
>�G A/, ?�H@ykNjR9yj
?iiTb,ff?�HX�`+?Bp2b@Qmp2`i2bX7`f?�H@ykNjR9yj

am#KBii2/ QM e a2T kyky

>�G Bb � KmHiB@/Bb+BTHBM�`v QT2M �++2bb
�`+?Bp2 7Q` i?2 /2TQbBi �M/ /Bbb2KBM�iBQM Q7 b+B@
2MiB}+ `2b2�`+? /Q+mK2Mib- r?2i?2` i?2v �`2 Tm#@
HBb?2/ Q` MQiX h?2 /Q+mK2Mib K�v +QK2 7`QK
i2�+?BM; �M/ `2b2�`+? BMbiBimiBQMb BM 6`�M+2 Q`
�#`Q�/- Q` 7`QK Tm#HB+ Q` T`Bp�i2 `2b2�`+? +2Mi2`bX

GǶ�`+?Bp2 Qmp2`i2 THm`B/Bb+BTHBM�B`2 >�G- 2bi
/2biBMû2 �m /ûTƬi 2i ¨ H� /BzmbBQM /2 /Q+mK2Mib
b+B2MiB}[m2b /2 MBp2�m `2+?2`+?2- Tm#HBûb Qm MQM-
ûK�M�Mi /2b ûi�#HBbb2K2Mib /Ƕ2Mb2B;M2K2Mi 2i /2
`2+?2`+?2 7`�MÏ�Bb Qm ûi`�M;2`b- /2b H�#Q`�iQB`2b
Tm#HB+b Qm T`BpûbX

PM i?2 a2K�MiB+b Q7 SQHv+?`QMQmb SQHviBK2/
aT2+B}+�iBQMb

>�B L;mv2M o�M- h?B#�mi "�H�#QMbFB- 6`û/û`B+ "QmH�M;2`- *?�Mi�H E2HH2`-
"2MQŗi o�HB`QM- "m`F?�`i qQHz

hQ +Bi2 i?Bb p2`bBQM,
>�B L;mv2M o�M- h?B#�mi "�H�#QMbFB- 6`û/û`B+ "QmH�M;2`- *?�Mi�H E2HH2`- "2MQŗi o�HB`QM- 2i �HXX PM
i?2 a2K�MiB+b Q7 SQHv+?`QMQmb SQHviBK2/ aT2+B}+�iBQMbX R3i? AMi2`M�iBQM�H *QM72`2M+2 QM 6Q`K�H
JQ/2HBM; �M/ �M�HvbBb Q7 hBK2/ avbi2Kb- a2T kyky- oB2MM�- �mbi`B�X TTXkj@9y- �RyXRyydfNd3@j@yjy@
8dek3@3nk�X �?�H@ykNjR9yj�

On the Semantics of Polychronous

Polytimed Specifications

Hai Nguyen Van1[0000�0002�0585�1651], Thibaut Balabonski1, Frédéric
Boulanger1,2[0000�0003�3185�2807], Chantal Keller1[0000�0002�1282�0677], Benôıt

Valiron1,2, and Burkhart Wol↵1

1 Université Paris-Saclay, CNRS, LRI, 91405, Orsay, France
2 CentraleSupélec, France

Abstract. In this paper, we study the semantics of a specification lan-
guage for the coordination of concurrent systems, which supports time
at di↵erent levels: various time domains, polychrony, and mixed metric/-
logical time constraints. The language itself is defined by a denotational
semantics. In order to be able to construct the possible timelines for verifi-
cation purposes, we also define a symbolic operational semantics, which is
the reference for an e�cient implementation of a tool for runtime-testing
of heterogeneous systems. This study presents a novel way to link these
two semantics by taking advantage of a coinductive unfolding principle
of these timelines. Furthermore, these semantics and their equivalence
have been formalized in the Isabelle/HOL proof assistant, together with
proofs for soundness, completeness and progress.

Keywords: concurrency · coordination · semantics · timed behaviors

1 Introduction

The design of complex systems involves di↵erent formalisms for modeling their
di↵erent parts or aspects. The global model of a system may therefore consist
of a coordination of concurrent sub-models that use di↵erential equations, state
machines, synchronous data-flow networks, discrete event models and so on. This
raises the interest in architectural composition languages that allow for “bolting
the respective sub-models together”, along their various interfaces, and specifying
the various ways of collaboration and coordination.

We are interested in languages for specifying the timed coordination of
subsystems by addressing the following conceptual issues:

– events may occur in di↵erent subsystems at unrelated times, leading to
polychronous systems [6], not necessarily under a common base clock,

– the behavior of the subsystems is observed only at a series of discrete instants,
– the instants at which a system is observed may be arbitrary and should not

change its behavior (stutter-invariance),
– the coordination between subsystems involves causality, so the occurrence of

an event may cause the occurrence of other events, possibly after a delay,

2 H. Nguyen Van et al.

– the domain of time (discrete, rational, continuous,. . .) may be di↵erent in
the subsystems, leading to polytimed systems,

– the time frames of di↵erent subsystems may be related (for instance, time in
a GPS satellite and in a GPS receiver on Earth are di↵erent but related).

Figure 1 presents a heterogeneous model with subsystems modeled with a
timed finite state machine, discrete events, and synchronous dataflows. To model
the full system, some architectural glue is needed to coordinate these subsystems.

