
Submitted to:
F-IDE 2019

© F. Tuong and B. Wolff
This work is licensed under the
Creative Commons Attribution License.

Deeply Integrating C11 Code Support
into Isabelle/PIDE

Frédéric Tuong
LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay

ftuong@lri.fr

Burkhart Wolff
LRI, Univ. Paris-Sud, CNRS, Université Paris-Saclay

wolff@lri.fr

We present a framework for C code in C11 syntax deeply integrated into the Isabelle/PIDE devel-
opment environment. Our framework provides an abstract interface for verification back-ends to be
plugged-in independently. Thus, various techniques such as deductive program verification or white-
box testing can be applied to the same source, which is part of an integrated PIDE document model.
Semantic back-ends are free to choose the supported C fragment and its semantics. In particular, they
can differ on the chosen memory model or the specification mechanism for framing conditions.

Our framework supports semantic annotations of C sources in the form of comments. Annota-
tions serve to locally control back-end settings, and can express the term focus to which an annotation
refers. Both the logical and the syntactic context are available when semantic annotations are evalu-
ated. As a consequence, a formula in an annotation can refer both to HOL or C variables.

Our approach demonstrates the degree of maturity and expressive power the Isabelle/PIDE sub-
system has achieved in recent years. Our integration technique employs Lex and Yacc style grammars
to ensure efficient deterministic parsing. We present two case studies for the integration of (known)
semantic back-ends in order to validate the design decisions for our back-end interface.

Keywords: User Interface, Integrated Development, Program Verification, Shallow Embedding

1 Introduction

Recent successes like the Microsoft Hypervisor project [15], the verified CompCert compiler [16] and
the seL4 microkernel [12, 13] show that the verification of low-level systems code has become feasible.
However, a closer look at the underlying verification engines VCC [7], or Isabelle/AutoCorres [9] show
that the road is still bumpy: the empirical cost evaluation of the L4.verified project [12] reveals that a very
substantial part of the overall effort of about one third of the 28 man years went into the development of
libraries and the associated tool-chain. Accordingly, the project authors [12] express the hope that these
overall investments will not have to be repeated for “similar projects”.

In fact, none of these verifying compiler tool-chains capture all aspects of “real life” programming
languages such as C. The variety of supported language fragments seem to contradict the assumption
that we will all converge to one comprehensive tool-chain soon. There are so many different choices
concerning memory models, non-standard control flow, and execution models that a generic framework
is desirable: in which verified compilers, deductive verification, static analysis and test techniques (such
as [11], [1]) can be developed and used inside the Isabelle platform as part of an integrated document.

In this paper we present Isabelle/C 1, a generic framework in spirit similar to Frama-C [6]. In contrast
to the latter, Isabelle/C is deeply integrated into the Isabelle/PIDE document model [20]. Based on the

1The current developer snapshot is provided in https://gitlri.lri.fr/ftuong/isabelle_c.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://gitlri.lri.fr/ftuong/isabelle_c

2 Deeply Integrating C11 Code Support into Isabelle/PIDE

Figure 1: A C11 sample in Isabelle/jEdit

C11 standard (ISO/IEC 9899:2011), Isabelle/C parses C11 code inside a rich IDE supporting static scop-
ing. SML user-programmed extensions can benefit from the parallel evaluation techniques of Isabelle.
The plug-in mechanism of Isabelle/C can integrate diverse semantic representations, including those al-
ready made available in Isabelle/HOL [17]: AutoCorres [9], IMP2 [14], Orca [3], or Clean (discussed in
this paper). A particular advantage of the overall approach compared to systems like Frama-C or VCC
is that all these semantic theories are conservative extensions of HOL, hence no axiom-generators are
used that produce the "background theory" and the verification conditions passed to automated provers.
Isabelle/C provides a general infrastructure for semantic annotations specific for back-ends, i.e. modules
that generate from the C source a set of definitions and derive automatically theorems over them. Last
but not least, navigation features of annotations make the logical context explicit in which theorems and
proofs are interpreted.

The heart of Isabelle/C, the new C〈 .. 〉 command, is shown in Figure 1. Analogously to the existing
ML〈 .. 〉 command, it allows for editing C sources inside the 〈 .. 〉 brackets, where C code is parsed on
the fly in a “continuous check, continuous build” manner. A parsed source is coloured according to the
usual conventions applying for Isabelle/HOL variables and keywords. A static scoping analysis makes
the bindings inside the source explicit such that editing gestures like hovering and clicking may allow
the user to reveal the defining variable occurrences and C type information (see yellow sub-box in the
screenshot Figure 1). The C source may contain comments to set up semantic back-ends. Isabelle/C
turns out to be sufficiently efficient for C sources such as the seL4 project.

This paper proceeds as follows: in section 2, we briefly introduce Isabelle/PIDE and its document
model, into which our framework is integrated. In section 3 and section 4, we discuss the build process
and present some experimental results on the integrated parser. The handling of semantic annotations
comments — a vital part for back-end developers — is discussed in section 5, while in section 6 we
present some techniques to integrate back-ends into our framework at the hand of examples.

2 Background: PIDE and the Isabelle Document Model

The Isabelle system is based on a generic document model allowing for efficient, highly-parallelized
evaluation and checking of its document content (cf. [2, 20, 21] for the fairly innovative technologies
underlying the Isabelle architecture). These technologies allow for scaling up to fairly large documents:
we have seen documents with 150 files be loaded in about 4 min, and individual files — like the x86

F. Tuong and B. Wolff 3

model generated from Antony Fox’ L3 specs — have 80 kLoC and were loaded in about the same time.2

Editor Front-End (e.g. jEdit)

Isabelle

PIDE Scala

PIDE SML

approx. display

evaluation

edits reports

The PIDE (prover IDE) layer consists of a part written in SML and another
in Scala. Roughly speaking, PIDE implements “continuous build and continuous
check” functionality over a textual albeit generic document model. It transforms
user modifications of text elements in an instance of this model into increments
— edits — and communicates them to the Isabelle system. The latter reacts by
the creation of a multitude of light-weight reevaluation threads resulting in an
asynchronous stream of reports containing markup that is used to annotate text
elements in the editor front-end. For example, such markup is used to highlight
variables or keywords with specific colours, to hyperlink bound variables to their
defining occurrences, or to annotate type information to terms which become dis-
played by specific user gestures on demand (such as hovering). Note that PIDE is not an editor, it is the
framework that coordinates these asynchronous information streams and optimizes their evaluation to a
certain extent: outdated markup referring to modified text is dropped, and corresponding re-calculations
are oriented to the user focus, for example. For PIDE, several editor applications have been developed,
where Isabelle/jEdit (https://www.jedit.org) is the most commonly known. More experimental alterna-
tives based on Eclipse or Visual Studio Code exist.

