
Making Agile Development Processes fit for V-style
Certification Procedures?

Sergio Bezzecchi2,3, Paolo Crisafulli3, Charlotte Pichot2,3, and Burkhart Wolff1

1 LRI, Université Paris Sud, CNRS, Université Paris-Saclay, France
wolff@lri.fr

2 Alstom, France
Firstname.Lastname@alstomgroup.com

3 IRT SystemX, France
Firstname.Lastname@irt-systemx.fr

Abstract. We present a process for the development of safety and security critical
components in transportation systems targeting a high-level certification (CENELEC
50126/50128, DO 178, CC ISO/IEC 15408).
The process adheres to the objectives of an “agile development” in terms of evolu-
tionary flexibility and continuous improvement. Yet, it enforces the overall coherence
of the development artifacts (ranging from proofs over tests to code) by a particular
environment (CVCE) .
In particular, the validation process is built around a formal development based on
the interactive theorem proving system Isabelle/HOL, by linking the business logic of
the application to the operating system model, down to code and concrete hardware
models thanks to a series of refinement proofs.
We apply both the process and its support in CVCE to a case-study that comprises a
model of an odometric service in a railway-system with its corresponding implementa-
tion integrated in seL4 (a secure kernel for which a comprehensive Isabelle development
exists). Novel techniques implemented in Isabelle enforce the coherence of semi-formal
and formal definitions within to specific certification processes in order to improve their
cost-effectiveness .

Keywords: Development Processes, Certification, Formal Methods, Isabelle/HOL, seL4

1 Motivation

Use of formal methods as validation technique for certification of safety and security criti-
cal systems is sometimes regarded as counterproductive to industrial development processes,
even for having an advantage over competitors. This holds for the railway-industry (following
CENELEC 50126/50128), the avionics (DO 178 B/C) or the industry of security critical com-
ponents (Common Criteria ISO 15408). A major reason for this reluctancy is the perception
that these techniques are too complex to apply, require high-skilled contributors and there-
fore is time-consumming and not well mastered. This contributes to the fact that regulators
speak of a “certification crisis” [10] which, in the case of CC 15408, is reflected by only a
handful EAL7 (level requiring formal methods) certifications after 25 years of the standards
existence...

? This research work has been carried out in the framework of IRT SystemX, Paris-Saclay, France,
and therefore granted with public funds within the scope of the Program “Investissements d’Avenir”.



2 Bezzecchi, Crisafulli, Pichot, Wolff

Agile Development. Agile processes have gained substantial popularity among developers
because of their flexibility. It is instructing to consider their objectives, such as evolutionary,
distributed development and continuous build.

For safety-critical systems development, rework is often practiced: this costs a lot and
can bring inconsistency. Defining an agile process, adapted for rework and impact analysis,
compliant with a V-cycle will solve this issue.

Certification procedures. CENELEC 50126/50128, DO 178, CC 15408 alltogether require
a number of documents which are evaluated in a particular order and establishing traceability
between these documents whose formats are prescribed in templates. Missing links, revisions,
backtracks and inconsistency lead to augmented efforts and costs during the certification .

All these certification processes recommend or mandate the use of formal methods, whether
for modeling or for proof. 4 For short, a development process targeting certification has the
following particularities:

– a relatively high and certification-level dependent degree of formality
– pervasive, comprehensive traceability of requirements, environment hypotheses, etc.
throughout all artifacts, and

– perfect reproducibility of all artifacts.

A key-observation for our work is that it is common sense not to enter certification pro-
cedures too early, which results in a separation of development and validation. It is our aim
to enable for both a distributed, “agile” process based on a strong division of labor and a fast
tool-supported impact analysis, as long as at any time the coherence of all artifacts can be
assured.

2 A Development Process and its Support in CVCE

The presentation of a CENELEC certification process is best described with the following,
V-style process scheme: A CENELEC certification requires a number of key-phases: Require-

Fig. 1: CENELEC certification W-schema Fig. 2: CENELEC development in CVCE

ments Definition, the Design, the Coding, Test and Commissioning phase, each accompanied
with a Validation/Independent Safety Assessment phase. Traditionally, the latter phases are
separated from the former (as the standard requires organizational independence); however,
we propose to keep them closely together in order to improve agility and to ensure organiza-
tional independence by technical means. This also applies for the accompanying documents.