AUTO

BUS

Timed Finite
State Machine

Synchronous
DataflowDiscrete

Events

Fig. 1: The Power Window: a Heterogeneous Timed System Model

In order to tackle the heterogeneous nature of the subsystems, we abstract
their behavior as clocks. Each clock models an event – something that can occur
or not at a given time. This time is measured in a time frame associated with
each clock, and the nature of time (integer, rational, real or any type with a linear
order) is specific to each clock. When the event associated with a clock occurs, the
clock ticks. In order to support any kind of behavior for the subsystems, we are
only interested in specifying what we can observe at a series of discrete instants.
There are two constraints on observations: a clock may tick only at an observation
instant, and the time on any clock cannot decrease from an instant to the next
one. Also, it is always possible to add arbitrary observation instants, which allows
for stuttering and modular composition of systems. Finally, a run is defined by
a sequence of these observation instants. We can now consider the concept of
timed specification language, which is a set of formulae that constrains the space
of possible runs. This correspondence from specifications to run space is precisely
a denotational semantics, and specifications are composed by intersecting the
denoted run sets of constraint formulae.

For monitoring and online testing of heterogeneous systems, an operational
semantics was defined in [23] to calculate concrete prefixes of runs. However, the
rules of this semantics are somewhat arbitrary and not suitable for reasoning
about complete runs. Our study presents a minimal specification language named
TESL� (a side-e↵ect-free subset of TESL [4]) for which our main results are:

– a denotational and an operational semantics for TESL�,
– a formal validation of the operational semantics w.r.t. the denotational

semantics by means of proofs for soundness, completeness and progress.

On the Semantics of Polychronous Polytimed Specifications 3

This constitutes also the outline of our paper. Compared to [23], which relied on
an ad hoc operational semantics of TESL3 implemented in Standard ML, the
present work relies on properly defined and mechanized semantics. Moreover,
the logical structure used for linking both semantics allows for easily-defined
extensions of the language.

All definitions and theorems have been formalized into the Isabelle/HOL proof
assistant [25,24] and have been accepted in the Archive of Formal Proofs, giving
us a high level of confidence in our results. The latest version of the mechanized
theory is available online at github.com/heron-solver/TESL-Theory. However,
this paper is self-contained: all the key intermediate lemmas are stated using
mathematical notations and their proofs are sketched.

2 TESL
�

We present here the TESL� minimal specification language in two parts: a basic
causal one and a temporal one.

2.1 The Causality Part

Here is a grammar for the purely causal part of the language:

 ::= hatomi ^ . . . ^ hatomi
hatomi ::= hclocki sporadic htimestampi on hclocki

| hclocki implies hclocki

where hclocki 2 K (set of clocks), and htimestampi 2 T (domain of timestamps).
The meaning of a specification and of the atomic formulae are as follows:

– the composition of specifications is their conjunction ^,
– a sporadic on requires a tick on the first clock, at an instant where the time

has the specified value in the time frame of the second clock4,
– an implies atom models instantaneous causality. It specifies that in every

instant, if the first clock ticks, the second ticks too.

In order to define the semantics of the above syntax, we formally define the
idea of runs and instants as previously introduced. The set of runs is defined
by a clock-indexed Kripke model: Runs = N ! K !

�
B ⇥ T

�
, where K is an

enumerable set of clocks, B is the set of booleans – used to indicate that a clock
ticks at a given instant – and T is a universal metric time space with some linear
ordering T. Also, we constrain this run space to prevent time from flowing
backwards, in other words a run ⇢ 2 Runs must be monotonic5:

8n 2 N. 8C 2 K. ⇡2(⇢ n C) T ⇡2(⇢ (n+ 1) C)

3 wdi.centralesupelec.fr/software/TESL/
4 The two clocks in sporadic on may be identical, which means that this clock must
tick at the given time stamp.

5 ⇡2 being the second projection, with ⇡2(x, y) = y

4 H. Nguyen Van et al.

A run is simply a infinite-sequence of instants. From a position n and a run
⇢, we can extract the instant ⇢n 2 K ! (B⇥ T). Instants describe the status of
each clock at a given observation. We define two projections to get the status of
a clock C at an instant ⇢n:

– ticks(⇢n(C)) indicates whether C ticks
– time(⇢n(C)) is the timestamp of C at that instant.

The denotation
q

y
TESL

of a TESL� formula is defined inductively as follows:
q
 0 ^ . . . ^ k

y
TESL

def
=

q
 0

y
TESL

\ . . . \
q
 k

y
TESLq

C1 sporadic ⌧ on C2

y
TESL

def
= {⇢ 2 Runs | 9n 2 N. ticks(⇢n(C1)) ^ time(⇢n(C2)) = ⌧}

q
Cmaster implies Cslave

y
TESL

def
= {⇢ 2 Runs | 8n 2 N. ticks(⇢n(Cmaster)) =) ticks(⇢n(Cslave))}

2.2 The Temporal Part

We introduce here some operators concerning time and duration.

hatomi ::= ...

| time relation (hclocki, hclocki) 2 hrelationi
| hclocki time delayed by hdurationi on hclocki implies hclocki

where hrelationi ✓ T⇥ T and hdurationi 2 T. The meaning of these operators is:

– a time relation atom gives a relation between the time frames of two clocks.
The time stamps of the clocks must be in the relation at every instant,

– a time delayed atom represents delayed causality. When the first (master)
clock ticks, the duration is added to the current time on the second (measuring)
clock to obtain the date at which the third (slave) clock has to tick.

The denotation of these operators is as follows:
q
time relation (C1, C2) 2 R

y
TESL

def
=

�
⇢ 2 Runs

�� 8n 2 N.
�
time(⇢n(C1)), time(⇢n(C2))

�
2 R

q
Cmaster time delayed by �⌧ on Cmeas implies Cslave

y
TESL

def
= {⇢ 2 Runs | 8n 2 N. ticks(⇢n(Cmaster))

=) 8m � n. time(⇢m(Cmeas)) = time(⇢n(Cmeas)) + �⌧

=) ticks(⇢m(Cslave))}

A time relation makes it possible to specify, for example, that time on one clock
flows 2.5 times as fast as on another clock. Using the floor function b c, it is also
possible to establish a relation between continuous and discrete time frames.

