lock0,new 7→ new0, old 7→ old0}, true) The red
part consists of the single red vertex 10, corresponding to the entry program
point in the black part and is linked to the latter (Fig. 2a).

Symbolic execution of assignments: from 10, we perform symbolic execu-
tion over the black transition leading from 1 to 2. This results in the addition
of a red transition from 10 to 20. The symbolic state at 20 is obtained from
the one at 10 by associating fresh symbolic variables with variables lock and
new and adding two constraints to the path predicate. The configuration for
20 is: ({lock 7→ lock1,new 7→ new1, old 7→ old0}, lock1 = 0∧new1 = old0+1).

Symbolic execution of guards: assuming the first symbolic path enters the
loop, symbolic execution is performed from 20 over the transition from 2 to
3. The path predicate at 30 is the conjunct of path predicate at 20 with the
constraint new1 6= old0 , obtained by substituting occurrences of program
variables in the guard by the symbolic variables they are associated with
in the symbolic state. Assuming we follow first the then branch of the in-
ner conditional, i.e. statements at line 5, symbolic execution is performed
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until the statement at line 2 (the loop header) is reached for the second
time, completing one loop iteration. The configuration for 21 is ({lock 7→
lock3,new 7→ new2, old 7→ old1}, lock1 = 0 ∧ new1 = old0 + 1 ∧ lock2 =
1 ∧ old1 = new1 ∧ lock3 = 0 ∧ new2 = new1 + 1).

Subsumption between loop headers: 20 and 21 are two occurrences on the
current path of the same loop header. Given two occurrences v and v′ of
a same program point, v′ can be subsumed by v if it is a particular case
of v. When candidates for subsumption are discovered, in most cases the
subsumption cannot occur directly. Subsuming a vertex often requires the
configuration of the subsumer to be abstracted, that is relaxing some con-
straints of its path predicate, to force the subsumee to imply its subsumer.
This is not needed here, since 21 and 20 can be shown to be logically equiv-
alent. Vertex 21 is subsumed by 20 and the small dotted edge linking 21 to
the black part is replaced by a subsumption link from 21 to 20 in Fig. 2b (de-
picted by the big dotted edge). After that subsumption, symbolic execution
resumes at 40 and extends up to 22, a new target for a subsumption.

Limiting abstractions with interpolants: Before processing 22, the inter-
polant new 6= old (written between brackets in Fig. 2c) is added at 20 to
prevent the subsumption of 22 by 20. Labeling a vertex with an interpolant
needs to show that the configuration entail the interpolant, which is the case
here. The symbolic state at 22 is not a particular case of the one at 20 and
abstraction is forbidden by the interpolant: subsumption cannot occur and
the loop is unrolled, performing symbolic execution from 22 to 31.

Marking nodes as unsatisfiable: The path predicate at 31 is unsatisfiable,
as it requires new and old to be both equal and different. We mark (with a
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⊥ symbol, in Fig. 3a) nodes known as unsatisfiable. In practice, this would
result from a call to a constraint solver: in ATRACER only configurations
proved as unsatisfiable can be marked. As we do not expect the user to call a
solver at every node, for performances reasons, we let it be an explicit action.
We do not disallow to pursue from a marked configuration, but symbolic
execution will carry the mark to its successors.

Symbolic execution resumes at node 22, and follows the exit branch of the
loop. The exit point and the error location are reached, respectively at E 0 and
80, and the latter is marked since its path predicate is unsatisfiable. Symbolic
execution now resumes at node 20, the last pending point, and exits the loop,
reaching 71. As the configuration at 20 does not satisfy the exit condition, 71 is
marked as unsatisfiable (Fig. 3b).

In Fig. 3b, every leaf of the red part is either marked as unsatisfiable, sub-
sumed or an occurrence of the final black location. Every feasible path of the
black part is contained in the red part! The error statement at line 8 is no longer
reachable from a feasible symbolic path (from the red entry) either in the red
part or in the black part (red vertices linked to the black part are all marked as
unsatisfiable) which can therefore be pruned.