4 CENELEC EN 50128:2011 mentions in Annex D.28 CSP, HOL, Temporal Logic, and B, etc.



Agile Development Processes and Formal Certification 3

This paves the way for a strong automated impact analysis for changes during the develop-
ment connecting both sides rather than separating them. In section 4, we will demonstrate the
transition accross one layer of this diagram — the transition from a requirements definition
to its V/ISA counterpart depicted by the blue arrow — using a number of tool-supported
techniques, ranging from “literate specification” over validation of definitions to finally proofs
and tests in order to gain and demonstrate confidence over the system and its models. In
current certification processes reworking of visited phases (Figure 2) takes months and is a
major cost factor; during certification, this usually happens only due to change requests of an
evaluator. In our process, however, it is possible to modify these documents on a daily basis,
even in a distributed manner. This results in a cultural shift of the development team, now
following the motto of agile development “embrace change”. Furthermore, we complement it by
the motto “embrace formality” as a means to make the overall coherence machine-checkable,
and to keep the feedback time of the impact of modifications short.

Of course, tool-support for such a process is vital. The proposed Continuous Verification
and Certification Environment(CVCE) is basically a tool-chain built around Isabelle/HOL[7].
As a result, the development process benefits from agile and formal features of CVCE.

Isabelle is nowadays best described as a general system framework providing a program-
ming environment, code and documentation generators as well as a powerful IDE, comprising
an own session and build management. It allows extensions of the core with plugin con-
cepts roughly similar to Eclipse. Isabelle/HOL is such a plugin that supports modeling, code-
generation as well as automated and interactive theorem proving for Higher-Order Logic
(HOL). For HOL, plugins such as HOL/AutoCorres or HOL/TestGen have been developed
for code-verification of C programs or for model-based test-generation, respectively.

Moreover, Isabelle is used as a central tool for the entire project document generation;
particular setups have been developed by the authors in order to mark the different items of a
certification (requirement, assumption, test-case, justification, ...) and their evaluation results
(validated proofs or tests, for example). These markers along with associated traceability
have been implemented by Isabelle’s concept of antiquotations[13] and are supported directly
in the IDE, enabling direct checking of all types of links directly when editing and before
document generation, which can take considerable time. The validation mechanism of Isabelle
have been extended by the authors by a particular generic “ontology support” which has
been instantiated for CENELEC; this can be seen as an validation-checker for semi-formal
content of the document imposing a particular syntactic structure of the overall documents
and enforcing a consistent use of links between the different documentation parts.

3 Features of CVCE and its Benefits for the Development Process
Version vs. Acces Control. The core technologies which ensure modeling, proving, and
coherence management, were integrated into pervasive version management (in our case im-
plemented via Git (c. f. https://git-scm.com/). Even for the early phases we encourage the
versioning of notes (possibly complemented by sketches and, eg., photos from blackboards)
as a text-basis to be improved during the process.

Incrementality by Gradual Improvement. Support of gradual improvements with re-
spect to the progression of text quality, degree of formality, degree of confidence, executability,
testability, efficiency and finally document coherence wrt. to a standard are of vital importance
for CVCE. We advocate techniques for model validation, metrics to measure confidence, and
strengthening coherence by a transition from liberal to more and more constraining document
ontologies during the process.

Global Document, Information Filtering and Retrieval. CVCE accomodates the en-
tire collection of primary and generated artifacts as part of a global (versioned) document

https://git-scm.com/


4 Bezzecchi, Crisafulli, Pichot, Wolff

containing mutual links and coherence constraints to be taken care of. We present a number
of techniques to browse and filter formal content, and to use meta-information to produce
stake-holder specific “views” of the global document.

Impact Analysis on Local and Global Documents. A change somewhere in the global
document will raise the inconsistencies/incoherences. The more formal and semi-formal con-
tent has been integrated, the finer the grid will be to trace problems as a result of change.
Isabelle offers a particular form of fine-grained parallelism [11,12] that allows for larger por-
tions of the global document (so-called sessions) to produce fast feedback for changes (within
the limits of the document structure, computing complexity and computing power).