On the Semantics of Polychronous Polytimed Specifications 5

Cmeas

Cmaster

Cslave

�⌧ �⌧

(a) Cmaster time delayed by �⌧ on Cmeas

implies Cslave

Cmeas

Cmaster

�⌧ �⌧ �⌧ �⌧

(b) Cmaster time delayed by �⌧ on Cmeas

implies Cmaster

Fig. 2: Time delays and periodicity

The time delayed construct introduces durations in causal relationships.
Figure 2a shows the causal relation between Cmaster and Cslave, and the duration
measured in the time frame of clock Cmeas. Figure 2b shows how to specify a
periodic clock using this construct. Notice that there are no ticks on clock Cmeas

in this example, it is only used as a time frame to measure durations.

2.3 An Application Example: the Car Power Window

The car power window [3], illustrated in Figure 1, is an example of timed
coordination of four subsystems: a control button, a timed finite state machine, a
synchronous data flow (SDF) model of the electro-mechanical parts, and a discrete
events (DE) model of the CAN bus, which interconnects the other subsystems.

For the sake of brevity, we consider only the raising of the window. Therefore,
the button can only be pulled up and released, what we model by the btn up
and btn neutral events. Similarly, we consider the up and stop input events for
the timed finite state machine, as well as its power output event, which denotes
the sending of a power command to the electromechanical subsystem (the value
of this command is ignored in our temporal coordination model).

The model of the electromechanical subsystem has an update power input,
which corresponds to an update of the power to deliver to the motor. However,
according to the SDF nature of this subsystem, this information is only taken into
account when it reacts to compute its next state, which occurs every 50ms and
is modeled by a react input event. This periodic activation is part of the design
of this subsystem, and it must be enforced for the regulation of the current in
the motor to work properly. Here is a TESL specification for the power window:

1 unit-clock btn_up // the button is pulled up
2 unit-clock btn_neutral // the button is released
3 unit-clock up // the TFSM receives an up event
4 unit-clock stop // the TFSM receives a stop event
5 unit-clock power // the TFSM produces a power event
6 unit-clock update_power // the SDF model gets a new power command
7 unit-clock react // the SDF model reacts to its inputs
8 rational-clock realtime // real-time in seconds
9 rational-clock bus // time scale of the CAN bus

10

11 time relation realtime = 0.002 * bus
12 btn_up time delayed by 1.0 on bus implies up

6 H. Nguyen Van et al.

13 btn_neutral time delayed by 1.0 on bus implies stop
14

15 // Inputs of the TFSM trigger an instantaneous update of its output
16 up implies power
17 stop implies power
18

19 // The transmission delay on the CAN bus is 2 ms
20 power time delayed by 1.0 on bus implies update_power
21

22 // The window must react every 50ms (periodic clock)
23 react time delayed by 0.05 on realtime implies react

This specification ignores the values that are sent over the bus, it specifies
only when things happen since its goal is to coordinate the behaviors of the
subsystems. Lines 1 to 7 declare the clocks that compose the interface of the
subsystems for the architectural glue, as explained on Figure 1. The unit-clock
keyword simply sets the domain of timestamps of these clocks to a single value.
Lines 8 and 9 declare chronometric clocks used to measure elapsed time on the
CAN bus and in the real world. Their time domain is the rationals. Line 11 is
an example of a relation between two time frames. It specifies that when 1 unit
of time elapses on the bus clock, 0.002 s elapses on the real time clock, which
means that time is measured in units of 2ms on the bus clock. Lines 12 and
13 specify that when the button is pulled up or released, the timed finite state
machine receives its up or stop input event 1 unit of time later, measured in
the time frame of the bus clock (2ms in real time). Lines 16 and 17 specify that
the state machine reacts instantaneously to its inputs by producing its power
output event. Line 20 specifies the transmission delay on the bus between the
state machine and the SDF subsystem. Last, line 23 specifies that the reaction of
the SDF subsystem is periodic, because it implies itself with a delay of 50ms.

btn up

btn neutral

up

stop

power

update power

react

realtime

bus

react scenario

up scenario

neutral scenario

0.

0.

0.

0.

0.

5.

5E-3

2.5

5E-6

5.

3.5

7E-3

7E-6

7.

7.

4.5

9E-3

9E-6

9.

9.

0.05

25.

5E-5

50.

50.

0.1

50.

1E-4

100.

100.

0.15

75.

1.5E-4

150.

150.

0.2

100.

2E-4

200.

200.

0.25

125.

2.5E-4

250.

250.

0.3

150.

3E-4

300.

300. 320.

0.32

160.

3.2E-4

320.

161.

0.322

3.22E-4

322.

322.

162.

0.324

3.24E-4

324.

324.

0.35

175.

3.5E-4

350.

350.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 3: A satisfying run for the example of the power window specification

On the Semantics of Polychronous Polytimed Specifications 7

Figure 3 depicts a satisfying run. The user pulls the button up (clock btn up)
at 5ms (on the time scale of the realtime clock). The controller receives this
information (clock up) at 7ms due to the transmission delay on the CAN bus,
and immediately sets the power for the window motor (clock power). Then, the
mechanical part receives the command at 9ms (clock update power). The next
tick of the periodic react clock occurs at 50ms, which is the time at which the
new value of the power is taken into account and the window starts moving up.
At 320ms, the user releases the button, which switches back to neutral (clock
btn neutral). The new value of the power is updated at 324ms because of the
transmission delays between the button and the controller, and between the
controller and the mechanical parts. The next reaction of the window (clock
react) occurs at 350ms, which is the time at which the window stops moving up.
The additional clocks react scenario, up scenario and neutral scenario are
used to describe the user interface simulation scenario.

2.4 Properties of the Semantics

An important property that we derive directly from the denotational semantics is
invariance by stuttering. When we combine two specifications 1 and 2, clocks in
 2 may tick at instants where no clock in 1 ticks. Therefore, runs that satisfy S1

should still satisfy it when these stuttering instants are added. Other specification
languages, such as LTL [17,16], seek stutter-invariance to avoid the exponential
explosion of the search space when checking properties [12,15,7,21]. In TESL,
this idea is fully explored in the mechanized theory as previously mentioned.