2.1 The PIDE Document Model

A context
definition

command

command

B context
definition

command

command

command

context
definition

command

D context
definition

command

command

command

command

command

C

The document model foresees a number of atomic sub-documents
(files), which are organized in the form of an acyclic graph.
Such graphs can be grouped into sub-graphs called sessions which can be
compiled to binaries in order to avoid long compilation times — Isabelle/C
as such is a session. Sub-documents have a unique name (the mapping to
file paths in an underlying file-system is done in an integrated build manage-
ment). The primary format of atomic sub-documents is .thy (historically for
“theory”), secondary formats can be .sty, .tex, .c or other sub-documents
processed by Isabelle and listed in a configuration of the build system.

theory C_Command
imports C_Eval
keywords "C" :: thy_decl

and "C_file" :: thy_load

A .thy file consists of a context definition and a body consist-
ing of a sequence of commands. The context definition includes the
sections imports and keywords. For example our context definition
states that C_Command is the name of the sub-document depending
on C_Eval which transitively includes the parser sources as (ML
files) sub-documents, as well as the C environment and the infras-
tructure for defining C level annotations. Keywords like C or C_file must be declared before use.

For this work, it is vital that predefined commands allow for the dynamic creation of user-defined
commands similarly to the definition of new functions in a shell interpreter. Semantically, commands
are transition functions σ → σ where σ represents the system state called logical context. The logical
context in interactive provers contains — among many other things — the declarations of types, constant
symbols as well as the database with the definitions and established theorems. A command starts with
a pre-declared keyword followed by the specific syntax of this command; an evaluation of a command
parses the input till the next command, and transfers the parsed input to a transition function, which can
be configured in a late binding table. Thus, the evaluation of the generic document model allows for user
programmed extensions including IDE and document generation.

2On a modern 6-core MacBook Pro with 32Gb memory, these loading times were counted excluding proof checking.

https://www.jedit.org

4 Deeply Integrating C11 Code Support into Isabelle/PIDE

Note that the Isabelle platform supports multiple syntax embeddings, i.e. the possibility of nesting
different language syntaxes inside the upper command syntax, using the 〈 .. 〉 brackets (such parsing
techniques will be exploited in section 5). Accordingly, these syntactic sub-contexts may be nested. In
particular, in most of these sub-contexts, there may be a kind of semantic macro — called antiquotation
and syntactically denoted in the format @{name 〈 .. 〉} — that has access to the underlying logical con-
text. Similar to commands, user-defined antiquotations may be registered in a late-binding table. For
example, the standard term-antiquotation in ML 〈 val t = @{term "3 +"} 〉 parses the argument "3 +"
with the Isabelle/HOL term parser, attempts to construct a λ -term in the internal term representation and
to bind it to t; however, this fails (the plus operation is declared infix in logical context) and therefore
the entire command fails.

2.2 Some Basics of PIDE Programming

ML 〈 val pos = @{here};
val markup = Position.here pos;
writeln ("And a link to the declaration\

\ of ’here’ is " ^ markup) 〉

A basic data-structure relevant for PIDE is positions;
beyond the usual line and column information they
can represent ranges, list of continuous ranges, and
the name of the atomic sub-document in which they
are contained. It is straightforward to use the antiquo-
tation @{here} to infer from the system lexer the actual position of the antiquotation in the global doc-
ument. The system converts the position to a markup representation (a string representation) and sends
the result via writeln to the interface.

In return, the PIDE output window shows the little
house-like symbol ∧t, which is actually hyperlinked to the
position of @{here}. The ML structures Markup and Properties represent the basic libraries for an-
notation data which is part of the protocol sent from Isabelle to the front-end. They are qualified as
“quasi-abstract”, which means they are intended to be an abstraction of the serialized, textual presen-
tation of the protocol. A markup must be tagged with a unique id; this is done by the library serial
function. Typical code for taking a string cid from the editing window, together with its position pos,
and sending a specific markup referring to this in the editing window managed by PIDE looks like this:

ML 〈 fun report_def_occur pos cid = Position.report pos (my_markup true cid (serial ()) pos) 〉

Note that my_markup (not shown here) generates the layout attributes of the link and that the true flag
is used for markup declaring cid as a defining occurrence, i.e. as target (rather than the source) in the
hyperlink animation in PIDE.

3 The C11 Parser Generation Process and Architecture

Isabelle uses basically two parsing technologies:

1. Earley parsing [8] intensively used for mixfix-syntax denoting λ -terms in mathematical notation,

2. combinator parsing [10] typically used for high-level command syntax.

Both technologies offer the dynamic extensibility necessary for Isabelle as an interactive platform
geared towards incremental development and sophisticated mathematical notations. However, since it is
our goal to support programming languages in a fast parse-check-eval cycle inside an IDE, we opt for a

F. Tuong and B. Wolff 5

grammar Haskell-Yacc

monadic parser interpreter
(ML-Yacc simulating Haskell-Yacc)

C11 .thy/.ML packages in Isabelle

parser table +
grammar rules

generate

Lexer
(written by hand) General Parser — Annotation — Eval — Command

generate

Isabelle/C C_Main.thy

AST
SML

includes

includes
SML Shift-Reduce

automata:

overloading grammar rules
(optional, mostly for PIDE report)

includes

includes

includes

includes

Isabelle/C/<semantic back-end>
back-end library back-end commands

includes

AST in Isabelle/HOL grammar ML-Yacc

C11 library in Haskell
generate generate

C11 AST in Haskell grammar Haskell-Yacc

Figure 2: The architecture of Isabelle/C

Lex and Yacc deterministic grammar approach. It turns out the resulting automata based parser performs
well enough for our purpose; the gain in performance is discussed in the next section.

