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Abstract. Isabelle/DOF is an ontology framework on top of Isabelle
Isabelle/DOF allows for the formal development of ontologies as well as
continuous conformity-checking of integrated documents annotated by
ontological data. An integrated document may contain text, code, defi-
nitions, proofs and user-programmed constructs supporting a wide range
of Formal Methods. Isabelle/DOF is designed to leverage traceability in
integrated documents by supporting navigation in Isabelle’s IDE as well
as the document generation process.
In this paper we extend Isabelle/DOF with annotations of 𝜆-terms, a
pervasive data-structure underlying Isabelle used to syntactically rep-
resent expressions and formulas. Rather than introducing an own pro-
gramming language for meta-data, we use Higher-order Logic (HOL)
for expressions, data-constraints, ontological invariants, and queries via
code-generation and reflection. This allows both for powerful query lan-
guages and logical reasoning over ontologies in, for example, ontological
mappings. Our application examples cover documents targeting formal
certifications such as CENELEC, Common Criteria, etc.
Keywords: Ontologies, Formal Documents, Formal Development, Is-
abelle/HOL, Ontology Mapping, Certification

1 Introduction

The linking of formal and informal information is perhaps the most perva-
sive challenge in the digitization of modern society. Extracting knowledge from
reasonably well-structured informal “raw”-texts is a crucial prerequisite for any
form of advanced search, classification, “semantic” validation and “semantic”
merge technology. This challenge incites numerous research efforts summarized
under the labels “semantic web” or “data mining”. A key role in structuring this



linking are played by document ontologies (also called vocabulary in the seman-
tic networks or semantic web communities), i.e., a machine-readable form of the
structure of documents as well as the document discourse. Such ontologies can
be used for the scientific discourse underlying scholarly articles, mathematical
libraries, and documentations in various engineering domains. In other words,
ontologies generate the meta-data necessary to annotate raw text allowing their
“deeper analysis”, in particular if mathematical formulas or other forms of formal
content occur.

We are in particular interested in a particular application domain of these
techniques, namely integrated documentations of software developments target-
ing certifications (such as CENELEC 50128 [6] or Common Criteria [7]). We
consider this domain as a particular rewarding instance of the general problem.
Certifications of safety or security critical systems, albeit responding to the fun-
damental need of the modern society of trustworthy numerical infrastructures,
are particularly complex and expensive, since distributed labor as occurring in
the industrial practice involving numerous artifacts such as analysis, design,
and verification documents including models and code must be kept coherent
under permanent changes during the development. Moreover, certification pro-
cesses impose a strong need of traceability within the global document structure.
Last but not least, modifications and updates of a certified product usually re-
sult in a complete restart of the certification activity, since the impact of local
changes can usually not be mechanically checked and has to be done essentially
by manual inspection. Our interest in this domain lead us to the development
of Isabelle/DOF, an environment implementing our concept of deep ontology.

1.1 A Gentle Introduction into Isabelle/DOF

Fig. 1: The Ontology Environment Isabelle/DOF.

Isabelle/HOL [19] is a well-known semi-automated proof environment and
documentation generator. As shown in Fig. 1, Isabelle/DOF extends the open-
source Isabelle/HOL core by a number of constructs allowing for the specification



of formal ontologies (left half); additionally, it provides documentation constructs
(right half) for text-, definition-, term-, proof-, code-, and user-defined elements
that enforce document conformance to a given ontology.

Isabelle/DOF [4] 5 is a new kind of ontological modelling and document val-
idation tool. In contrast to conventional languages like OWL and development
environments such as Protégé [17], it brings forward our concept of deep ontolo-
gies, i. e. ontologies represented inside a logical language such as HOL rather
than a conventional programming language like Java. Deep ontologies gener-
ate strongly typed meta-information specified in HOL-theories allowing both for
efficient execution and logical reasoning about meta-data. They generate a par-
ticular form of checked annotations called antiquotation to be used inside code
and texts. Deeply integrated into the Isabelle ecosystem [5], and thus permitting
continuous checking and validation, they also allow ontology-aware navigation
inside large documents with both formal and informal content.