3 Operational Semantics

We define an operational semantics to be able to constructively derive all possible
satisfying runs for a given specification. This operational semantics works on
configurations, which are composed of three parts informally called the past, the
present and the future. The semantic rules unfold the constraints of the future
into the present, and the non-deterministic choices that are made in the present
are then stored into the past. The decisions on the past are expressed using
primitive constraints defined in subsection 3.1. The combination of the past, the
present and the future is called a configuration, as presented in subsection 3.2.
The reduction rules on configurations are presented in subsection 3.3.

3.1 Primitives

The primitives in Definition 2 describe prefixes of satisfying runs. Note that
compared to TESL� atomic formulae, they deal with fixed instant indexes.

Definition 1 (Time Variables). The set of time variables V contains symbols
tvarCn with n 2 N and C 2 K. Note that tvarCn stands for the symbolic value of
time on clock C at instant n.

8 H. Nguyen Van et al.

Definition 2 (Run Primitives). A run primitive � 2 � is one of:

– C *n constrains clock C to tick at instant index n ;
– C 6*n constrains clock C not to tick (to be idle) at instant index n;
– C +n x constrains clock C to have timestamp x at instant index n, where x

can be a variable in V, or a constant in T ;
– (tvarC1

n1
, tvarC2

n2
) 2 R constrains values tvarC1

n1
and tvarC2

n2
to be in relation R.

The semantics of these primitives is given by J Kprim as:
q
{�0 ; . . . ; �k}

y
prim

def
=

q
�0

y
prim

\ . . . \
q
�k

y
prim

q
C *n

y
prim

def
=

�
⇢ 2 Runs | ticks(⇢n(C)) is true

q
C 6*n

y
prim

def
=

�
⇢ 2 Runs | ticks(⇢n(C)) is false

q
C +n x

y
prim

def
=

�
⇢ 2 Runs | time(⇢n(C)) = x

with x in T or V

q
(tvarC1

n1
, tvarC2

n2
) 2 R

y
prim

def
=

�
⇢ 2 Runs | time(⇢n1(C1)) and time(⇢n2(C2)) are in R

3.2 Configurations

The operational semantics transforms configurations, which represent the “current”
state of the construction of a symbolic run and have three parts:
– the past � is a collection of primitive constraints that represents what has

been decided in previous instants (the prefix of the run);
– the present contains the constraints on the instant under scrutiny (what

can or cannot be added to the prefix);
– the future � contains the constraints on the future behavior of the run.

Definition 3 (Configuration). A configuration is a tuple � |=n . �, where
n is the index of the current instant, � the context, which contains primitives
describing the “past”, the TESL�-formula to be considered in the “present”,
and � the TESL�-formula to satisfy in the “future” of the run.

3.3 Reduction Rules

The semantics consists in rules that transform configurations in two ways:
1. Moving constraints from the future to the present (introduction), which

amounts to turning the “next” instant into the current instant;
2. Consuming constraints in the present to produce primitive constraints in the

past (elimination).

The introduction rule initializes a new instant by incrementing the index
counter and moving the constraints from the future into the present.

Definition 4 (Introduction Rule !i). The relation !i is the smallest rela-
tion satisfying:

� |=n ? . � !i � |=n+1 � .? (instanti)

On the Semantics of Polychronous Polytimed Specifications 9

� |=n ^ (C1 sporadic ⌧ on C2) . � (sporadic� one1)

!e � |=n . � ^ (C1 sporadic ⌧ on C2)

� |=n ^ (C1 sporadic ⌧ on C2) . � (sporadic� one2)

!e � [
�
C1 *n, C2 +n ⌧

|=n . �

� |=n ^ (Cmaster implies Cslave) . � (impliese1)

!e � [
�
Cmaster 6*n

|=n . � ^ (Cmaster implies Cslave)

� |=n ^ (Cmaster implies Cslave) . � (impliese2)

!e � [
�
Cmaster *n, Cslave *n

|=n . � ^ (Cmaster implies Cslave)

� |=n ^ (time relation (C1, C2) 2 R) . � (time� relatione)

!e � [
�
(tvarC1

n , tvarC2
n) 2 R

|=n . � ^ (time relation (C1, C2) 2 R)

� |=n ^ (Cmaster time delayed by �t on Cmeas implies Cslave) . �
(time� delayede1)

!e � [
�
Cmaster 6*n

|=n . � ^ (Cmaster time delayed by �t on Cmeas implies Cslave)

� |=n ^ (Cmaster time delayed by �t on Cmeas implies Cslave) . �
(time� delayede2)

!e � [
�
Cmaster *n

|=n ^ (Cslave sporadic (tvarCmeas

n + �t) on Cmeas)

. � ^ (Cmaster time delayed by �t on Cmeas implies Cslave)

Table 1: Elimination Rules for TESL� formulae

The elimination rules consume constraints on the present and produce primi-
tive constraints on the past as well as constraints on the future, which correspond
to consequences of the choices made for the current instant. The application of
these rules adds constraints to � and makes the run more defined.

Definition 5 (Elimination Rules !e). The relation !e is the smallest rela-
tion satisfying the rules given in Table 1.