In the following, we describe a novel technique for the construction and integration of this type of
parser into the Isabelle platform. Since it is mostly relevant for integrators copying our process to similar
languages such as JavaScript or Rust 3, users of the Isabelle/C platform may skip this section: for them,
the take-home message is that the overall generation process takes about 1 hour, the compilation of the
generated files takes 15s, and that the generated files should be fairly portable to future Isabelle versions.

We base our work on the C11 parsing library http://hackage.haskell.org/package/language-c im-
plemented in Haskell by Huber, Chakravarty, Coutts and Felgenhauer; we particularly focus on its open-
source Haskell Yacc grammar as our starting point. We would like to emphasize that this is somewhat
arbitrary, our build process can be easily adapted to more recent versions when available.

The diagram in Figure 2 presents the architecture of Isabelle/C. The original Haskell library was
not modified, it is presented in blue together with generated sources, in particular the final two blue
boxes represent about 11 kLoC. In output, the glue code in brown constitutes the core implementation of
Isabelle/C, amounting to 6 kLoC (without yet considering semantic back-ends).

3.1 Generating the AST

In the following, we refer to languages by L , I . The notation ASTL
I refers to abstract syntaxes for

language L implemented in language I . For example, we refer by ASTC11
ML to an AST implementation

of C11 implemented in SML. Indices will be dropped when no confusion arises, or to highlight the fact
that our approach is sufficiently generic.

For our case, we exploit that from a given Haskell source ASTHS, Haskabelle generates to a maxi-
mum extent an Isabelle/HOL theory. Via the Isabelle code generator, an ASTML can be obtained from a

3E.g. http://hackage.haskell.org/package/language-javascript or http://hackage.haskell.org/
package/language-rust

http://hackage.haskell.org/package/language-c
http://hackage.haskell.org/package/language-javascript
http://hackage.haskell.org/package/language-rust
http://hackage.haskell.org/package/language-rust

6 Deeply Integrating C11 Code Support into Isabelle/PIDE

constructive ASTHOL representation. However, the process is challenging for technical reasons in prac-
tice due to the enormous size of ASTC11 (several hundreds of constructors), and due to certain type
declarations not initially supported by Haskabelle (we have to implement here the necessary features).
Ultimately, the process to compile ASTHS to ASTML is done only once at build time, it comprises:

1. the generation of ASTHOL from ASTHS, represented as a collection of datatype,

2. the execution of the datatype theory for ASTHOL and checking of all their proofs,4

3. the generation of an ASTML from ASTHOL.

3.2 Constructing a Lexer for C11

We decided against the option of importing the equivalent Haskell lexer, as it is coming under-developed
compared to the existing PIDE lexer library, natively supporting Unicode-like symbols (mostly for anno-
tations). Using a more expressive position data-structure, our C lexer is also compatible with the native
ML lexer regarding the handling of errors and backtracking (hence the perfect fit when nesting one lan-
guage inside the other). Overall, the modifications essentially boil down to taking an extreme care of
comments and directives which have intricate lexical conventions (see subsection 4.1).

3.3 Generating the Shift-Reduce Parser from the Grammar

In the original C11 library, together with ASTHS, there is a Yacc grammar file GHS-YACC included, which
we intend to use to conduct the C parsing. However due to technical limitations of Haskabelle (and ad-
vanced Haskell constructs in the associated GHS), we do not follow the same approach as subsection 3.1.
Instead, an ultimate grammar GML is obtained by letting ML-Yacc participate in the generation process.
In a nutshell, the overall grammar translation chain becomes: GHS-YACC −→HS GML-YACC −→ML GML.
−→HS is implemented by modifying the Haskell parser generator Happy, because Happy is already

natively supporting the whole LHS-YACC. Due to the close connection between Happy and ML-Yacc,
the translation is even almost linear. However cares must be taken while translating monadic rules 5 of
GHS-YACC, as LML-YACC does not support such rules. In GC11, monadic rules are particularly important
for scoping analyses, or while building new informative AST nodes (in contrast to disambiguating non-
monadic rules, see @ vs. & in section 5). Consequently, applying ML-Yacc −→ML on GML-YACC is not
enough: after compiling GML to an efficient Shift-Reduce automaton, we substantially modified the own
grammar interpreter of ML-Yacc to implement all features of LHS-YACC presented as used in GHS-YACC.

4 Isabelle/C: Syntax Tests and Experimental Results

The question arises, to what extent our construction provides a faithful parser for C11, and if Isabelle/C
is sufficiently stable and robust to handle real world sources. A related question is the treatment of
cpp preprocessing directives: while a minimal definition of the preprocessor is part of C standards since
C99, practical implementations vary substantially. Moreover, cpp comes close to be Turing complete:
recursive computations can be specified, but the expansion strategy bounds the number of unfolding.

4Large mutually recursive datatypes in ASTHOL might lead to worse performance time, see for instance https://
lists.cam.ac.uk/pipermail/cl-isabelle-users/2016-March/msg00034.html and https://lists.cam.ac.uk/
pipermail/cl-isabelle-users/2017-April/msg00000.html.

5https://www.haskell.org/happy/doc/html/sec-monads.html

https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2016-March/msg00034.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2016-March/msg00034.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2017-April/msg00000.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2017-April/msg00000.html
https://www.haskell.org/happy/doc/html/sec-monads.html

F. Tuong and B. Wolff 7

Therefore, a complete cpp reimplementation contradicts our objective to provide efficient IDE support
inside Isabelle. Instead, we restrict ourselves to a common subset of macro expansions and encourage,
whenever possible, Isabelle specific mechanisms such as user programmed C annotations. C sources
depending critically on a specific cpp will have to be processed outside Isabelle.6

4.1 Preprocessing Lexical Conventions: Comments and Backslash Newlines

A very basic standard example taken from the GCC / CPP documentation 7 shows the quite intricate
mixing of comment styles that represents a challenge for our C lexer. A further complication is that it
is allowed and common practice to use backslash-newlines \ ←↩ anywhere in C sources, be it inside
comments, string denotations, or even regular C keywords like i\ ←↩ n\ ←↩ t (see also Figure 4).