Continuous Build. It may be necessary to structure the Isabelle documents into several
components (called sessions) and to rebuild them periodically in order to maintain agility
during their development. We implemented this side of large-scale continuous rebuild by a
particular configuration of Jenkins (c. f. https://jenkins.io/). Continuous rebuild of com-
ponents increases both the enforcement of verifiation and validation processes as well as the
development speed itself, by direct reuse of pre-compiled Isabelle sessions from the Jenkins
server.

Advanced Configuration Management. We suggest an integrated configuration manage-
ment based on Docker (c. f. https://www.docker.com/) which allows an abstraction from the
OS configurations including different versions of script-interpreters, compilers, simulators, etc.
“Dockerization” of the entire environment also facilitates the empowerment of various team
members to execute and simulate low-level artifacts for critical cases whenever they are de-
tected. In our case study, we greatly profited from the fact that the seL4-project provides
already a dockerized verification, build and test environment for both the code-generation as
well as the code-verification step.

4 The Odometry Case Study

In this section, we demonstrate the development techniques within CVCE by an example
drawn from a major case-study, the Odometry Subsystem of a train converting sensor data
into safety-critical information.

Due to space limitations, we will concentrate only on one particular slice of the develop-
ment, the transition from Requirements Definition to V/ISA (this corresponds to the topmost
left blue arrow in Figure 1, which is now decomposed into a series of different techniques
structuring this transition). The combined document is called Requirements Analysis (or:
Odo_ReqAna) in our case study.

The “scaling up” of our business logic to a subsystem (comprising also operating system
and hardware) is described in the next section — this scope of our case study is typical for
the embedded systems domain.

In the rest of this section, the involved formalization techniques are highlighted in boxes
and meta-level commentaries are displayed in ordinary font.

Early Phase: Capture of Requirements and Definitions

Mechanisms: Isabelle structuring commands chapter, section, text using markers.

The frame below contains an extract of the original specification of our case study, with
Isabelle structuring commands highlighted. This activity — the capture of requirements def-
initions — can be done by system-engineers and domain experts with no Isabelle knowledge.

https://jenkins.io/
https://www.docker.com/


Agile Development Processes and Formal Certification 5

chapter The Odometric Function

section Introduction

text The proposed use case comprises two services:
– Odometrics module, which processes the signals issued by an incremental shaft encoder
attached to a bogie’s axle, producing a real-time estimation of the train’s progress.

– Kinematics module, which calculates:
1. the train’s relative position, and
2. the train’s absolute speed, acceleration and jerk. [. . .]

subsection General Assumptions

text For the purpose of this study, we assume
– the train’s wheel profile is perfectly circular, with a given, constant radius,
– negligible slip between the train’s wheel (to which the shaft encoder is installed) and
the track,

– the shaft encoder’s path between teeth is the same and constant, and [. . .]
– the sampling rate of the encoder’s input is a given constant, fast enough to avoid
missing codes.

section The Odometric Subsystem

text We call tpw the number of teeth per wheelturn.
The proposed incremental encoder provides cyclical outputs when its shaft is rotated, at
a pace of tpw counts per revolution. To produce a sound value, the encoder has three
outputs, called C1, C2 and C3, which are 120 degrees out of Phase. Each tooth is read
by the 3 sensors, each with the corresponding shift. Each sensor output can present a
logical value of 0 or 1. [. . .]

subsection Additional Encoder Properties

text The geometrical construction of the encoder ensures the following relationships
representing information redundancy allowing to detect faults at the physical aspect of
the odometer.

– C1 & C2 & C3 = 0 (bitwise logical AND operation)
– C1 | C2 | C3 = 1 (bitwise logical OR operation)

[. . .]

subsubsection Precision of Calculations

text The resolution of time, distance, speed and acceleration data, in International
System Units, shall be:
– Time: 10−2s the resolution needed for calculation.
– Distance: 10−3m (i.e. 1mm)
– Speed: 1.3 x 10−3m/s (i.e. 0.005 km/h)
– Acceleration: 0.005m/s2
– Jerk: 0.005m/s3

The intended accuracy shall be propagated throughout internal calculations so as to
insure that the output data respects the specified resolution.