In the following, we will detail this by example of annotated text in a docu-
ment. We will assume a given ontology; an introduction into our ontology def-
inition language ODL is given in Sect. 2.2. The Isabelle’s text‹ … ›-element
or ML‹ … › code-elements are extended to the corresponding Isabelle/DOF
elements:

text∗[label∶∶cid, attrib-def 1,… ,attrib-def 𝑛]‹… annotated text … ›
ML∗[label∶∶cid, attrib-def 1,… ,attrib-def 𝑛]‹… annotated code … ›

where cid is an identifier of an ontological class introduced in an ontology to-
gether with attributes belonging to this class defined in ODL. For example, if
an ontology provides a concept Definition, we can do the following:

text∗[safe∶∶Definition, name=safety]‹Our system is safe if the following holds ...›

The Isabelle/DOF command text∗ creates an instance safe of the ontologi-
cal class Definition with the attribute name and associates it to the text in-
side the ‹...›-brackets. We call the content of these brackets the text-context (or
ML-context, respectively). Of particular interest for this paper is the ability to
generate a kind of semantic macro, called anti-quotation, which is continuously
checked and whose evaluation uses information from the background theory of
this text element.

For example, we might refer to the above definition in another text element:

text∗[...]‹As stated in @{Definition ‹safe›}, . . . ›

Where Isabelle/DOF checks on-the-fly that the reference ”safe” is indeed defined
in the document and has the right type (it is not an Example, for example),
generates navigation information (i.e. hyperlinks to safe as well as the ontological
description of Definition in the Isabelle IDE) as well as specific documentation
markup in the generated PDF document, e.g.:
5 The official releases are available at https://zenodo.org/record/6385695, the devel-

oper version at https://github.com/logicalhacking/Isabelle_DOF.

https://zenodo.org/record/6385695
https://github.com/logicalhacking/Isabelle_DOF


As stated in Def . 3.11 (safety), ...

where the underline may be blue because the layout description configured for
this ontology says so. Moreover, this is used to generate an index containing,
for example, all definitions. Similarly, this also works for an ontology providing
concepts such as “objectives”, “claims” and “evidences”, and invariants may be
stated in an ontological class that finally enforces properties such as that “all
claims correspond to evidences in the global document”, and “all evidences must
contain at least one proven theorem”, etc. pp. In contrast to a conventional type-
setting system, Isabelle can additionally type-check formulas, so for example:

text∗[...]‹The safety distance is defined by @{term dist𝑠𝑎𝑓𝑒 = sqrt(d−a∗Δt2)}...›

where functions like dist𝑠𝑎𝑓𝑒, sqrt, -∗-, etc., have to be defined in the signa-
ture and logical context or background theory of this formula. Anti-quotations
as such are not a new concept in Isabelle; the system comes with a couple of
hand-programmed anti-quotations like @{term ...}. In contrast, Isabelle/DOF
generates anti-quotations from ontological classes in ODL, together with checks
generated from data-constraints (or: class invariants) specified in HOL.

1.2 The novelty: Using HOL-terms for Meta-Data and Invariants

Isabelle uses typed 𝜆-terms as syntactic presentation for expressions, formu-
las, definition and rules. Rather than using a classical programming language,
our concept of deep ontologies led us to use HOL itself and generate the checking-
code for anti-quotations via reflection and reification techniques. In particular,
this paves the way for a new type context called term contexts. As a conse-
quence, we extend Isabelle/DOF framework to use this possibility and will show
in this paper how to exploit term contexts to express meta-data-constraints via
invariants, to formally prove relations between instances and to generate code
on-the-fly for advanced queries.

2 Background

2.1 The Isabelle/DOF Framework

As shown in Fig. 1, Isabelle/DOF extends Isabelle/HOL by basically two
things: ways to annotate an integrated document written in Isabelle/HOL with
the specified meta-data and a language called Ontology Definition Language
(ODL) allowing to specify a formal ontology. Isabelle/DOF generates from an
ODL ontology a family of antiquotations allowing to specify machine-checked
links between ODL entities.

The perhaps most attractive aspect of Isabelle/DOF is its deep integration
into the IDE of Isabelle (Isabelle/PIDE), which allows a hypertext-like navi-
gation as well as fast user-feedback during development and evolution of the
integrated document source. This includes rich editing support, including on-
the-fly semantics checks, hinting, or auto-completion. Isabelle/DOF supports



LATEX-based document generation as well as ontology-aware “views” on the in-
tegrated document, i. e., specific versions of generated PDF addressing, e. g.,
different stake-holders.