4 The Formalization of ATRACER

4.1 The Theory of Red-Black Graphs

In this section, we introduce the main concepts needed in order to formalize
red-black graphs and to state and prove the main theorems we are interested



in. We first introduce the definitions we use to model graphs and CFGs, then
present main definitions and facts about symbolic execution.

Basic Definitions about Graphs The notion of graph and associated con-
cepts like sub-paths are central to our formalization because we need an abstrac-
tion of sharing in the abstract syntax as well as arbitrary cycles in the CFG.
Moreover, we need to consider paths going through subsumption links, a notion
that is specific to our approach. We start with a conventional definition of a
graph over some type of vertices ’a as a set of arcs linking the nodes:

record ’a arc = src :: "’a" record ’a rgraph = root :: "’a"
tgt :: "’a" arcs :: "’a arc set"

Our notion of graph assumes that they have one single root (which comes in
handy when modeling CFG’s). So far the definitions do neither imply that the
graph is connected and that root has any connection to the arcs. These kind of
side-conditions are captured by additional predicates, and sometimes managed
by the Isabelle concept of a locale, covered by Ballarin in [1].

On this basis, a rich theory of auxiliary concepts must be developed. For
instance, we need the concept of a “consistent arc sequence”:

fun cas :: "’a ⇒ ’a arc list ⇒ ’a ⇒ bool"
where
"cas v1 [] v2 = (v1 = v2)"

| "cas v1 (a#seq) v2 = (src a = v1 ∧ cas (tgt a) seq v2)"

which paves the way to the concept of a subpath:

"subpath g v1 seq v2 ≡ cas v1 seq v2 ∧ v1 ∈ verts g ∧ set seq ⊆ arcs g"

and path (a sub-path from the root). Both concepts were borrowed from Nochin-
ski’s Graph Library for Isabelle [11]. Here, we define as vert the nodes which are
either root, source or target of an arc, and add the usual notions of in- or outgo-
ing arcs. We add abstract operations on graphs (like adding arcs) and establish
a number of properties wrt. vertices, paths, inarcs, and outarcs.

We then define graphs equipped with a subsumption relation. In the follow-
ing, subsumptions only involve vertices of the red part that represent different
occurrences of a same vertex of the black part. We represent subsumption rela-
tions by sets of pairs of indexed vertices:

type_synonym ’a sub_t = "((’a × nat) × (’a × nat))"
type_synonym ’a sub_rel_t = "’a sub_t set"

Again, paths and sub-paths in a graph equipped with such a relation are
defined using the notion of consistency of an arc sequence. An arc sequence
is consistent in presence of a subsumption relation if it is made of a number
of consecutive consistent (without the subsumption relation) sequences whose
extremities are linked throughout elements of the subsumption relation.

If we add an arc labeling function to graphs, we speak of labeled transition
systems (lts). Their type is defined by the record-extension:



record (’a,’b,’c) lts = "’a rgraph" + labf :: "’a arc ⇒ (’b,’c) label"

where ’c is the type of values taken by program variables. It enriches the ’a
rgraph with a labeling function; these labels turning an arbitrary graph into a
CFG have a richer structure that we describe in the following.

Main Definitions and Facts about Symbolic Execution First, we define
corresponding to program variables ’a the symbolic variables with their super-
scripts (cf. Sec. 3.1) by a type synonym (pairing that program variable with an
integer) and define the concept of a store for bookkeeping the current association
of a program variable with its symbolic variable represented by its superscript.

type_synonym ’b symvar = "’b × nat"
type_synonym ’b store = "’b ⇒ nat"

States are used to give values to variables. Arithmetic and boolean expressions
are modeled in shallow embedding style, by total functions from variables to
their domain and to boolean values, respectively.

type_synonym (’b,’c) state = "’b ⇒ ’c"
type_synonym (’b,’c) aexp = "(’b,’c) state ⇒ ’c"
type_synonym (’b,’c) bexp = "(’b,’c) state ⇒ bool"

This way of modeling expressions has the advantage that there is no need to
formalize the different operators on expressions, which would have been necessary
using a syntactic approach. Moreover, shallow embedding allows the use of the
existing Isabelle notations and theorems about functions.