It is necessary to apply elimination rules until the present of the configuration
is empty and the introduction rule can be applied to progress to the next instant.
Here are di↵erent possibilities to eliminate constraints from the present:

– C1 sporadic ⌧ on C2: this formula can be postponed to a later instant
(Rule sporadic� one1), or satisfied in the current instant by adding ticking
and timestamp primitives to the context (Rule sporadic� one2),

– Cmaster implies Cslave: either clock Cmaster does not tick (Rule impliese1), or
both Cmaster and Cslave tick in the current instant (Rule impliese2). In both
cases, the formula is copied into the future to be satisfied at every instant,

– time relation (C1, C2) 2 R: the corresponding primitive is added to
constrain the timestamps on clocks C1 and C2 at the current instant, and
the formula is put into the future since it has to be satisfied at every instant,

– Cmaster time delayed by �t on Cmeas implies Cslave: either clock Cmaster does
not tick and we only copy the formula into the future (Rule time� delayede1);

10 H. Nguyen Van et al.

q
 0 ^ . . . ^ k

y�i

TESL

def
=

q
 0

y�i

TESL
\ . . . \

q
 k

y�i

TESLq
C1 sporadic ⌧ on C2

y�i

TESL

def
= {⇢ 2 Runs | 9n � i. ticks(⇢n(C1)) ^ time(⇢n(C2)) = ⌧}

q
Cmaster implies Cslave

y�i

TESL

def
= {⇢ 2 Runs | 8n � i. ticks(⇢n(Cmaster)) =) ticks(⇢n(Cslave))}

q
time relation (C1, C2) 2 R

y�i

TESL

def
=

�
⇢ 2 Runs

�� 8n � i.
�
time(⇢n(C1)), time(⇢n(C2))

�
2 R

q
Cmaster time delayed by �⌧ on Cmeas implies Cslave

y�i

TESL

def
= {⇢ 2 Runs | 8n � i. ticks(⇢n(Cmaster)) =)

8m � n. time(⇢m(Cmeas)) = time(⇢n(Cmeas)) + �⌧ =) ticks(⇢m(Cslave))}

Table 2: Stepwise Interpretation of TESL� formulae

or it ticks and we need to force a tick on Cslave when the time on Cmeas reaches
tvarCmeas

n +�t, which is the current timestamp on measuring clock Cmeas delayed
by duration �t. The formula is copied into the future (Rule time� delayede2).

3.4 Local Termination

Proposition 1 (Termination of Elimination Rules).
The relation !e is well-founded.

Proof. All of the elimination rules strictly decrease the number of formulae in
the “present” of the configuration, and a configuration with an empty “present”
is in normal form with respect to !e.

Definition 6 (Reduction !). We define ! def
= !i [!e.

A reduction step is either an introduction or an elimination.

4 Relating Operational and Denotational Semantics

In this section, we give key properties of the operational semantics. We are
interested in establishing soundness (Theorem 1), completeness (Theorem 2),
and progress (Theorem 3) with respect to the denotational semantics defined in
section 2.

4.1 Stepwise Denotational Semantics

In subsection 2.1 and subsection 2.2, we have defined a denotational semantics
to characterize the runs that satisfy a specification. Definition 7 gives a stepwise
version of this definition, which constrains the behavior only from a given instant.

On the Semantics of Polychronous Polytimed Specifications 11

q
C1 sporadic ⌧ on C2

y�i

TESL

=
⇣q

C1 *i

y
prim

\
q
C2 +i ⌧

y
prim

⌘
[

q
C1 sporadic ⌧ on C2

y�i+1

TESL

q
Cmaster implies Cslave

y�i

TESL

=
⇣q

Cmaster 6*i

y
prim

[(
q
Cmaster *i

y
prim

\
q
Cslave *i

y
prim

)
⌘

\
q
Cmaster implies Cslave

y�i+1

TESLq
time relation (C1, C2) 2 R

y�i

TESL

=
q
(tvariC1

, tvariC2
) 2 R

y
prim

\
q
time relation (C1, C2) 2 R

y�i+1

TESL
q
Cmaster time delayed by �⌧ on Cmeas implies Cslave

y�i

TESL

=
q
Cmaster 6*i

y
prim

\
q
Cmaster time delayed by �⌧ on Cmeas implies Cslave

y�i+1

TESL

[
q
Cmaster *i

y
prim

\
q
Cslave sporadic tvariCmeas + �⌧ on Cmeas

y�i

TESL

\
q
Cmaster time delayed by �⌧ on Cmeas implies Cslave

y�i+1

TESL

Table 3: Coinductive Unfolding of Stepwise Interpretation

Definition 7 (Stepwise Interpretation of TESL� formulae).

The stepwise interpretation of a TESL� formula , noted
q

y�i

TESL
, is defined as

in Table 2.

This stepwise interpretation from instant 0 matches the denotational inter-
pretation:

Lemma 1 (Start step). For any TESL� formula ,
q

y
TESL

=
q

y�0

TESL
.

Proof. From the definitions of
q

y�0

TESL
and

q

y
TESL

and from n 2 N () n � 0.

The next proposition links the operational and denotational semantics. The
structure of the right hand term in the equations in Table 3 matches the reduction
rules of the operational semantics. Therefore, the coinductive unfolding of the
denotational semantics is similar to the derivation of a reduction step in the
operational semantics. The past-present-future pattern is also visible here: the
past is described by J Kprim (denotation of fixed primitives), the present by J K�i

TESL,
which denotes runs that are valid from the current instant, and the future by
J K�i+1

TESL , which denotes runs that are valid from the next instant.

Proposition 2 (Coinductive Unfolding). The stepwise interpretation can be
coinductively unfolded as presented in Table 3.

Proof. By unfolding the quantifiers and substituting parts with Definition 2 and

Definition 7. The rules of Table 3 state that
q

y�i

TESL
can be decomposed into

what happens at index i and what happens starting from index i+ 1.

12 H. Nguyen Van et al.

This coinductive pattern explains the behavior of the operational semantics
at a denotational level and bridges the gap between those semantics.

4.2 Soundness

To establish soundness, we define the meaning of a configuration.

Definition 8 (Interpretation of configurations).
The interpretation of a configuration � |=n . � is:

q
� |=n . �

y
config

def
=

q
�

y
prim

\
q

y�n

TESL
\

q
�

y�n+1

TESL

It is trivial to show that the interpretation of a TESL� formula is the same
as the interpretation of the initial configuration starting at .