2.2 A Guided Tour through ODL

Isabelle/DOF provides a strongly typed ODL that provides the usual con-
cepts of ontologies such as

– document class (using the doc-class keyword) that describes a concept,
– attributes specific to document classes (attributes might be initialized with

default values), and
– a special link, the reference to a super-class, establishes an is-a relation

between classes.

The types of attributes are HOL-types. Thus, ODL can refer to any prede-
fined type from the HOL library, e. g., string, int as well as parameterized types,
e. g., option, list. As a consequence of the Isabelle document model, ODL defini-
tions may be arbitrarily mixed with standard HOL type definitions. Document
class definitions are HOL-types, allowing for formal links to and between onto-
logical concepts. For example, the basic concept of requirements from CENELEC
50128 [6] is captured in ODL as follows:

Isabelle (Isar)doc-class text-element = . . .

datatype role = developer ∣ verifier ∣ validator

doc-class requirement = text-element +
long-name ∶∶string option
is-concerned∶∶role set

Ontology specifications consist of a sequence of class definitions like these;
here, they are intertwined with the standard Isabelle/HOL datatype command
defining the constructors and the rules for role-type. Therefore, it can be ref-
erenced in the requirement doc-class. Note that Isabelle’s session management
allows for pre-compiling them before being imported in another document being
the instance of this ontology.

(a) A Text-Element as Requirement. (b) Referencing a Requirement.

Fig. 2: Referencing a Requirement.

Fig. 2 shows an ontological annotation of a requirement and its referencing via
an antiquotation @{requirement ‹req1›}; the latter is generated from the above



class definition. Undefined or ill-typed references were rejected, the high-lighting
displays the hyperlinking which is activated on a click. The class-definition of
requirement and its documentation is also just a click away.
Isabelle/DOF is based on the idea of “deep ontologies”. In this context, this
means that a logical representation for the instance req1 is generated, i. e. a
𝜆-term, which is used to represent this meta-data. For this purpose, we use
Isabelle/HOL’s record support [22].

For the above example, this means that req1 is represented by :

– the record term (∣long-name = None, is-concerned = {developer , validator}∣)
and the corresponding record type requirement = (∣long-name∶∶string option,
is-concerned∶∶role set∣),

– ... while the resulting selectors were written long-name r, is-concerned r.

In general, onto-classes and the logically equivalent doc-classes were repre-
sented by extensible record types and instances thereof by HOL terms (see [5]
for details.).

2.3 Term-Evaluations in Isabelle

Besides the powerful, but relatively slow rewriting-based proof method simp,
there are basically two other techniques for the evaluation of terms:

– evaluation via reflection into SML [12] (eval), and
– normalization by evaluation [1] (nbe).

The former is based on a nearly one-to-one compilation of datatype specifica-
tion constructs and recursive function definitions into SML datatypes and func-
tions. The generated code is directly compiled by the underlying SML compiler
of the Isabelle platform. This way, pattern-matching becomes natively compiled
rather than interpreted as in the matching process of simp. Aehlig et al [1] are
reporting on scenarios where eval is five orders of magnitude faster than simp.
However, it is restricted to ground terms. nbe is not restricted to ground terms,
but lies in its efficiency between simp and eval.

Isabelle/DOF uses a combination of these three techniques in order to evalu-
ate invariants and check data-integrity on the fly during editing. For reasonably
designed background theories and ontologies, this form of runtime-testing is suf-
ficiently fast to remain unnoticed by the user.

3 Term-Context Support, Invariants and Queries in DOF

Isabelle/HOL as a system offers a document-centric view to the formal theory
development process. Over the years, this led to strong documentation genera-
tion mechanisms supported by a list of build-in text and code anti-quotations.



Fig. 3: Contexts in Isabelle/DOF.