On the other hand, it makes it a bit harder to describe the set of variables of
such expressions, which is needed when reasoning about the freshness of some
symbolic variable for a configuration. We define the set of variables of an arith-
metic (resp. boolean) expression as the set of variables that can actually have
an influence over the value of this expression.

definition vars :: "(’b,’c) aexp ⇒ ’b set" where
"vars e = {v. ∃σ val. e (σ(v := val)) 6= e σ}"

Since configurations and subsumption between configurations have been in-
troduced in Section 3.1, we skip their formal definitions here and go directly to
symbolic execution. We note c v c′ the fact that configuration c is subsumed by
configuration c′.

Symbolic execution is defined as an inductive predicate se that takes two
configurations c and c′ and a label l and evaluates to true if c′ is a result of the
symbolic execution of l from c. Results are defined up to the way fresh indexes
are chosen in the case of Assign labels. We prove that fresh indexes exist when
needed, assuming expressions in labels and configurations from which symbolic
execution is performed have finite sets of variables.

Labels are either Skip,Assume φ, where φ is a boolean expression, orAssign v e
where v is a program variable and e an arithmetic expression.



datatype (’b,’c) label =
Skip | Assume "(’b,’c) bexp" | Assign ’b "(’b,’c) aexp"

inductive se :: "(’b,’c) conf ⇒ (’b,’c) label ⇒ (’b,’c) conf ⇒ bool"
where
"se c Skip c"

| "se c (Assume e) (| store c, pred = pred c ∪ {adapt_bexp e (store c)} |)"
| "fresh_symvar (v,i) c =⇒

se c (Assign v e)
(| store = (store c)(v := i),
pred = pred c ∪ {(λ σ. σ (v,i) = (adapt_aexp e (store c)) σ)} |)"

Here, adapt_aexp e s (resp. adapt_bexp) represent the expression obtained from
the arithmetic (resp. boolean) expression e by substituting every occurrence of
program variables by their symbolic counterpart given by s. It would have been
possible to define se as a function, but the assumption about freshness in the
case of an assignment would require a special treatment. This could be done
in a number of ways. For example, se could be a partial function defined only
in those cases where the new symbolic variable is indeed fresh.1 In the end, we
found that using a predicate was the simplest way to model se, and also yields
simpler proofs in the rest of the formalization.

We extend symbolic execution to sequences of labels, and model it by an
inductive predicate se_star that takes two configurations and a sequence of
labels, and evaluates to true if the second configuration is a possible result of
symbolic execution of the given sequence from the first configuration.

To prove the key properties of our approach, one first proves that symbolic
execution is monotonic with respect to the previous definition of subsumption.
We only state the theorem for se, a similar one holds for se_star.

theorem se_mono_for_sub :
assumes "se c1 l c1’"
assumes "se c2 l c2’"
assumes "c2 v c1"
shows "c2’ v c1’"

The proof is obtained by case distinction on l, expressing the states of c1′ and
c2′ as functions of the states of c1 and c2, respectively. In the case of sequence
of labels ls, the proof is obtained by induction on ls, using se_mono_for_sub.

4.2 Graph-Transformations on Red-Black Graphs

We are ready to give the structure of (’a,’b,’c) pre_RedBlack before defining
what means to be a (’a,’b,’c) RedBlack graph.

record (’a,’b,’c) pre_RedBlack =
red :: "(’a × nat) rgraph"

1 Given an arbitrary configuration, there is no guarantee that there exists a fresh
symbolic variable for a given program variable, since expressions are defined as total
functions.



black :: "(’a,’b,’c) lts"
subs :: "((’a × nat) × (’a × nat)) set"
init_conf :: "’b conf"
confs :: "(’a × nat) ⇒ (’b,’c) conf"
marked :: "(’a × nat) ⇒ bool"
strengthenings :: "(’a × nat) ⇒ (’b,’c) bexp"

The fields red and black represent the red and black parts, respectively.
init_conf is the configuration initially chosen to start the analysis. subs is the
subsumption relation which contains the subsumption links between the vertices
of red. Finally, confs, marked and strengthenings are functions associating to
the vertices of red their current configuration, the fact that they are marked as
unsatisfiable or not, and their current interpolant, respectively.