In fact, many C processing tools assume that all com-
ments have already been removed via cpp before they
start any processing. However, annotations in comments
carry relevant information for back-ends as shown in sec-
tion 5. Consequently, they must be explicitly represented
in ASTC11

ML , whereas the initial ASTC11
HS is not designed to

carry such extra information. Annotations inside com-
ments may again contain structured information like pro-
gramming code, formulas, and proofs, which implies the need for nested syntax. Fortunately, Isabelle is
designed to manage multiple parsing layers with the technique of cascade sources 8 (see also Figure 3).
We exploit this infrastructure to integrate back-end specific syntax and annotation semantics based on
the parsing technologies available.

4.2 Preprocessing Side-Effects: Antiquoting Directives vs. Pure Annotations

Whereas comments can be safely removed without affecting the meaning of C code, directives are se-
mantically relevant for compilation and evaluation.

1. Classical directives: #define x TOKS makes any incoming C identifier x be replaced by some
arbitrary tokens TOKS, even when included via the #include directive.

2. Typed (pseudo-)directives as commands: It is easy to overload or implement a new #define’
acting only on a decided subset of well-formed TOKS. There are actually no differences between
Isabelle/C directives and Isabelle commands: both are internally of type σ → σ (see section 2).

3. Non-expanding annotations: Isabelle/C annotations /*@ Lannot */ or //@ Lannot can be freely in-
tertwined between other tokens, even inside directives. In contrast to (antiquoting) directives and
similarly as C comments, their designed intent is to not modify the surrounding parsing code.

A limitation of Isabelle and its current document model is that there is no way for user programmed
extensions to exploit implicit dependencies between sub-documents. Thus, a sub-document referred to
via #include <some_file> will not lead to a reevaluation of a C〈 .. 〉 command whenever modified.
(The only workaround is to open all transitively required sub-documents by hand.)

6Isabelle/C has a particular option to activate (or not) an automated call to cpp before any in-depth treatment.
7https://gcc.gnu.org/onlinedocs/cpp/Initial-processing.html
8http://isabelle.in.tum.de/repos/isabelle/file/83774d669b51/src/Pure/General/source.ML

https://gcc.gnu.org/onlinedocs/cpp/Initial-processing.html
http://isabelle.in.tum.de/repos/isabelle/file/83774d669b51/src/Pure/General/source.ML

8 Deeply Integrating C11 Code Support into Isabelle/PIDE

4.3 A Validation via the seL4 Test Suite

The AutoCorres environment contains a C99 parser developed by Michael Norrish [13]. Besides a parser
test-suite, there is the entire seL4 codebase (written in C99) which has been used for the code verification
part of the seL4 project. While the parser in itself represents a component belonging to the trusted base
of the environment, it is arguably the most tested parser for a semantically well-understood translation in
a proof environment today.

It is therefore a valuable reference for a comparison test, especially since ASTC99 and ASTC11 are
available in the same implementation language. From ASTC11

HOL to ASTC99
HOL we construct an abstraction

function C↓. A detailed description of C↓ is out of the scope of this paper; we would like to mention
that it was 4 man-months of work due to the richness of ASTC11. As such, the abstraction function C↓

is at the heart of the AutoCorres integration into our framework described in subsection 6.2. Note that
ASTC99 seems to be already an abstraction compared to the C99 standard. This gives rise to a particular
testing methodology: we can compile the test suites as well as the seL4 source files by both ML parsers
PARSEC99

stop and PARSEC11
report, abstract the output of the latter via C↓ and compare the results.

Our test establishes that both parsers agree on the entire seL4 codebase. However trying to compare
the two parsers using other criteria is not possible, for example we had to limit ourselves to C programs
written in a subset of C99. Fundamentally, the two parsers are achieving different tasks: the one of
PARSEstop is to just return a parsed AST. In contrast, PARSEreport intends to maximize markup reporting,
irrespective of a final parsing success or failure, and reports are provided in parallel during its (monadic)
parsing activity. Thus, in the former scenario, the full micro-kernel written in 26 kLoC can be parsed
in 0.1s. In the latter, all reports we have thought helpful to implement are totally rendered before 20s.
Applying C↓ takes 0.02 seconds, so our PARSEreport gives an average of 2s for a 2-3 kLoC source. By
interweaving a source with proofs referring to the code elements, the responsiveness of PIDE should
therefore be largely sufficient.

5 Generic Semantic Annotations for C

With respect to interaction with the underlying proof-engine, there are essentially two lines of thought in
the field of deductive verification techniques:

1. either programs and specifications — i.e. the pre- and post-condition contracts — are clearly
separated, or

2. the program is annotated with the specification, typically by using some form of formal comment.

Of course, it is possible to inject the essence of annotated specifications directly into proofs, e.g. by
instantiating the while rule of the Hoare calculus by the needed invariant inside the proof script. The
resulting clear separation of programs from proofs may be required by organisational structures in devel-
opment projects. However, in many cases, modelling information may be interesting for programmers,
too. Thus, having pre- and post-conditions locally in the source close to its point of relevance increases its
maintainability. It became therefore common practice to design languages with annotations, i.e. struc-
tured comments inside a programming source. Examples are ACSL standardized by ANSI/ISO (see
https://frama-c.com/download/acsl.pdf) or UML/OCL [5] for static analysis tools. Isabelle/C supports
both the inject-into-proof style and annotate-the-source style in its document model; while the former is
kind of the default, we address in this section the necessary technical infrastructure for the latter.

https://frama-c.com/download/acsl.pdf

F. Tuong and B. Wolff 9

Figure 3: Advanced annotation programming

Generally speaking, a generic annotation mechanism which is sufficiently expressive to capture id-
ioms used in, e.g., Frama-C, Why3, or VCC is more problematic than one might think. Consider this:

for (int i = 0; i < n; i++) a+= a*i /*@ annotation */

To which part of the AST does the annotation refer? To i? a*i? The assignment? The loop? Some
verification tools use prefix annotations (as in Why3 for procedure contracts), others even a kind of
parenthesis of the form:

/*@ annotation_begin */ ... /*@ annotation_end */

The matter gets harder since the C environment — a table mapping C identifiers to their type and status —
changes according to the reference point in the AST. This means that the context relevant to type-check
an annotation such as /*@ assert 〈a > i 〉 */ strongly differs depending on the annotation’s position.
And the matter gets even further complicated since Isabelle/C lives inside a proof environment; here,
local theory development (rather than bold ad-hoc axiomatizations) is a major concern.