As mentioned earlier, Isabelle/DOF generates from ODL families of ontology-
related anti-quotations used in text and code contexts [4,5]. In this section, we
introduce the novel concept of term contexts, i. e. annotations to be made inside
𝜆-terms (See Fig. 3). Terms comprising term anti-quotations were treated by a
refined process involving the steps:

– Parsing and Typechecking of the term in HOL theory context,
– Ontological validation of the term:

• the arguments of term anti-quotations are parsed and checked,
• checks resulting from ontological invariants were applied,

– Generation of markup information for the navigation in the IDE,
– Elaboration of term anti-quotations: depending of the antiquotation specific

elaboration function, the anti-quotations containing references were replaced
by the object they refer to, and

– Evaluation: HOL expressions were compiled and the result executed.

In order to exemplify this process, we consider the Isabelle/DOF commands
term∗ and value∗ (which replace the traditional commands term and value
restricted to parsing and type-checking).

Isabelle (Isar)term∗‹ @{thm ′′HOL.refl ′′} = @{thm ′′HOL.sym ′′} ›
value∗‹ @{thm ′′HOL.refl ′′} = @{thm ′′HOL.sym ′′} ›

Here, term∗ parses and type-checks this 𝜆-term as usual; logically, the @{thm
′′HOL.refl ′′} is predefined by Isabelle/DOF as a constant ISA-thm. The valida-
tion will check that the string ′′HOL.refl ′′ is indeed a reference to the theorem
in the HOL-library, notably the reflexivity axiom. The type-checking of term∗
will infer bool for this expression. Now, value∗ will replace it by a constant rep-
resenting a symbolic reference to a theorem; code-evaluation will compute False
for this command. Note that this represents a kind of referential equality, not
a “very deep” ontological look into the proof objects (in our standard configu-
ration of Isabelle/DOF). Further note that there is a variant of value∗, called
assert∗, which additionally checks that the term-evaluation results in True.



In Fig. 4, we present the running example for this section. Note that it is
an extract from the ontology of [5], which could be used for writing certification
documents.

Isabelle (Isar)datatype kind = expert-opinion ∣ argument ∣ proof

doc-class Author =
email ∶∶ string <= ′′′′

doc-class Text-section =
authored-by ∶∶ Author set <= {}
level ∶∶ int option <= None

doc-class Intro = Text-section +
authored-by ∶∶ Author set <= UNIV
uses ∶∶ string set
invariant author-set ∶∶ authored-by 𝜎 ≠ {}
and force-level ∶∶ the (level 𝜎) > 1

doc-class Claim = Intro +
based-on ∶∶ string list

doc-class Result = Text-section +
formal-results ∶∶ thm list
evidence ∶∶ kind
property ∶∶ thm list <= []
invariant has-property ∶∶ evidence 𝜎 = proof ⟷ property 𝜎 ≠ []

doc-class Conclusion = Text-section +
establish ∶∶ (Claim × Result) set
invariant establish-defined ∶∶ ∀ x. x ∈ Domain (establish 𝜎)

⟶ (∃ y ∈ Range (establish 𝜎). (x, y) ∈ establish 𝜎)

Fig. 4: Excerpt of an Example Ontology for mathematical Papers.

some class instances can be defined with the text∗ command, as in Fig. 5.

Isabelle (Isar)text∗[church∶∶Author , email=‹church@lambda.org›]‹›
text∗[proof1∶∶Result, evidence=proof , property=[@{thm ‹HOL.refl›}]]‹›
text∗[proof2∶∶Result, evidence=proof , property=[@{thm ‹HOL.sym›}]]‹›
text∗[intro1∶∶Intro, authored-by={@{Author ‹church›}}, level=Some 0]‹›
text∗[intro2∶∶Intro, authored-by={@{Author ‹church›}}, level=Some 2]‹›
text∗[claimNotion∶∶Claim, authored-by={@{Author ‹church›}}

, based-on=[‹Notion1›,‹Notion2›], level=Some 0]‹›

Fig. 5: Some Instances of the Classes of the Ontology of Fig. 4.



In the instance intro1, the term antiquotation @{Author ‹church›}, or its
equivalent notation @{Author ′′church ′′}, denotes the instance church of the
class Author, where church is a HOL-string. One can now reference a class in-
stance in a term∗ command. In the command term∗‹@{Author ‹church›}› the
term @{Author ‹church›} is type-checked, i. e., the command term∗ checks that
church references a term of type Author against the global context (see Fig. 6).

(a) Church is an existing Instance. (b) The Churche Instance is not defined.