We now specify what we call the GT-calculus, ı.e. the five graph transfor-
mations and the set of reachable red-black graphs from an initial configuration
containing just a black part and an empty well-formed red part.2 The construc-
tion proceeds per inductive definition as follows:

inductive RedBlack :: "(’a,’b,’c) pre_RedBlack ⇒ bool" where
init :
"fst (root (red rb)) = init (black rb) =⇒
arcs (red rb) = {} =⇒
subs rb = {} =⇒
(confs rb) (root (red rb)) = init_conf rb =⇒
marked rb = (λ rv. False) =⇒
strengthenings rb = (λ rv. (λ σ. True)) =⇒ RedBlack rb"

| se_step :
"RedBlack rb =⇒ se_extends rb ra c’ rb’ =⇒ RedBlack rb’"

| mark_step :
"RedBlack rb =⇒ mark_extends rb rv rb’ =⇒ RedBlack rb’"

| subsum_step :
"RedBlack rb =⇒ subsum_extends rb sub rb’ =⇒ RedBlack rb’"

| abstract_step :
"RedBlack rb =⇒ abstract_extends rb rv e rb’ =⇒ RedBlack rb’"

| strengthen_step :
"RedBlack rb =⇒ strengthen_extends rb rv e rb’ =⇒RedBlack rb’"

where operations se_extends, mark_extends, subsum_extends, abstract_extends
and strengthen_extends are abbreviations (macros) for a number of constraints
necessary to describe, one by one, the graph transformations informally intro-
duced in Sec. 3.1. We pick the graph transformation se_extends as example:

abbreviation se_extends ::
"(’a,’b,’c) pre_RedBlack ⇒(’a × nat) arc ⇒ (’b,’c) conf ⇒
(’a,’b,’c) pre_RedBlack ⇒bool"

where
"se_extends rb ra c’ rb’ ≡

ui_arc ra ∈ arcs (black rb) (* 1 *)

2 This is ensured by a number of constraints on the free variable rb forcing the root
of the red part to be the initial location of the black part, etc.



∧ ArcExt.extends (red rb) ra (red rb’) (* 2 *)
∧ src ra /∈ subsumees (subs rb) (* 3 *)
∧ se (confs rb (src ra)) (labf (black rb)(ui_arc ra)) c’ (* 4 *)
∧ rb’ = (| red = red rb’,

black = black rb,
subs = subs rb,
init_conf = init_conf rb,
confs = (confs rb) (tgt ra := c’),
marked = (marked rb)(tgt ra := marked rb (src ra)),
strengthenings = strengthenings rb |) (* 5 *)"

The constraints describe formally the following side-conditions (we follow the
labels in comments above):

1. ui_arc ra, the (unindexed) black counterpart of red arc ra must exist in the
black graph,

2. ArcExt.extends is an abbreviation that states that the source of ra must be
an existing vertex of the red graph, but not its target, and that the new red
graph is obtained by adding ra to the arcs of the old one,

3. the source of ra is is not already subsumed,3
4. c′ is the new configuration obtained by symbolic execution of ra
5. the new red-black graph rb′ is constructed from the old one by the following

updates:
– ra is added to the red graph
– the new configuration is added at the target of ra
– the satisfiability-flag of the target of ra is set to the one of its source.

Recall that we want registration of unsatisfiablity to be an explicit action.

The amount of detail that must be added when reasoning precisely over the
correctness issues of these type of graph-based static analysis algorithms is quite
substantial and makes it a valuable target for a machine-checked analysis.

From now on, we call red-black graphs the set of pre_RedBlack reachable by the
predicate RedBlack.

4.3 Main Theorems of ATRACER

Relation between Red Vertices In the case of a classical symbolic execution
tree, one would prove that, given one sub-path in the tree, the symbolic state at
its end has been obtained by symbolic execution of its trace from the symbolic
state at its beginning. This property is too strong for red graphs obtained by the
GT-calculus. We must handle sub-paths that go through subsumption links and
configurations along these sub-paths may have been abstracted, both inducing a
loss of information about program states.4 In ATRACER, the configuration at
3 The conjunction of 2 and 3 is equivalent to say that the source of ra is a pending
point in the analysis.