6 Bezzecchi, Crisafulli, Pichot, Wolff

Early Phase Formalization of Key Notions

Mechanisms: Isabelle specification constructs definition, fun

The anaysis of the previous text reveals that Integers and machine representation of integer
(“unsigned integer 32 bits”) play a major role for the formal arguments in this problem domain.
Consequently, we base this document on a logical context supported by libraries for machine-
words (Word.thy) and the standard library of Isabelle/HOL called Main.

We can now start to enrich the informal text sections by formal definitions; for example:

record shaft_encoder_state = C1 :: bool C2 :: bool C3 :: bool

defining an input-type of the odometer as a triple of boolean values C1, C2, and C3. The
informally mentioned Phase function maps position codes into this triplet; we proceed by
recursive definition:

fun phase0 :: "nat →shaft_encoder_state" where
"phase0 (0) = (| C1 = False, C2 = False, C3 = True |)"
|"phase0 (1) = (| C1 = True, C2 = False, C3 = True |)"
|"phase0 (2) = (| C1 = True, C2 = False, C3 = False|)"
|"phase0 (3) = (| C1 = True, C2 = True, C3 = False|)"
|"phase0 (4) = (| C1 = False, C2 = True, C3 = False|)"
|"phase0 (5) = (| C1 = False, C2 = True, C3 = True |)"
|"phase0 x = phase0(x − 6)"

definition Phase :: "nat → shaft_encoder_state"
where "Phase (x) = phase0 (x−1) "

Gaining Confidence by Validation

Mechanisms: value, assert, and code-generation.

Once stated, definitions can be in most cases immediately used in validation commands
that execute them on ground values (no variables), in a way that is similar to OCaml or SML
command shells. We recommend this form of validation as early as possible in order to gain
confidence in the given definitions. For example:

value "Phase 7"
assert "Phase 1 = (|C1 = False, C2 = False, C3 = True|)"

where the first command just attempts to evaluate the given expression and presents the
result in the Isabelle output window. The assert command checks additionally that the result
is true; otherwise the command fails which leads to an error-message in the interactive mode of
Isabelle and a build-failure in batch-mode checks of CVCE. In particular the assert-command
is useful to document corner cases of definitions early.

The resulting document of this activity is what we call a “formalized requirements defini-
tion”. This activity can be done by system-engineers, domain experts, and programmers with
some general mathematical knowledge and functional programming skills.

Strengthening Formal Content in Informal Parts

Mechanisms: Isabelle Antiquotations @{const ...}, @{term ...}, @{type ...},
@{thm ...}, @{value ...}, @{file ...}



Agile Development Processes and Formal Certification 7

Fig. 3: Giving Text a Formal Status

Figure 3 presents a screenshot of a piece of text from the requirements definition that
has been “truffled” with antiquotations. Providing this kind of meta-information is a common
technique in typesetting systems; however, Isabelle allows for semantic checks wrt. formal
definitions and evaluations conform to them.

Gaining Confidence by Theory Development

Mechanisms: lemma, theorem, and interactive proof.

We proceed with the requiments analysis of the requirements definition. For example, the
encoder properties stated in section 3 can be now proven formally; methodologically, this can
be seen as a proof obligation stated from the requirements definition team and discharged by
the verification team. The reformulation of the “properties” and their proof looks as follows:

lemma Encoder_Property_1: "(C1(Phase x) ∧C2(Phase x) ∧C3(Phase x)) = False"
proof (cases x)
case 0 then show ?thesis by (simp add: Phase_def)

next
case (Suc n) then show ?thesis

by(simp add: Phase_def,rule_tac n = n in cycle_case_split,simp_all)
qed

Acknowledging that the theory of the core definitions can be a quite substantial amount
of text, we still advise to present it textually close to the corresponding definitions and
validations. This principle “establish the theory of a definition early” results from the global
objective to keep documents integrated and to avoid document separations (even between
requirements definition team and V&V team) in order to improve communication and speed
up impact analysis under change.