Fig. 6: Type-Checking of Antiquotations in a Term-Context.

The command value∗‹email @{Author ‹church›}› validates @{Author
‹church›} and returns the attribute-value of email for the church instance, i. e.
the HOL-string ′′church@lambda.org ′′ (see Fig. 7).

(a) The Evaluation succeeds. (b) The Evaluation fails.

Fig. 7: Evaluation of Antiquotations in a Term-Context.

Since term antiquotations are basically logically uninterpreted constants, it is
possible to compare class instances logically. The assertion in the Fig. 8 fails: the
class instances proof1 and proof2 are not equivalent because their attribute prop-
erty differs. When assert∗ evaluates the term, the term antiquotations @{thm
‹HOL.refl›} and @{thm ‹HOL.sym›} are checked against the global context such
that the strings ‹HOL.refl› and ‹HOL.sym› denote existing theorems.

The mechanism of term annotations is also used for the new concept of in-
variant constraints which can be specified in common HOL syntax. They were
introduced by the keyword invariant in a class definition (recall Fig. 4). Follow-
ing the constraints proposed in [4], one can specify that any instance of a class
Result finally has a non-empty property list, if its kind is proof (see the invari-
ant has-property), or that the relation between Claim and Result expressed in



Fig. 8: Evaluation of the Equivalence of two Class Instances.

the attribute establish must be defined when an instance of the class Conclusion
is defined (see the invariant establish-defined).

In Fig. 4, the invariant author-set of the class Intro enforces that a Intro
instance has at least one author. The 𝜎 symbol is reserved and references the
future class instance. By relying on the implementation of extensible records in
Isabelle/HOL [22], one can reference an attribute of an instance using its selector
function. For example, establish 𝜎 denotes the value of the attribute establish of
the future instance of the class Conclusion.

The value of each attribute defined for the instances is checked at run-time
against their class invariants. Recall that Classes also inherit the invariants from
their super-classes. As the class Claim is a subclass of the class Intro, it in-
herits the Intro invariants. In Fig. 9, we attempt to specify a new instance
claimNotion of this class. However, the invariant checking triggers an error be-
cause the invariant force-level forces the value of the argument of the attribute
Text-section.level to be greater than 1, and we initialize it to Some 0 in claim-
Notion.

Fig. 9: Inherited Invariant Violation.

Any class definition generates term antiquotations checking a class instance
reference in a particular logical context; these references were elaborated to
objects they refer to. This paves the way for a new mechanism to query the
“current” instances presented as a HOL list. Using functions defined in HOL,
arbitrarily complex queries can therefore be defined inside the logical language.
Thus, to get the property list of the instances of class Result, it suffices to process
this meta-data via mapping the property selector over the Result class:

Isabelle (Isar)value∗‹map (Result.property) @{Result−instances}›

Analogously we can define an arbitrary filter function, for example the HOL
filter definition on lists:



Isabelle (Isar)fun filter ∶∶ ( ′a ⇒ bool) ⇒ ′a list ⇒ ′a list
where filter P [] = []

∣ filter P (x # xs) = (if P x then x # filter P xs else filter P xs)

to get the list of the instances of the class Result whose evidence is a proof :
Isabelle (Isar)

value∗‹filter (𝜆𝜎. Result.evidence 𝜎 = proof ) @{Result−instances}›

With Isabelle/DOF comes the concept of monitor classes [5], which are classes
that may refer to other classes via a regular expression in an accepts clause. Se-
mantically, monitors introduce a behavioral element into ODL and to enforce the
structure in a document. Monitors generate traces about a part of a document,
recorded in the trace attribute of the monitor, and also presented as a list of
string. For this monitor specification:

Isabelle (Isar)doc-class doc-monitor =
ok ∶∶ unit
accepts [[Intro]] ∼∼ {∣Claim∣}∗ ∼∼ [[Result]]

... one can define an is−in function in HOL to check the trace of a document
fragment against a regular expression:

Isabelle (Isar)definition example-expression
where example-expression ≡ {∣⌊ ′′Intro ′′⌋ ∣∣ ⌊ ′′Claim ′′⌋ ∣∣ ⌊ ′′Result ′′⌋∣}∗

value∗ ‹ (map fst @{trace−attribute ′′monitor1 ′′}) is−in example-expression ›

Here, the term anti-quotation @{trace−attribute ′′monitor1 ′′} denotes the
instance trace of monitor1. It is checked against the regular expression exam-
ple-expression. Actually, example-expression is compiled via an implementation
of the Functional-Automata of the AFP [18] into a deterministic automaton. On
the latter, the above acceptance test is still reasonably fast.