Lemma 2 (Start configuration). For any TESL� formula , we haveq

y
TESL

=
q
? |=0 .?

y
config

Proof. The proof is done by unfolding Definition 8:
q
?

y
prim

and
q
?

y�n+1

TESL
are the

whole set of runs, since ? is not constraining anything, and
q

y�0

TESL
is

q

y
TESL

by Lemma 1.

We now show that each reduction step is sound, in the sense that if a run
satisfies a derived configuration, it also satisfies the original configuration.

Lemma 3 (Sound Reduction). For any reduction (� |=n . �) ! (� 0 |=n0

 0 . �0), we have
q
� |=n . �

y
config

◆
q
� 0 |=n0 0 . �0y

config
.

Proof. By Definitions 6 and 8, and case analysis on !. In the !i case, the
reduction is of the form � |=n . ? ! � |=n+1 ? . : the semantics of both
sides are the same. In !e case, n0 = n+1 and we use Proposition 2 to decompose
the semantics at instant n using the semantics at instant n+ 1.

Finally, we show soundness by generalizing Lemma 2 and Lemma 3 to an
arbitrary number of reductions from the initial configuration.

Theorem 1 (Soundness). Let be a TESL� formula. For all k and all con-
figurations � 0 |=n0 0 . �0 such that ? |=0 .? !k � 0 |=n0 0 . �0, we haveq

y
TESL

◆
q
� 0 |=n0 0 . �0y

config

Proof. By induction on k. For the base case, when k = 0 we have � 0 = 0 = ?.
Lemma 2 then tells us that

q

y
TESL

=
q
� 0 |=n0 0 . �0y

config
. For the inductive

case, we suppose that the result is true for k and we consider k + 1 reductions:

? |=0 .? !k � 0 |=n0 0 . �0 ! � 00 |=n00 00 . �00.

The induction hypothesis tells us that
q

y
TESL

◆
q
� 0 |=n0 0 . �0y

config
, and we

can conclude using Lemma 3 and the transitivity of ◆.

On the Semantics of Polychronous Polytimed Specifications 13

4.3 Completeness

Completeness consists in showing that if a run ⇢ belongs to the denotation of a
configuration, it is always possible to derive a new configuration whose denotation
also contains ⇢. For this, we first define the direct successors of a configuration.

Definition 9 (Direct Successors). For any configuration � |=n . �,

Cnext(� |=n . �)
def
=

�
� 0 |=n0 0 . �0

�� (� |=n . �) ! (� 0 |=n0 0 . �0)

Then we show that any denoted run belongs to some successor configuration.

Lemma 4 (Complete Direct Successors). For any configuration � |=n .�,

q
� |=n . �

y
config

✓
[

X2Cnext(� |=n .�)

q
X

y
config

Proof. Similarly to the proof of Lemma 3, we proceed by induction on the number
of formulae in . If is empty, the only possible reduction is !i: the reduction
is of the form � |=n . ? ! � |=n+1 ? . and there is only one possible
X, whose semantics is

q
� |=n . �

y
config

. If is not empty, the reduction is a

!e-reduction. The case is solved using Proposition 2 to decompose the semantics
at instant n using the semantics of the possible reductions at instant n+ 1.

Hence, completeness holds for an arbitrary number of reductions starting
from the initial configuration.

Theorem 2 (Completeness). Let be a TESL� formula and ⇢ a satisfying
run, i.e. ⇢ 2

q

y
TESL

. For all k, there is a configuration � 0 |=n0 0 . �0 such that

? |=0 .? !k � 0 |=n0 0 . �0 and ⇢ 2
q
� 0 |=n0 0 . �0y

config

Proof. By induction on k. For k = 0, we conclude using Lemma 2. For the
inductive case, we assume that the result is true for k and consider the k+1 case.
From the induction hypothesis we find a configuration � 0 |=n0 0 . �0 such that
? |=0 . ? !k � 0 |=n0 0 . �0 and ⇢ 2

q
� 0 |=n0 0 . �0y

config
. From Lemma 4,

we deduce that there is some X 2 Cnext(� |=n . �) such that ⇢ 2
q
X

y
config

.

This X is the configuration we are looking for to close the inductive case.

4.4 Progress

Progress ensures the increase of the length of the run in construction. We establish
that for any instant index, a configuration can be “executed” to produce a run
prefix whose length is incremented by 1 (Lemma 5). Then in Theorem 3 we show
that for any instant index, a specification can be “executed” to produce a run
prefix of such length from the initial configuration.

Lemma 5 (Instant Index Increase). Let � |=n . � be a configuration
and ⇢ a satisfying run, i.e. ⇢ 2

q
� |=n . �

y
config

. There is � 0, 0, �0 and

a number of reductions k such that � |=n . � !k � 0 |=n+1 0 . �0 and
⇢ 2

q
� 0 |=n+1 0 . �0y

config
.

14 H. Nguyen Van et al.

Proof. By induction on the size of . When is empty, we can just pick k = 1
as the reduction will be a !i-reduction, and both sides of the reduction will have
the same semantics. Now, supposing that the result is true for any containing
i formulae, let’s assume that contains i+ 1 formulae. Lemma 4 tells us that
there exists a configuration X such that � |=n . � ! X and ⇢ 2

q
X

y
config

.

Since is not empty, the reduction is a !e-reduction and the “present” part of
X is now of size i: we can apply the induction hypothesis and close the case.

Theorem 3 (Progress). Let be a TESL� formula and ⇢ a satisfying run,
i.e. ⇢ 2

q

y
TESL

. For all n, there is � 0, 0, �0 and a number of reductions k such

that ? |=0 .? !k � 0 |=n 0 . �0 and ⇢ 2
q
� 0 |=n 0 . �0y

config
.