The most substantial safety proof done in the requirements analysis part of the odometry
case study is a proof that for given configuration parameters tpw, wd (wheel diameter), a
given class of normally_behaved_distance_functions df (assuming boundaries on speed and
accelleration), there is a minimal sampling frequency that the odometric measurements must
assure in order not to miss codes in a sampling sequence. The property is stated as follows
(the proof requires a large number of details that cannot be presented here):

theorem no_loss_by_sampling :
assumes ∗ : "normally_behaved_distance_function df"
and ∗∗ : "δodo ∗ SpeedMax < δsodo"

shows "∀ δt≤δodo. 0<δt −→(∃ f::nat⇒nat. retracting f ∧
sampling df init enc_pos δt = (sampling df initenc_pos δtodo) o f)"



8 Bezzecchi, Crisafulli, Pichot, Wolff

where sampling is defined in terms of an encoding sequence:

definition sampling:: "distance_function ⇒nat ⇒ real ⇒ nat ⇒ shaft_encoder_state"
where "sampling df initenc_pos sampleitvl ≡λn. encoding df initenc_pos (n ∗ sampleitvl)"

In particular the assumption ∗∗ establishes a requirement on the minimal sampling time-
interval δtodo that is actually also a constraint on the minimal speed of the calculations to
be executed on the hardware. This type of assumption — called a safety related application
condition (or: srac) in CENELEC terminology — must be tracked throughout the certification
and finally validated by hardware tests.

Adding Ontological Meta-Information and Ontological Links

Mechanisms: section∗, text∗, etc, and ontological antiquotations.

We added an own module to Isabelle that allows the definition of an ontology imposed by
a certification standard. Due to space limitations, we can not present it in detail; however,
for the sake of this paper, it is sufficient to view ontologies as a kind of document type
definition (dtd) known from XML. Ontological classes are, similar to document types in XML
or classes in object-oriented programming, organized in an inheritance relation representing
the ontological “is_a” subrelation. They can have attributes (like: “status” of a “srac”, its
“owner” in organisational terms, etc), which are in our framework fully typed in contrast to
XML. Ontological classes may have instances, i. e. links which may be the building blocks to
annotate text entities in Isabelle documents.

For example, the declaration of a text as a srac is done by a family of variants of the
Isabelle/Isar standard commands. These variants chapter∗, section∗, text∗, etc., implemented
in our ontology support, accept this type of meta-information in an additional parameter
where the first parameter is the label representing the link to the ontological class instance;
this label must be unique. The application document reference in our integrated document

Fig. 4: A declaration of a text block as a CENELEC “srac”

is shown in Figure 5: The astute reader may notice that we reference the “srac” as an exported

Fig. 5: An application of a “srac” ontological reference.

constraint (or :ec) consistent with the “is_a” subrelation defined in our CENELEC ontology.
Checking the link consistency and jumping to the corresponding text element is done by just
a mouse-click in the Isabelle IDE.



Agile Development Processes and Formal Certification 9

5 The Odometry-Service Study on Top of seL4
In order to demonstrate that our method and tool chain CVCE scales up to subsystems,
not just some module in C of finally relatively modest size, we integrated the entire theory
architecture of seL4 (developed as an open-source by the Australian research group NICTA,
see [4]) and integrated the odometry module as a safety critical component on top of it.

Fig. 6: The CVCE-instance for the Odometry Case Study

Figure 6 shows the major components of the CVCE instance for Odo. On the left side, the
process "l4v" is the main validation process, which is running as a continuous build activity.
It chains basically the refinement proofs going from the security model of seL4 down to the
implementation in ARM 7 assembler code which is either executed on a QEMU emulator or
on a Sabre Light board. The entire proof stack comprises 200 theories with about 200000 lines
of code (loc). "seL4" is the classical compilation process that compiles the C code of seL4;
it compiles under gcc -o2 (the generated code is checked inside l4v). seL4 comprises about
8000 loc and provides the basic functionality of an OS system kernel of the L4 family (like
PikeOS) enhanced with very strong security mechanisms apt to ensure process separation.
The C-code is also compiled into a model of the C-Code (including, among many other things,
the Memory Model of the C execution) which is proven correct against its contracts given in
pre- post- condition style; these contracts are linked via refinements to the design model on
the one hand and the assembler code on the other. "camkes" is a small component framework
“glueing” components together and integrate them on top of seL4 OS. The resulting module
“odo” is such a component providing the business logic of the subsystem.