The desire for fast impact analysis re-
sulting from changes may inspire one to an-
notate local proofs near directives, which
is actually what is implemented in our Is-
abelle/C/AutoCorres example (section 6).
In the example, the semantic back-end converts the cpp macro into a HOL definition, i.e. an extension of
the underlying theory context by the conservative axiom SQRT_UINT_MAX ≡ 65536 bound to the name
SQRT_UINT_MAX_def. This information is used in the subsequent proof establishing a new theory context
containing the lemma uint_max_factor configured to be used as rewrite rule whenever possible in fu-
ture proofs. This local lemma establishes a relation of SQRT_UINT_MAX to the maximally representable
number UINT_MAX for an unsigned integer according to the underlying memory model.

Obviously, the scheduling of these transformations of the underlying theory contexts is non-trivial.

5.1 Navigation for Annotation Commands

In order to overcome the problem of syntactic ambiguity of annotations, we slightly refine the syntax of
semantic annotations by the concept of a navigation expression:

Lannot = ∅ | <navigation-expr> <annotation-command> Lannot

A <navigation-expr> string consists of a sequence of + symbols followed by a sequence consisting
of @ or & symbols. It allows for navigating in the syntactic context, by advancing tokens with several +,
or taking an ancestor AST node with several @ (or & which only targets monadic grammar rules). This

10 Deeply Integrating C11 Code Support into Isabelle/PIDE

corresponds to a combination of right-movements in the AST, and respectively parent-movements. This
way, the “focus” of an <annotation-command> can be modified to denote any C fragment of interest.

As a relevant example for debugging, consider Figure 3. The annotation command highlight is a
predefined Isabelle/C ML-library function that is interpreted as C annotation. Its code is implicitly
parameterized by the syntactical context, represented by stack_top whose type is a subset of ASTC11,
and the lexical environment env containing the lexical class of identifiers, scopes, positions and serials
for markup. The navigation string before highlight particularly influences which stack_top value gets
ultimately selected. The third screenshot in Figure 3 demonstrates the influence of the static environment:
an Isabelle/C predefined command 'setup allows for “recursively” calling the C environment itself. This
results in the export of definitions in the surrounding logical context, where the propagation effect may be
controlled with options like C_starting_env. 'setup actually mimics standard Isabelle setup command,
but extends it by stack_top and env 9. In the example, the first recursive call uses env allowing it to
detect that b is a local parameter, while the second ignores it which results in a treatment as a free global
variable. Note that bound global variables are not green but depicted in black.

5.2 Defining Annotation Commands

Extending the default configuration of commands, text and code antiquotations from the Isabelle platform
to Isabelle/C is straightforward. For example, the central Isabelle command definition:

Outer_Syntax.command: Kcmd -> (σ -> σ) parser -> unit

establishes the dynamic binding between a command keyword Kcmd = definition|lemma| . . . and a parser,
whose value is a system transition.10 The parser type stems from the aforementioned parser combinator
library: ’a parser = Token.T list -> ’a * Token.T list.

Analogously, Isabelle/C provides an internal late-binding table for annotation commands:

C_Annotation.command : Kcmd -> (<navigation-expr> -> Rcmd c_parser) -> unit
C_Annotation.command’: Kcmd -> (<navigation-expr> -> Rcmd c_parser) -> σ -> σ

C_Token.syntax’: ’a parser -> ’a c_parser

where in this paper we define Rcmd = σ -> σ as above.11 Since the type c_parser is isomorphic to
parser, but accepting C tokens, one can use C_Token.syntax’ to translate and carry the default Isar
commands inside the C〈 .. 〉 scope, such as lemma or by. Using 'setup, one can even define an annota-
tion command C taking a C code as argument, as the ML code of 'setup has type αAST -> env -> Rcmd

(which is enough for calling C_Annotation.command’ in the ML code). Here, whereas the type env is
always the same, the type αAST ⊆ ASTC11 varies depending on <navigation-expr> (see subsection 5.3).

Note, however, that the user experience of the IDE changes when nesting commands too deeply.
In terms of error handling and failure treatment, there are some noteworthy implementation differences
between the outermost commands and C annotation commands. Naturally, the PIDE toplevel has been
optimized to maximize the error recovery and parallel execution. Inside a command, the possibilities to
mimic this behaviour are somewhat limited. As a workaround useful during development and debugging,
we offer a further pragma for a global annotation, namely * (in complement to the violet @), that controls
a switch between a strict and a permissive error handling for nested annotation commands.

9cf. https://isabelle.in.tum.de/doc/isar-ref.pdf
10σ has actually the internal Isabelle type Toplevel.transition.
11In some parallel work, we focus on running commands in native efficient speed with Rcmd = (Kcmd*(σ->σ))list. [19]

https://isabelle.in.tum.de/doc/isar-ref.pdf

F. Tuong and B. Wolff 11

5.3 Evaluation Order

We will now explain why positional languages are affecting the evaluation time of annotation commands
in Figure 3. This requires a little zoom on how the parsing is actually executed.

The LALR parsing of our implemented C11 parser can be summarized as a sequence of alternations
between Shift and Reduce actions. By definition of LALR, whereas a unique Shift action is performed
for each C token read from left to right, some unlimited number of Reduce actions are happening between
two Shifts. Internally, the parser manages a stack-like data-structure called αAST list representing all
already encountered Shift and Reduce actions (SR). A given αAST list can be seen as a forest of SR
nodes: all leafs are tagged with a Shift, and any other parent node is a Reduce node. After a certain point
in the parsing history, the top stack element αAST (cast with the right type) is returned to 'setup.

Since a SR-forest is a list of SR-trees, it is possible to go forward and backward at will in the actually
unparsed SR-history, and execute a sequence of SR parsing steps only when needed. While every anno-
tation command like 'setup is by default attached to a closest previous Shift leaf, navigation expressions
modify the attached node, making the presentation of αAST referring to another term focus.