4 Note that in the second assumption of gt_calc_se_rel, unlike in Sec. 4.1, subpath
has a fifth parameter: the subsumption relation of rb.



the end of a sub-path merely subsumes the one obtained by classical symbolic
execution. This is expressed by the following theorem.

theorem gt_calc_se_rel :
assumes "RedBlack rb"
assumes "subpath (red rb) r1 s r2 (subs rb)"
assumes "se_star (confs rb r1) (trace (ui_as s) (labelling (black rb))) c"
shows "c v (confs rb r2)"

The proof is obtained by rule induction on RedBlack, i.e. the five transforma-
tion operators maintain the property. All cases are quite straightforward, except
for adding a subsumption link. The details of its proof are quite tedious and
numerous, so we skip them here and just give the main idea. The problem is
that we do not know how many times the considered sub-path goes through
the new subsumption, if it does. But as we consider finite sub-paths only, this
number is finite: the proof is obtained by a backward induction on s, using the
fact that subsumption between configurations is a partial ordering for which
symbolic execution is monotonic.

Red-black Sub-paths and Paths Before stating our two main theorems, we
formalize the notion of sub-path of a red-black graph and its set of paths. Given
a vertex rv of the red graph, we first define the set of red-black sub-paths starting
from rv as the union of the two following sets:

– the sets of black sub-paths entirely represented in the red graph by sub-paths
starting at rv and ending in a non-marked red vertex,

– the sets of black sub-paths that have a prefix represented in the red graph
leading to a non-marked red vertex rv ′, which is not subsumed and from
which there exist black arcs that have not been symbolically executed yet.
Moreover, the remaining black suffix must have no (non-empty) prefixes
represented in the red graph (starting at rv ′).

As in Sec. 4.1, we define the set of red-black paths as the set of red-black
sub-paths starting at the root of the red graph. This complex definition is needed
to ensure that what we call the set of red-black paths is not simply the set of
paths of the black graph.

Correctness of the GT-Calculus Our first main theorem states that red-
black paths all come from paths of the black part. More precisely, every red-black
sub-path starting at some red vertex rv is also a sub-path starting at the black
vertex represented by rv in the black graph. Thus, our approach is correct in the
sense that it does not introduce new paths in the red-black graph and preserve
program behavior.

theorem gt_calc_correct :
assumes "RedBlack rb"
shows "RedBlack_subpaths_from rb rv

⊆Graph.subpaths_from (black rb) (fst rv)"



The theorem relies on the fact that arcs added to the red part are simply
indexed versions of black arcs, and that subsumption links only involve different
occurrences of the same black vertices.

Preservation of Feasible Paths Finally, we prove that the original set of
feasible paths is contained in the red-black graph. Our main theorem is the
following: given a red vertex rv , every feasible black sub-path bs starting at
the black vertex represented by rv from the configuration associated to rv is a
red-black sub-path starting at rv .

theorem gt_calc_preserves :
assumes "RedBlack rb"
assumes "rv ∈ red_vertices rb"
assumes "bs ∈ feasible_subpaths_from (black rb) (confs rb rv) (fst rv)"
shows "bs ∈ RedBlack_subpaths_from rb rv"

As for correctness, the proof (which is 2.3k loc, and can be found in file
RB.thy) is obtained by rule induction on RedBlack. For each operator, we use
the induction hypothesis to get that bs is also a red-black sub-path of the old
red-graph, before proving that it is not ruled out by the current transformation.
The initial case is trivial, as well as those of abstracting a configuration and
adding an interpolant, since the former only makes the set of red-black sub-
paths larger and the latter does not modify the graph structure but only prevents
future abstractions. The case of adding a red arc is simple but tedious as one
needs to treat the numerous sub-cases. Marking a red vertex as unsatisfiable is
proved using the fact that the vertices that bs goes through cannot be marked,
otherwise bs would not be feasible. The case of adding a subsumption link is
the difficult one, for the same reasons as previously. Again, the proof is obtained
by a backward induction on the considered sub-path before proceeding by case
distinction.