6 Conclusion

We have shown a software development method and a tool chain called CVCE targeting
high-level certifications for safety and/or security critical systems. The method has been
demonstrated on a case study, the development of the odometric subsystem as used in the
railway domain. From high-level formal system modeling till code, the different links were
formally proven or extensively tested; the result is to be run on the seL4 platform which has
been verified down to assembly code by the seL4 project. To our knowledge, this capacity of
Isabelle/HOL for comprehensive verification, made realistic by reusing substantial parts of the
Isabelle/HOL community contributions, is a unique capacity of this verification framework.

The case study on the odometric subsystem proceeds through the classical steps: Require-
ments Analysis, Design Analysis, and Code(+Verification), where the key functions can be
seen each as a kind of refinement from another.



10 Bezzecchi, Crisafulli, Pichot, Wolff

We highlight the main results (the second and third were not presented here in detail):
1. Requirements Analysis: Establishment of the dictionary of the physical system, the prin-
ciples of sampling into encoder sequences, and the interface of the module. The main theorem
establishes conditions under which the sampling can be accurate in principle.

2. Design Analysis: A computable definition for the odostep function which is the heart of the
odometric module calculations. The main theorem establishes that odostep indeed approxi-
mates distance, speed and acceleration in its calculations assuming a rational arithmetic with
unlimited precision. odostep is converted into executable code as a reference for precision tests.

3. Code Analysis: We provide a handwritten C function and verify it via the C-to-HOL
compiler in the Isabelle/AutoCorres module against odostep. The main theorem establishes
that the C-level calculations done on bounded machine arithmetics indeed approximate the
calculations of odostep under certain conditions.

This paper focuses on a methodological aspect: the method attempts to reconcile the
objectives of agile software development with the needs of classical, distributed structured
software engineering. The sharpest contrast to common understanding of agile development
is that we embrace documentation and formality, as well as upfront efforts like requirements
analysis and design before coding, in order to provide the technical means for fast impact
analysis and machine-checkable coherence. We agree with mainstream agile development on
the importance of early testing and validation, but extend this to the level of requirements
and design definitions and complement it, where necessary, with interactive and automated
proof efforts. The current verification stack is, however, not a complete verification; due to
limited ressources, we adopted a strategy to concentrate on the most critical parts.

6.1 Related Work
There is a growing interest in combining agile and formal methods, reflected by a number
of workshops addressing this combination [2,1] . A number of works emphasize the value
of formal techniques inside agile development in particular wrt. automated test generation
techniques from models (see [3], or [9,8]) While we fully adhere to this idea (and applied the
verified test vector generator technique ourselves in our case study), we argue that the scope
of formal method application is much wider and covers in particular — via ontology support
— aspects of linking semi-formal with formal content.

Already in 2010, the combination of formal and agile methods was investigated in [5], who
came to a merely negative view. In our view, this is partly because the authors understandibly
identify Agile Methods with its Manifesto and anticipated part of the criticism of [6]. We follow
the latter in its distinction between principles and practices of agile development, where we
adhere to the former, but not the latter.

6.2 Known Limitations of CVCE

The current environment has still a number of limitations:

– CVCE and its notion of “integrated document” is currently solely text based; diagrammatic
notations as common in UML are simply not available. So far, we favored textual documents
since we crucially depend on globally available merging and conflict resolution mechanisms.

– The PDF document generation via LaTeX is relatively slow since it is part of the post-
processing of global checking. While we added a lot of IDE support to circumvent PDF
previewing, more light-weight feed-back wrt. printable versions is highly desirable.

– Access control on individual parts of documents (so: text-parts or formal definitions) has
not been a priority so far; however, it may be useful when scaling up to larger developments.

Recent developments of an Isabelle/PIDE Interface based on Visual Studio Code paves
the way to integrate Markdown-LaTeX plugins offering fast preview on theory presentations.
This may help to overcome the first two limitations soon.