Instead of visiting the AST in
the default bottom-up direction dur-
ing parsing, it is possible to store the
intermediate results, so that it can be
revisited by using another direction
strategy, for example top-down after
parsing (where a parent node is executed before any of its children, and knows how they have been
parsed thanks to αAST). This enables commands to decide if they want to be executed during parsing, or
after the full AST has been built. This gives rise to the implementation of different versions of annotation
commands that are executed at different moments, relative to the parsing process. For example, the anno-
tation command 'setup has been defined for being executed at bottom-up time, whereas the execution of
the variant 'setup⇓ happens at top-down time. In the above example, C1 is a new command defined by
C_def, a shorthand antiquotation for C_Annotation.command’. Since C1 is meant to be executed during
bottom-up time (during parsing), it is executed before C2 is defined (which is directly after parsing).

Note that the C11 grammar has enough scoping structure for the full inference of the C environment
env be at bottom-up time. In terms of efficiency, we use specific static rule wrappers having the potential
of overloading default grammar rules (see Figure 2), to assign a wrapper to be always executed as soon
as a Shift-Reduce rule node of interest is encountered. The advantage of this construction is that the
wrappers are statically compiled, which results in a very efficient reporting of C type information.

6 Semantic Back-Ends

In this section, we briefly present two integrations of verification back-ends for C. We chose Clean
used for program-based test generation [11], and AutoCorres [9], arguably the most developed deductive
verification environment for machine-oriented C available at present.

Note that we were focusing on keeping modifications of integrated components minimal, particularly
for the case of AutoCorres. Certain functionalities like position propagation of HOL terms in annotations,
or “automatic” incremental declarations 12 may require internal revisions on the back-end side. This is
out of the scope of this paper.

12https://github.com/seL4/l4v/blob/master/tools/autocorres/tests/examples/Incremental.thy

https://github.com/seL4/l4v/blob/master/tools/autocorres/tests/examples/Incremental.thy

12 Deeply Integrating C11 Code Support into Isabelle/PIDE

6.1 A Simple Typed Memory Model: Clean

Clean (pronounced as: “C lean” or “Céline” [selin]) is based on a simple, shallow-style execution model
for an imperative target language. It is based on a “no-frills” state-exception monad type_synonym (’o,
’σ) MON SE = 〈’σ ⇀ (’o × ’σ) 〉 with the usual definitions of bind and unit. In this language, se-
quence operators, conditionals and loops can be integrated. From a concrete program, the underlying
state ’σ is constructed by a sequence of extensible record definitions:

1. Initially, an internal control state is defined to give semantics to break and return statements:

record control_state = break_val :: bool return_val :: bool

control_state represents the σ0 state.

2. Any global variable definition block with definitions a1 : τ1 . . . an : τn is translated into a record
extension:

record σn+1 = σn + a1 :: τ1; ... ; an :: τn

3. Any local variable definition block (as part of a procedure declaration) with definitions a1 : τ1 . . .
an : τn is translated into the record extension:

record σn+1 = σn + a1 :: τ1 list; ... ; an :: τn list; result :: τresult−type list;

where the list -lifting is used to model a stack of local variable instances in case of direct recur-
sions and the result used for the value of the return statement.

The record package creates an ’σ extensible record type ’σ control_state_ext where the ’σ

stands for extensions that were subsequently “stuffed” in them. Furthermore, it generates definitions for
the constructor, accessor and update functions and automatically derives a number of theorems over them
(e.g., “updates on different fields commute”, “accessors on a record are surjective”, “accessors yield the
value of the last update”). The collection of these theorems constitutes the memory model of Clean.
This model might be wrong in the sense that it does not reflect the operational behaviour of a particular
compiler, however, it is by construction logically consistent since it is impossible to derive falsity from
the entire set of rules.

On this basis, assignments,
conditionals and loops are re-
formulated into break -aware and
return -aware versions as shown
in the figure aside. The Clean
theory contains about 600 de-
rived theorems containing sym-
bolic evaluation and Hoare-style
verification rules.

Importing Clean into a theory
with its activated back-end proceeds as in Figure 4. Clean generates for the C program a common type
for the state, based on two generated extensible records — in the figure: just a global variable k and a
local variable with a stack of result values for primeC. Clean maps machine integers simply and naively
on the HOL type int. The core of this program is represented by two generated definitions available
subsequently in the logical context, where they are ready to be used in symbolic executions or proofs.

F. Tuong and B. Wolff 13

primeC_core_def: "primeC_core n ≡
ifClean 〈(n < 2) 〉then return 0 else skip;-
〈 i := 2 〉;-
whileClean 〈i < SQRT_UINT_MAX ∧ i * i ≤ n〉
(ifClean 〈n mod i = 0〉
then return 0 else skip;
〈k:=k+1〉; assert 〈 k≤UINT_MAX 〉

〈i:=i+1〉; assert 〈 i≤UINT_MAX 〉) ;-
return 1"

primeC_def: "primeC n ≡
blockClean push_local_primeC_state

(is_prime_core n)
pop_local_primeC_state"

Figure 4: Activating the Isabelle/C/Clean back-end triggers the generation of theorems

Generated definitions include push and pop operations for local variable blocks, for the entire variable
space of procedures. Additionally, a specific syntax is introduced to represent assignments on global and
local variables. For example, i := 2 internally rewrites to assign (λσ. ((i_upd o map_hd) (λ_.
2)) σ). The return operation is syntactically equivalent to the assignment of the result variable in the
local state (stack) and sets the return_val flag. On this representation of the C program, the HOL term
primeC n can be decomposed into program test-cases according to a well-established coverage criterion.
Technically, this is done by a variant of the program-based testing method

apply (branch_and_loop_coverage "Suc (Suc (Suc 0))")

developed in [11], which also uses Clean as semantic basis. Note that the testing approach does not need
the formulation of an invariant, which is already non-trivial in the given example.

Finally, we will have a glance at the code for the reg-
istration of the annotation commands used in the example.
Thanks to Isabelle/C’s function C_Annotation.command’,
the registration of user-defined annotations is very similar
to the registration of ordinary commands in the Isabelle plat-
form.

6.2 The Case of AutoCorres

The AutoCorres environment consists of a C99 parser, compiling to a deepish embedding of a generic
imperative core programming language, over a refined machine word oriented memory model, and a
translator of this presentation into a shallow language based on another Monad for non-deterministic
computations. This translator has been described in [9, 22] in detail. However, the original use of
AutoCorres implies a number of protocol rules to follow, and is only loosely integrated into the Isabelle
document model, which complicates the workflow substantially.