Proof. The proof is by induction on n. For the base case, n = 0 we can pick
k = 0, and both sides of the reduction are equal. For the induction step, from
the induction hypothesis we have � 0, 0, �0 and a number k such that ? |=0

 .? !k � 0 |=n 0 . �0 and ⇢ 2
q
� 0 |=n 0 . �0y

config
. With Lemma 5 we obtain

the required configuration at instant n+ 1.

5 Runtime Monitoring and Testing

Our theories allow for straightforward tactic execution of the operational rules
of TESL� via the Isabelle proof engine. This turned out to be too ine�cient
for even runs with a few simulation steps due to the internal mechanism of the
proof assistant. Nevertheless, the seperate implementation of the operational
semantics, named Heron, which we use for monitoring and testing [23], can be
regarded with greater confidence. Indeed, its operational rules directly correspond
to the operational semantics of the Isabelle/HOL implementation, which has
been proved equivalent to the denotational semantics.

6 Related Work

TESL is a polychronous and polytimed language. Polymorphic time exists in
the family of synchronous languages that were designed in the 1980’s, such
as Lustre [13], Esterel [2] and Signal [18]. In these languages, time is purely
logical (there are no dates nor chronometric durations), and can be used for
modeling occurrences of any kind of events, hence the polymorphic nature of
time. Thereafter, Prelude [26] and Zélus [5] extended the Lustre programming
language with the addition of support for metric time.

As opposed to the latter synchronous models which derive all clocks from a
common root clock (defining the instants where the system reacts), polychronous
models [28] do not constrain all clocks to derive from a single reaction clock,
allowing a more relaxed and concurrent execution of systems. Polychrony is
supported by the Signal language and in Polychronous automata [19].

Another source of inspiration in our work is CCSL [10,20], the Clock Con-
straints Specification Language, which supports asynchronous constraints on

On the Semantics of Polychronous Polytimed Specifications 15

the occurrence of events. It has an executable semantics [30] and a denotational
semantics [9,22]. However, all these approaches do not support chronometric
clocks, with dates and durations. They measure time in numbers of ticks on a
clock, not in elapsed durations on a time scale. In opposition, TESL supports
chronometric time, and allows di↵erent clocks to live in di↵erent time frames.

Timed automata [1] support both discrete events and measuring durations on
a time scale, with several mechanization approaches of their semantics [11,27,14].
However, this time scale is global and uniform: all clocks in a timed automaton
progress at the same rate. Our model considers a larger scope of time with
polychronous clocks flowing independently from each other.

The GEMOC initiative [8] has been targeting the development of frameworks
to facilitate the integration of heterogeneous modeling languages. In particular,
the BCOoL language [29] is specifically targeted at coordination patterns for
Domain Specific Events (interface of a domain specific modeling language).

7 Future work

A few directions of extension for our work are worth mentioning:

– it might be worthwhile to look for even more fundamental operators on
clock-indexed models and derive a kind of core language-theory that is even
more compact albeit more expressive,

– we are interested in general architectural operators allowing to combine
subsystem specifications to larger ones (e.g., with hidden or local clocks),

– we plan to explore the code generation features of Isabelle/HOL to produce
certified solvers from the derived operational rules of our timed languages.

8 Conclusion

This study investigates the semantics of timed languages using clock-indexed
Kripke models. Illustrated by a minimalist language that supports event- and
timed-based constraints over polychronous clocks, we show a novel way to relate
from one side, a denotational semantics, whose advantages are to be logically
consistent by construction, compositional and trace-based, with an operational
semantics that constructs symbolic runs and is thus suited for verification pur-
poses. This technique is based on the observation that time, decomposed in an
intuitive past-present-future pattern, can be reflected in both semantics through
an operational unfolding principle. Yet, the time model we chose to study exhibits
several challenging properties: time constraints can be both logical and metric,
clocks are polychronous (no global clock) and polymorphic (various domain types)
and clock constraints can be synchronous or asynchronous.

The unfolding principle of time in both denotational and operational seman-
tics allows us to establish crucial properties such as stutter-invariance at the
denotational level, as well as the equivalence results given by correctness and
completeness. Finally, local termination and progress properties bridge the gap
towards trustworthy verification tools.

16 H. Nguyen Van et al.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126, 183–235 (1994)

2. Berry, G.: The foundations of Esterel. In: Plotkin, G., Stirling, C., Tofte, M. (eds.)
Proof, Language, and Interaction, pp. 425–454. MIT Press, Cambridge, MA, USA
(2000)

3. Boulanger, F., Hardebolle, C., Jacquet, C., Marcadet, D.: Semantic adapta-
tion for models of computation. In: 2011 Eleventh International Conference
on Application of Concurrency to System Design. pp. 153–162 (June 2011).
https://doi.org/10.1109/ACSD.2011.17

4. Boulanger, F., Jacquet, C., Hardebolle, C., Prodan, I.: TESL: a language for
reconciling heterogeneous execution traces. In: Twelfth ACM/IEEE International
Conference on Formal Methods and Models for Codesign (MEMOCODE 2014). pp.
114–123. Lausanne, Switzerland (Oct 2014)

5. Bourke, T., Pouzet, M.: Zélus: A synchronous language with odes. In: Pro-
ceedings of the 16th International Conference on Hybrid Systems: Computa-
tion and Control. p. 113–118. HSCC ’13, Association for Computing Machinery,
New York, NY, USA (2013). https://doi.org/10.1145/2461328.2461348, https:
//doi.org/10.1145/2461328.2461348

6. Brunette, C., Talpin, J.P., Gamatié, A., Gautier, T.: A metamodel for the design
of polychronous systems. The Journal of Logic and Algebraic Programming 78(4),
233 – 259 (2009). https://doi.org/https://doi.org/10.1016/j.jlap.2008.11.005,
http://www.sciencedirect.com/science/article/pii/S1567832608000957,
iFIP WG1.8 Workshop on Applying Concurrency Research in Industry

7. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) Proceed-
ings of the Third International Conference on Principles of Security and Trust
(POST 2014). Lecture Notes in Computer Science, vol. 8414, pp. 265–284. Springer,
Grenoble, France (2014)