We rephrase our main theorem in more readable way:

theorem gt_calc_preserves2 :
assumes "RedBlack rb"
shows "feasible_paths (black rb) (init_conf rb) ⊆ RedBlack_paths rb"

It is proved using the fact that the initial configuration of a red-black graph
is subsumed by the one associated with the root of its red part, hence the set of
feasible paths starting from the former is a subset of the set of the latter.

4.4 Summary

The formalization of ATRACER presented a number of challenges. We first
attempted to formalize the whole TRACER’s algorithm, heuristics aspects in-
cluded. At this time, the SEG was modeled as a tree, whose nodes and leaves
could have different types: simple, unsatisfiable, subsumed, subsumer, and were
decorated with much information, like configurations, the identity of the sub-
sumer, etc. We then faced major difficulties. First, this structure is not suitable



to describe inductively how its set of paths evolves after adding a new node, a
subsumption, etc. Our current modeling of graphs equipped with subsumption
relations makes this task far more easy. Second, it is very difficult to model in
details the heuristics aspects, like graph traversals, how subsumptions are de-
tected, or how abstractions are refined in practice, for example. We finally chose
to “break” TRACER’s algorithm into pieces in order to identify and formalize
the core operations it performs on SEG, and to give up the heuristics aspects,
since they have no influence on the preservation of feasible paths. Finally, due to
the nature of the problem - symbolic execution in presence of unbounded loops,
TRACER-like algorithms might not terminate. In practice, this is handled using
some kind of time-out condition. When such conditions are triggered, the only
way to preserve all feasible paths is to “plug” the actual SEGs into the original
graph. In ATRACER, this is represented by the black part and the complex
definition of red-black paths. This is also what motivates identifying the core
operations, since the problem of preservation is reduced to showing that each
operator never rules out feasible paths.

5 Conclusion

Related Work. Our work is inspired by Tracer [8] and the more wider class
of Cegar-like systems [2, 3, 5, 6, 9] based on predicate abstraction. However,
we did not attempt any code-verification of these systems and rather opted
for their rational reconstruction allowing for a clean separation of heuristics
and fundamental parts. Moreover, our treatment of Assume and Assign-labels is
based on shallow encodings for reasons of flexibility and model simplification,
which these systems lack. There is a substantial amount of formal developments
of graph-theories in HOL, most closest is perhaps by Lars Noschinski [11] in
the Isabelle AFP. However, we do not use any deep graph-theory in our work;
graphs were just used as a kind of abstract syntax allowing sharing and arbitrary
cycles in the control-flow. And there are a large number of works representing
programming languages, be it by shallow or deep embedding; on the Isabelle
system alone, there is most notably the works on Ninja, NanoJava, IMP, etc.
However, these works represent the underlying abstract syntax by a free data-
type and are not concerned with the introduction of sharing in the program
presentation; to our knowledge, our work is the first approach that describes
optimizations by a series of graph transformations on CFG’s in HOL.

Summary. We formally proved the correctness of a set of graph transforma-
tions used by systems that compute approximaztions of sets of (feasible) paths
by building symbolic evaluation graphs. Formalizing all the details needed for a
machine-checked proof was a substantial work. To our knowledge, such formal-
ization was not done before.

The ATRACER model separates the fundamental aspects and the heuristic
parts of the algorithm. Additional graph transformations for restricting abstrac-



tions or for computing interpolants or invariants can be added to the current
framework, reusing the existing machinery for graphs, paths, configurations, etc.

Future Work. Currently, we are implementing a prototype “by hand” that
must not only preserve feasible paths but heuristically generate abstractions and
subsumptions. It would be possible to generate the core operations on red-black
graphs by the Isabelle code-generator, by introducing un-interpreted function
symbols for concrete heuristic functions that were mapped to implementations
written by hand. This represents a substantial, albeit rewarding effort that has
not yet been undertaken.
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