14 Deeply Integrating C11 Code Support into Isabelle/PIDE

...

...

Our running example primeC for Isabelle/C/Au-
toCorres basically differs in what the theory is im-
porting in its header. Similarly to Clean, AutoCorres
constructs a memory model and represents the pro-
gram as a monadic operation on it. Actually, it gen-
erates even two presentations, one on a very precise
word-level memory model taking aspects of the un-
derlying processor architecture into account, and an-
other one more abstract, then it automatically proves
the correspondence in our concrete example. Both
representations become the definitions primeC_def
and primeC’_def. A Hoare-calculus plus a derived
verification generator wp from the AutoCorres pack-
age leverage finally the correctness proof.

Note that the integration of AutoCorres crucially depends on the conversion ASTC11 ⇒ ASTC99 of
C↓ discussed in subsection 4.3. In particular, for the overall seL4 annotations INVARIANT, INV, FNSPEC,
RELSPEC, MODIFIES, DONT_TRANSLATE, AUXUPD, GHOSTUPD, SPEC, END-SPEC, CALLS, and OWNED_BY, we
have extended our implementation of C↓ in such a way that the conversion places the information at the
right position in the target AST. Obviously, this works even when navigation is used, as in Figure 3 left.

7 Conclusions

We presented Isabelle/C a novel, generic front-end for a deep integration of C11 code into the Is-
abelle/PIDE framework. Based on open-source Lex and Yacc style grammars, we presented a build
process that constructs key components for this front-end: the lexer, the parser, and a framework for
user-defined annotations including user-defined annotation commands. While the generation process is
relatively long, the generated complete library can be loaded in a few seconds constructing an environ-
ment similar to the usual ML environment for Isabelle itself. 20 kLoC large C sources can be parsed and
decorated in PIDE within seconds.

Our framework allows for the deep integration of the C source into a global document model in which
literate programming style documentation, modelling as well as static program analysis and verification
co-exist. In particular, information from the different tools realized as plugin in the Isabelle platform
can flow freely, but based on a clean management of their semantic context and within a framework
based on conservative theory development. This substantially increases the development agility of such
type of sources and may be attractive to conventional developers, in particular when targeting formal
certification [4].

Isabelle/C also forms a basis for future semantically well-understood combinations of back-ends
based on different semantic interpretations: inside Isabelle, bridge lemmas can be derived that describe
the precise conditions under which results from one back-end can be re-interpreted and used in another.
Future tactic processes based on these bridge lemmas may open up novel ways for semantically safe tool
combinations.

Acknowledgments. The authors warmly thank David Sanán and Yang Liu for encouraging the devel-
opment and reuse of C↓, initially started in the Securify project [18] (http://securify.sce.ntu.edu.sg/).

http://securify.sce.ntu.edu.sg/

F. Tuong and B. Wolff 15

References

[1] Romain Aïssat, Frédéric Voisin & Burkhart Wolff (2016): Infeasible Paths Elimination by Symbolic
Execution Techniques - Proof of Correctness and Preservation of Paths. In: Interactive Theorem
Proving - 7th International Conference, ITP 2016, Nancy, France, August 22-25, 2016, Proceed-
ings, pp. 36–51. https://doi.org/10.1007/978-3-319-43144-4_3.

[2] Bruno Barras, Lourdes Del Carmen González-Huesca, Hugo Herbelin, Yann Régis-Gianas, Enrico
Tassi, Makarius Wenzel & Burkhart Wolff (2013): Pervasive Parallelism in Highly-Trustable In-
teractive Theorem Proving Systems. In Jacques Carette, David Aspinall, Christoph Lange, Petr
Sojka & Wolfgang Windsteiger, editors: Intelligent Computer Mathematics - MKM, Calcule-
mus, DML, and Systems and Projects 2013, Held as Part of CICM 2013, Bath, UK, July 8-12,
2013. Proceedings, Lecture Notes in Computer Science 7961, Springer, pp. 359–363. https:
//doi.org/10.1007/978-3-642-39320-4_29.

[3] Joshua A Bockenek, Peter Lammich, Yakoub Nemouchi & Burkhart Wolff (2018): Using Is-
abelle/UTP for the Verification of Sorting Algorithms A Case Study. https://easychair.org/
publications/preprint/CxRV. Isabelle Workshop 2018, Colocated with Interactive Theorem
Proving. As part of FLOC 2018, Oxford, GB.

[4] Achim D. Brucker, Idir Aït-Sadoune, Paolo Crisafulli & Burkhart Wolff (2018): Using the Isabelle
Ontology Framework - Linking the Formal with the Informal. In: Intelligent Computer Mathe-
matics - 11th International Conference, CICM 2018, Hagenberg, Austria, August 13-17, 2018,
Proceedings, pp. 23–38. https://doi.org/10.1007/978-3-319-96812-4_3.

[5] Achim D. Brucker, Frédéric Tuong & Burkhart Wolff (2014): Featherweight OCL: A Proposal
for a Machine-Checked Formal Semantics for OCL 2.5. Archive of Formal Proofs 2014. https:
//www.isa-afp.org/entries/Featherweight_OCL.shtml.

[6] CEA-List (2019): The Frama-C Home Page. https://frama-c.com. Accessed March 24, 2019.

[7] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal Moskal, Thomas
Santen, Wolfram Schulte & Stephan Tobies (2009): VCC: A Practical System for Verifying Con-
current C. In: Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs
2009, Munich, Germany, August 17-20, 2009. Proceedings, pp. 23–42. https://doi.org/10.
1007/978-3-642-03359-9_2.

[8] Jay Earley (1970): An Efficient Context-Free Parsing Algorithm. Commun. ACM 13(2), pp. 94–
102. https://doi.org/10.1145/362007.362035.

[9] David Greenaway, Japheth Lim, June Andronick & Gerwin Klein (2014): Don’t sweat the small
stuff: formal verification of C code without the pain. In: ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 -
11, 2014, pp. 429–439. http://doi.acm.org/10.1145/2594291.2594296.

[10] Graham Hutton (1992): Higher-Order Functions for Parsing. J. Funct. Program. 2(3), pp. 323–343.
https://doi.org/10.1017/S0956796800000411.