Agile Development Processes and Formal Certification 11

References

1. FormSERA ’12: Proceedings of the First International Workshop on Formal Methods in Software
Engineering: Rigorous and Agile Approaches. IEEE Press, Piscataway, NJ, USA (2012), iEEE
Catalog Number: CFP1286S-ART

2. Gruner, S.: Fm+am’09: workshop on formal methods and agile methods. Innovations in Systems
and Software Engineering 6(1), 135–136 (Mar 2010), https://doi.org/10.1007/s11334-009-
0101-8

3. Haehnle, R.: Agile formal methods. Keynote at the Key Symposiiun (2007), http://i12www.
iti.uni-karlsruhe.de/key/keysymposium07/slides/haehnle-agile.pdf

4. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R., Heiser, G.: Com-
prehensive formal verification of an os microkernel. ACM Trans. Comput. Syst. 32(1), 2:1–2:70
(Feb 2014), http://doi.acm.org/10.1145/2560537

5. Larsen, P.G., Fitzgerald, J.S., Wolff, S.: Are formal methods ready for agility? A reality check.
In: FM+AM 2010 - Second International Workshop on Formal Methods and Agile Methods,
17 September 2010, Pisa (Italy). pp. 13–25 (2010), http://subs.emis.de/LNI/Proceedings/
Proceedings179/article6226.html

6. Meyer, B.: Agile! - The Good, the Hype and the Ugly. Springer (2014), https://doi.org/10.
1007/978-3-319-05155-0

7. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic,
Lecture Notes in Computer Science, vol. 2283. Springer (2002), https://doi.org/10.1007/3-
540-45949-9

8. Rumpe, B.: Agile Modellierung mit UML: Codegenerierung, Testfälle, Refactoring. Xpert.press,
Springer Berlin Heidelberg (2012), https://books.google.fr/books?id=bcIoBAAAQBAJ

9. Rumpe, B.: Agile Modeling with the UML, pp. 297–309. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004), https://doi.org/10.1007/978-3-540-24626-8_21

10. Tzafalias, A.E.P.O.: Podiumsdiscussion at the workshop on security certification of ict
products (March 16 2016), https://www.enisa.europa.eu/activities/Resilience-and-CIIP/
workshops-1/2016/ict-security-certification-for-industry

11. Wenzel, M.: Shared-memory multiprocessing for interactive theorem proving. In: Interactive The-
orem Proving - 4th International Conference, ITP 2013, Rennes, France, July 22-26, 2013. Pro-
ceedings. pp. 418–434 (2013), https://doi.org/10.1007/978-3-642-39634-2_30

12. Wenzel, M.: Asynchronous user interaction and tool integration in isabelle/pide. In: Interactive
Theorem Proving - 5th International Conference, ITP 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings. pp. 515–530 (2014), https:
//doi.org/10.1007/978-3-319-08970-6_33

13. Wenzel, M.: The isabelle/isar reference manual — isabelle version 2016-1 (March 16 2016), http:
//isabelle.in.tum.de/documentation.html

https://doi.org/10.1007/s11334-009-0101-8
https://doi.org/10.1007/s11334-009-0101-8
http://i12www.iti.uni-karlsruhe.de/key/keysymposium07/slides/haehnle-agile.pdf
http://i12www.iti.uni-karlsruhe.de/key/keysymposium07/slides/haehnle-agile.pdf
http://doi.acm.org/10.1145/2560537
http://subs.emis.de/LNI/Proceedings/Proceedings179/article6226.html
http://subs.emis.de/LNI/Proceedings/Proceedings179/article6226.html
https://doi.org/10.1007/978-3-319-05155-0
https://doi.org/10.1007/978-3-319-05155-0
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://books.google.fr/books?id=bcIoBAAAQBAJ
https://doi.org/10.1007/978-3-540-24626-8_21
https://www.enisa.europa.eu/activities/Resilience-and-CIIP/workshops-1/2016/ict-security-certification-for-industry
https://www.enisa.europa.eu/activities/Resilience-and-CIIP/workshops-1/2016/ict-security-certification-for-industry
https://doi.org/10.1007/978-3-642-39634-2_30
https://doi.org/10.1007/978-3-319-08970-6_33
https://doi.org/10.1007/978-3-319-08970-6_33
http://isabelle.in.tum.de/documentation.html
http://isabelle.in.tum.de/documentation.html

	Making Agile Development Processes fit for V-style Certification Procedures