4 Proving Morphisms on Ontologies

The Isabelle/DOF framework does not assume that all documents refer to the
same ontology. Each document may even build its local ontology without any
external reference. It may also be based on several reference ontologies (e. g.,
from the Isabelle/DOF library). Making a relationship between a local ontology
and reference ontologies is a way to show that the built document referencing a
local ontology is not far away from a domain reference ontology.

Since ontological instances possess representations inside the logic, the rela-
tionship between a local ontology and a reference ontology can be formalised
using a morphism function specified also inside the logic. More precisely, the
instances of local ontology classes may be mapped to one or several other in-
stances belonging to another ontology. Thanks to the morphism relationship, the
obtained instances may either be an equivalent representations or abstractions



of the original ones. It may also provide additional properties. This means that
morphisms may be injective, surjective, bijective, and thus describe abstract
relations between ontologies. This raises the question of invariant preservation.

To illustrate this process, we define a simple ontology to classify monitors.

Isabelle (Isar)definition sum where sum S = (fold (+) S 0)

onto-class Item =
name ∶∶ string

onto-class Product = Item +
serial-number ∶∶ int
provider ∶∶ string
mass ∶∶ int

onto-class Electronic-Component = Product +
serial-number ∶∶ int

onto-class Monitor = Product +
composed-of ∶∶ Electronic-Component list
invariant c2 ∶∶ Product.mass 𝜎 = sum(map Product.mass (composed-of 𝜎))

This ontology defines the Item, Product and Monitor concepts. Each class
contains a set of attributes or properties and some local invariants. In this ex-
ample, we focus on the Monitor class defined as a list of products characterised
by their mass value. This class contains a local invariant c2 to guarantee that
its own mass equals the sum of all masses of its components. For the sake of the
argument, we use the reference ontology described as follows:

Isabelle (Isar)datatype Hardware-Type = Ouput-Device ∣ Motherboard ∣ Expansion-Card ...

onto-class Resource =
name ∶∶ string

onto-class Electronic = Resource +
provider ∶∶ string
manufacturer ∶∶ string

onto-class Component = Electronic +
mass ∶∶ int

onto-class Informatic = Resource +
description ∶∶ string

onto-class Hardware = Informatic +
type ∶∶ Hardware-Type
mass ∶∶ int
composed-of ∶∶ Component list
invariant c1 ∶∶ mass 𝜎 = sum(map Component.mass (composed-of 𝜎))

This ontology defines the Resource, Electronic, Component, Informatic and
Hardware concepts. In our example, we focus on the Hardware class contain-
ing a mass attribute inherited from the Component class and composed of a



list of components with a mass attribute formalising the mass value of each
component. The Hardware class also contains a local invariant c1 to define a
constraint linking the global mass of a Hardware object with the masses of its
own components.

To check the coherence of our local ontology, we define a relationship between
the local ontology and the reference ontology using morphism functions (or map-
ping rules as in ATL framework [9] or EXPRESS-X language [2]). These rules
are applied to define the relationship between one class of the local ontology to
one or several other class(es) described in the reference ontology. In our case,
we have define two morphisms, Electronic-Component-to-Component-morphism
and Monitor-to-Hardware-morphism, detailed in the following listing:

Isabelle (Isar)definition Electronic-Component-to-Component-morphism ∶∶ Elec-
tronic-Component ⇒ Component

(- ⟨Component⟩𝐸𝑙𝑒𝑐𝐶𝑚𝑝 [1000]999)
where 𝜎 ⟨Component⟩𝐸𝑙𝑒𝑐𝐶𝑚𝑝 =

(∣ Resource.tag-attribute = 4∶∶int ,
Resource.name = name 𝜎 ,
Electronic.provider = provider 𝜎 ,
Electronic.manufacturer = ′′no manufacturer ′′ ,
Component.mass = mass 𝜎 ∣)

definition Monitor-to-Hardware-morphism ∶∶ Monitor ⇒ Hardware
(- ⟨Hardware⟩𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 [1000]999)
where 𝜎 ⟨Hardware⟩𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 =