[11] Chantal Keller (2018): Tactic Program-Based Testing and Bounded Verification in Isabelle/HOL.
In: Tests and Proofs - 12th International Conference, TAP 2018, Held as Part of STAF 2018,
Toulouse, France, June 27-29, 2018, Proceedings, pp. 103–119. https://doi.org/10.1007/
978-3-319-92994-1_6.

https://doi.org/10.1007/978-3-319-43144-4_3
https://doi.org/10.1007/978-3-642-39320-4_29
https://doi.org/10.1007/978-3-642-39320-4_29
https://easychair.org/publications/preprint/CxRV
https://easychair.org/publications/preprint/CxRV
https://doi.org/10.1007/978-3-319-96812-4_3
https://www.isa-afp.org/entries/Featherweight_OCL.shtml
https://www.isa-afp.org/entries/Featherweight_OCL.shtml
https://frama-c.com
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1145/362007.362035
http://doi.acm.org/10.1145/2594291.2594296
https://doi.org/10.1017/S0956796800000411
https://doi.org/10.1007/978-3-319-92994-1_6
https://doi.org/10.1007/978-3-319-92994-1_6

16 Deeply Integrating C11 Code Support into Isabelle/PIDE

[12] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby C. Murray, Thomas Sewell, Rafal Kolan-
ski & Gernot Heiser (2014): Comprehensive formal verification of an OS microkernel. ACM Trans.
Comput. Syst. 32(1), pp. 2:1–2:70. http://doi.acm.org/10.1145/2560537.

[13] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch & Simon Winwood (2009): seL4: formal verification of an OS kernel. In Jeanna Neefe
Matthews & Thomas E. Anderson, editors: Proceedings of the 22nd ACM Symposium on Operat-
ing Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA, October 11-14, 2009, ACM,
pp. 207–220. https://doi.org/10.1145/1629575.1629596.

[14] Peter Lammich & Simon Wimmer (2019): IMP2 - Simple Program Verification in Isabelle/HOL.
Archive of Formal Proofs 2019. https://www.isa-afp.org/entries/IMP2.html.

[15] Dirk Leinenbach & Thomas Santen (2009): Verifying the Microsoft Hyper-V Hypervisor with VCC.
In: FM 2009: Formal Methods, Second World Congress, Eindhoven, The Netherlands, November
2-6, 2009. Proceedings, pp. 806–809. https://doi.org/10.1007/978-3-642-05089-3_51.

[16] Xavier Leroy (2009): Formal verification of a realistic compiler. Commun. ACM 52(7), pp. 107–
115. http://doi.acm.org/10.1145/1538788.1538814.

[17] Tobias Nipkow, Lawrence C. Paulson & Markus Wenzel (2002): Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. Lecture Notes in Computer Science 2283, Springer. https://doi.org/
10.1007/3-540-45949-9.

[18] David Sanán, Yongwang Zhao, Zhe Hou, Fuyuan Zhang, Alwen Tiu & Yang Liu (2017): CSimpl:
A Rely-Guarantee-Based Framework for Verifying Concurrent Programs. In Axel Legay & Tiziana
Margaria, editors: Tools and Algorithms for the Construction and Analysis of Systems - 23rd In-
ternational Conference, TACAS 2017, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings,
Part I, Lecture Notes in Computer Science 10205, pp. 481–498. https://doi.org/10.1007/
978-3-662-54577-5_28.

[19] Frédéric Tuong & Burkhart Wolff (2015): A Meta-Model for the Isabelle API. Archive of Formal
Proofs 2015. https://www.isa-afp.org/entries/Isabelle_Meta_Model.shtml.

[20] Makarius Wenzel (2014): Asynchronous User Interaction and Tool Integration in Isabelle/PIDE.
In Gerwin Klein & Ruben Gamboa, editors: Interactive Theorem Proving - 5th International Con-
ference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 14-17, 2014. Proceedings, Lecture Notes in Computer Science 8558, Springer, pp. 515–530.
https://doi.org/10.1007/978-3-319-08970-6_33.

[21] Makarius Wenzel (2014): System description: Isabelle/jEdit in 2014. In Christoph Benzmüller &
Bruno Woltzenlogel Paleo, editors: Proceedings Eleventh Workshop on User Interfaces for The-
orem Provers, UITP 2014, Vienna, Austria, 17th July 2014., EPTCS 167, pp. 84–94. https:
//doi.org/10.4204/EPTCS.167.10.

[22] Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick, David Cock & Michael Norrish
(2009): Mind the Gap. In Stefan Berghofer, Tobias Nipkow, Christian Urban & Makarius Wenzel,
editors: Theorem Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009,
Munich, Germany, August 17-20, 2009. Proceedings, Lecture Notes in Computer Science 5674,
Springer, pp. 500–515. https://doi.org/10.1007/978-3-642-03359-9_34.

http://doi.acm.org/10.1145/2560537
https://doi.org/10.1145/1629575.1629596
https://www.isa-afp.org/entries/IMP2.html
https://doi.org/10.1007/978-3-642-05089-3_51
http://doi.acm.org/10.1145/1538788.1538814
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-662-54577-5_28
https://doi.org/10.1007/978-3-662-54577-5_28
https://www.isa-afp.org/entries/Isabelle_Meta_Model.shtml
https://doi.org/10.1007/978-3-319-08970-6_33
https://doi.org/10.4204/EPTCS.167.10
https://doi.org/10.4204/EPTCS.167.10
https://doi.org/10.1007/978-3-642-03359-9_34

	Introduction
	Background: PIDE and the Isabelle Document Model
	The PIDE Document Model
	Some Basics of PIDE Programming

	The C11 Parser Generation Process and Architecture
	Generating the AST
	Constructing a Lexer for C11
	Generating the Shift-Reduce Parser from the Grammar

	Isabelle/C: Syntax Tests and Experimental Results
	Preprocessing Lexical Conventions: Comments and Backslash Newlines
	Preprocessing Side-Effects: Antiquoting Directives vs. Pure Annotations
	A Validation via the seL4 Test Suite

	Generic Semantic Annotations for C
	Navigation for Annotation Commands
	Defining Annotation Commands
	Evaluation Order

	Semantic Back-Ends
	A Simple Typed Memory Model: Clean
	The Case of AutoCorres

	Conclusions