8. Combemale, B., Cheng, B.H., France, R.B., Jezequel, J.M., Rumpe, B.: Globaliz-
ing Domain-Specific Languages, LNCS, Programming and Software Engineering,
vol. 9400. Springer International Publishing (2015)

9. Deantoni, J., André, C., Gascon, R.: CCSL denotational semantics. Research Report
RR-8628, Inria (Nov 2014)

10. Garcés, K., Deantoni, J., Mallet, F.: A model-based approach for reconciliation of
polychronous execution traces. In: SEAA 2011 - 37th EUROMICRO Conference on
Software Engineering and Advanced Applications. IEEE, Oulu, Finland (Aug 2011)

11. Garnacho, M., Bodeveix, J.P., Filali-Amine, M.: A mechanized semantic framework
for real-time systems. In: Braberman, V., Fribourg, L. (eds.) Formal Modeling
and Analysis of Timed Systems: 11th International Conference, FORMATS 2013,
Buenos Aires, Argentina, August 29-31, 2013. Proceedings. pp. 106–120. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013)

12. Groote, J.F., Vaandrager, F.W.: An e�cient algorithm for branching bisimulation
and stuttering equivalence. In: Proceedings of the 17th International Colloquium on
Automata, Languages and Programming (ICALP 90). Lecture Notes in Computer
Science, vol. 443, pp. 626–638. Springer, Warwick University, England, UK (1990)

13. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow pro-
gramming language Lustre. Proceedings of the IEEE 79(9), 1305–1320 (September
1991)

On the Semantics of Polychronous Polytimed Specifications 17

14. Hale, R., Cardell-Oliver, R., Herbert, J.: An embedding of timed transition systems
in HOL. Formal Methods in System Design 3(1), 151–174 (Aug 1993)

15. Klein, J.: Compositional Synthesis and Most General Controller. Ph.D. thesis,
Technische Universität Dresden (2013)

16. Kučera, A., Strejček, J.: The stuttering principle revisited. Acta Informatica 41(7–8),
415–434 (2005). https://doi.org/10.1007/s00236-005-0164-4

17. Lamport, L.: What good is temporal logic? In: Mason, R.E.A. (ed.) IFIP Congress
on Information Processing. pp. 657–668 (1983)

18. Le Guernic, P., Benveniste, A., Bournai, P., Gautier, T.: Synchronous data flow
programming with the language SIGNAL. IFAC Proceedings Volumes 20(2), 359
– 364 (1987), 2nd IFAC Workshop on Adaptive Systems in Control and Signal
Processing 1986, Lund, Sweden, 30 June-2 July 1986

19. Le Guernic, P., Gautier, T., Talpin, J.P., Besnard, L.: Polychronous automata.
In: TASE 2015, 9th International Symposium on Theoretical Aspects of Software
Engineering. pp. 95–102. IEEE Computer Society, Nanjing, China (Sep 2015)

20. Mallet, F., Deantoni, J., André, C., De Simone, R.: The Clock Constraint Specifi-
cation Language for building timed causality models. Innovations in Systems and
Software Engineering 6(1-2), 99–106 (Mar 2010)

21. Michaud, T., Duret-Lutz, A.: Practical stutter-invariance checks for !-regular lan-
guages. In: Fischer, B., Geldenhuys, J. (eds.) Proceedings of the 22nd International
Symposium on Model Checking Software (SPIN 2015). Lecture Notes in Computer
Science, vol. 9232, pp. 84–101. Springer, Stellenbosch, South Africa (2015)

22. Montin, M., Pantel, M.: Mechanizing the denotational semantics of the clock
constraint specification language. In: Abdelwahed, E.H., Bellatreche, L., Golfarelli,
M., Méry, D., Ordonez, C. (eds.) Model and Data Engineering. pp. 385–400. Springer
International Publishing, Cham (2018)

23. Nguyen Van, H., Balabonski, T., Boulanger, F., Keller, C., Valiron, B., Wol↵,
B.: A symbolic operational semantics for TESL with an application to heteroge-
neous system testing. In: Formal Modeling and Analysis of Timed Systems, 15th
International Conference FORMATS 2017. LNCS, vol. 10419. Springer (Sep 2017)

24. Nipkow, T., Klein, G.: Concrete Semantics: With Isabelle/HOL. Springer Publishing
Company, Incorporated (2014)

25. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for Higher-
order Logic. Springer-Verlag, Berlin, Heidelberg (2002)

26. Pagetti, C., Forget, J., Boniol, F., Cordovilla, M., Lesens, D.: Multi-task implemen-
tation of multi-periodic synchronous programs. Discrete Event Dynamic Systems
21(3), 307–338 (2011), https://hal.inria.fr/inria-00638936

27. Paulin-Mohring, C.: Modelisation of timed automata in Coq. In: Kobayashi, N.,
Pierce, B.C. (eds.) Theoretical Aspects of Computer Software: 4th International
Symposium, TACS 2001 Sendai, Japan, October 29–31, 2001 Proceedings. pp.
298–315. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

28. Talpin, J.P., Brandt, J., Gemünde, M., Schneider, K., Shukla, S.: Constructive
polychronous systems. In: Artemov, S., Nerode, A. (eds.) Logical Foundations of
Computer Science. Lecture Notes in Computer Science, vol. 7734. Springer, San
Diego, CA, United States (Jan 2013)

29. Vara Larsen, M.E., Deantoni, J., Combemale, B., Mallet, F.: A behavioral coordi-
nation operator language (BCOoL). In: 18th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2015) (Aug 2015)

30. Zhang, M., Mallet, F.: An executable semantics of Clock Constraint Specification
Language and its applications. In: Formal Techniques for Safety-Critical Systems:
4th International Workshop, FTSCS 2015. pp. 37–51. Springer, Cham (2016)