(∣ Resource.tag-attribute = 5∶∶int ,
Resource.name = name 𝜎 ,
Informatic.description = ′′no description ′′,
Hardware.type = Output-Device,
Hardware.mass = mass 𝜎 ,

Hardware.composed-of = map Elec-
tronic-Component-to-Component-morphism (composed-of 𝜎)

∣)

These definitions specify how Electronic-Component or Monitor objects are
mapped to Component or Hardware objects defined in the reference ontology.
This mapping shows that the structure of a (user) ontology may be arbitrarily
different from the one of a standard ontology it references.

Actually, we implemented a high-level syntax for this:
onto-morphism (Computer-Hardware) to Hardware ..

where the ”..” stands for a standard proof attempt consisting of unfolding the
invariant predicates and a standard auto proof. With this syntax, we can actually
cover more general cases such as :

onto-morphism (A1, ..., A𝑛) to X 𝑖 and (D1, ..., D𝑚) to Y 𝑗
were tuples of instances belonging to classes (A1, ..., A𝑛) can be mapped to
instances of another ontology.



After defining the mapping rules, now we have to deal with the question of
invariant preservation. The following example proofs for a simple but typical
example of reformatting meta-data into another format along an ontological
mapping are nearly trivial:

Isabelle (Isar)lemma inv-c2-preserved ∶
c2-inv 𝜎 ⟹ c1-inv (𝜎 ⟨Hardware⟩𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒)
unfolding c1-inv-def c2-inv-def

Computer-Hardware-to-Hardware-morphism-def
Product-to-Component-morphism-def

by (auto simp∶ comp-def )

After unfolding the invariant and the morphism definitions, the preserva-
tion proof is automatic. The advantage of using the Isabelle/DOF framework
compared to approaches like ATL or EXPRESS-X is the possibility of formally
verifying the mapping rules, i. e., proving the preservation of invariants, as we
have demonstrated in the previous example.

5 Related Work

In this paper, we already mentioned conventional ontology modeling lan-
guages like OWL; these systems possess development environments such as Pro-
tégé [17] which allow the documentation generation and ontology-based queries
in structured texts. The platform allows also the integration of plug-ins that
provide Prolog-like reasoners over class invariants in a description logics or frag-
ments of first-order logic. In contrast to OWL, Isabelle/DOF brings forward
our concept of deep ontologies, i. e. ontologies represented inside an extensi-
ble and expressive language such as HOL. Deep ontologies also allow to use
meta-logical entities such as types, terms and theorems, and provide via anti-
quotations means to reference inside them. The purpose is to establish strong,
machine-checkable links between formal and informal content.

Isabelle/DOF’s underlying ontology definition language ODL has many sim-
ilarities with F-Logic [13] and its successors Flora-2 and ObjectLogic6. Shared
features include object identity, complex objects, inheritance, polymorphic types,
query methods, and encapsulation principles. Motivated by the desire for set-
theories in modeling, F-Logic possesses syntax for some higher-order constructs
but bases itself on first-order logics as foundation; this choice limits the poten-
tial for user-defined data-type definitions and proofs over classes significantly.
Originally designed for object-oriented databases, F-Logic and its successors be-
came mostly used in the area of the Semantic Web (a.k.a. Web 3.0). In contrast,
Isabelle/DOF represents an intermediate layer between a logic like HOL and
its implementing languages like SML or OCaml (having their roots as meta-
language for these systems). This ”in-between” allows for both executability
and logical reasoning over meta-data generated to annotate formal terms and
texts.
6 ... with OntoStudio as a commercial ObjectLogic implementation.



While F-Logic and its successors have similar design objectives, Isabelle/DOF
is tuned towards systems with a document-centric view on code and semi-formal
text as is prevailing in proof-assistants. Not limited to, but currently mostly used
as document-ontology framework, it has similarity with other documentation
generation systems such as Javadoc [21,8], Doxygen or ocamldoc [3](chap. 19).
These systems are usually external tools run in batch-mode over the sources with
a fixed set of structured comments similar to Isabelle/DOF’s antiquotations. In
contrast, our approach foresees freely user-definable anti-quotations, which are
in the case of references automatically generated. Furthermore, we provide a
flexible and highly configurable LaTeX backend.

Regarding the use of formal methods to formalise standards, the Event-
B method was proposed by Fotso et al. [11] for specifications of the hybrid
ERTMS/ETCS level 3 standard, in which requirements are specified using SysM-
L/KAOS goal diagrams. The latter were translated into Event-B, where domain-
specific properties were specified by ontologies. In another case, Mendil et al. [16]
propose an Event-B framework for formalising standard conformance through
formal modelling of standards as ontologies. The proposed approach was exem-
plified on the ARINC 661 standard. These works are essentially interested in ex-
pressing ontological concepts in a formal method but do not explicitly deal with
the formalisation of invariants defined in ontologies. The question of ontology-
mappings is not addressed.

Another work along the line of certification standard support is Is-
abelle/SACM [10], which is a plug-in into Isabelle/DOF in order to provide
specific support for the OMG Structured Assurance Case Meta-Model. The use
of Isabelle/SACM guarantees well-formedness, consistency, and traceability of
assurance cases, and allows a tight integration of formal and informal evidence
of various provenance.

Obvious future applications for supporting the link between formal and in-
formal content, i.e. between information and knowledge, consist in advanced
search facilities in mathematical libraries such as the Isabelle Archive of Formal
Proofs [15]. The latter passed the impressive numbers of 730 articles, written
by 450 authors at the beginning of 2023. Related approaches to this applica-
tion are a search engine like http://shinh.org/wfs which uses clever text-based
search methods in a large number of formulas, which is, however, agnostic of
their logical context and of formal proof. Related is also the OAF project [14]
which developed a common ontological format, called OMDoc/MMT, and six
export functions from major ITP systems into it. Limited to standard search
techniques on this structured format, the approach remains agnostic on logical
contexts and an in-depth use of typing information.

6 Conclusion and Future Work

We presented Isabelle/DOF, an ontology framework deeply integrating
continuous-check/continuous-build functionality into the formal development
process in HOL. The novel feature of term-contexts in Isabelle/DOF, which
permits term-antiquotations elaborated in the parsing process, paves the way

http://shinh.org/wfs


for the abstract specification of meta-data constraints as well the possibility of
advanced search in the meta-data of document elements. Thus it profits and
extends Isabelle’s document-centric view on formal development.

Many ontological languages such as F-Logic as well as the meta-modeling
technology available for UML/OCL provide concepts for semantic rules and con-
straints, but leave the validation checking usually to external tools or plug-ins.
Using a combination of advanced code-generation, symbolic execution and reifi-
cation techniques existing in the Isabelle ecosystem, we provide the advantages
of a smooth integration into the Isabelle IDE. Moreover, our approach leverages
the use of invariants as first-class citizens, and turns them into an object of for-
mal study in, for example, ontological mappings. Such a technology exists, to
our knowledge, for the first time.

Our experiments with adaptations of existing ontologies from engineering
and mathematics show that Isabelle/DOF’s ODL has sufficient expressive power
to cover all aspects of languages such as OWL (with perhaps the exception of
multiple inheritance on classes). However, these ontologies have been developed
specifically in OWL and target its specific support, the Protégé editor [17]. We
argue that Isabelle/DOF might ask for a re-engineering of these ontologies: less
deep hierarchies, rather deeper structure in meta-data and stronger invariants.

We plan to complement Isabelle/DOF with incremental LaTeX generation
and a previewing facility that will further increase the usability of our framework
for the ontology-conform editing of formal content, be it in the engineering or the
mathematics domain (this paper has been edited in Isabelle/DOF, of course).

Another line of future application is to increase the “depth” of built-in term
antiquotations such as @{typ ‹ ′𝜏›}, @{term ‹a + b›} and @{thm ‹HOL.refl›},
which are currently implemented just as validations of references into the logical
context. In the future, they could optionally be expanded to the types, terms and
theorems (with proof objects attached) in a meta-model of the Isabelle Kernel
such as the one presented in [20] (also available in the AFP). This will allow
for definitions of query-functions in, e. g., proof-objects, and pave the way to
annotate them with typed meta-data. Such a technology could be relevant for
the interoperability of proofs across different ITP platforms.
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