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Abstract. We verify functional correctness of insertion sort as well as the
partition function of quicksort. We use Isabelle/UTP and its denotational
semantics for imperative programs as a verification framework. We propose
a forward Hoare VCG for our reasoning and we discuss the different
technical challenges encountered while using Isabelle/UTP.
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1 Introduction

In this paper, we are interested in program verification techniques such as those of
Floyd [10], Hoare [17], and Dijkstra [8]. More precisely, our work focuses on using
Isabelle/UTP [12] for program verification. Isabelle/UTP is a mechanization of
Hoare’s Unifying Theories of Programming (UTP) book [19].

Different reasoning techniques on semantics exist for proving the correctness
of programs, such as Hoare logic [18], weakest precondition (WP) calculus [9],
and predicate transformers. The basic idea is to prove that a program, in its
formal form, implements its requirements, i.e. its specification. The semantics
of the correctness relation depend on the calculus, e.g., in the case of Hoare
logic it is a refinement relation stating that the possible states reached by the
execution of the program are less than the states covered by the specification. The
specification consists of a precondition and a postcondition. The precondition is
an assumption, a predicate on the initial state of the program. The postcondition
is an assertion, a predicate on the final state of the program. Other kinds of
? The authors list is sorted alphabetically.



assertions such as loop invariants can be used as annotations to carry through
additional information useful for proving the correctness relation.

The reasoning calculus, such as Hoare logic, shows the effects of the semantics
of the program’s constructs on the assertions. Since the calculus is syntax directed,
it can be automated, which is the role of a verification condition generator (VCG).
A VCG breaks down the proof of the correctness relation to a proof of a set of
assertions called verification conditions (VCs). The semantics of a programming
language such as C are rich and complex, and verifying the correctness of a
program with such rich and complex semantics may lead to a complicated process
for the generation and the proving of the VCs. Thus, the usage of an interactive
theorem prover (ITP) is mandatory for such development.

In this paper, we applied Hoare logic to UTP programs. The goal of our
work is to build, in the future, a scalable toolchain for verifying functional
correctness on the system code level. In order to have a scalable verification tool-
chain, the toolchain must be extensible and provide a usable framework allowing
modular and structured reasoning on programs. Extensibility is offered by UTP;
however, for structured and modular reasoning, UTP still needs case studies.
Our contribution is a case study where we use UTP [19] and its implementation
Isabelle/UTP [12] to verify the functional correctness of insertion sort and
quicksort represented as UTP programs. We used those algorithms as benchmarks
to test the usability and modular reasoning of Isabelle/UTP. The results of this
somewhat standard verification exercise turned out to be informative for building,
in the future, a functional correctness toolchain for low-level system code based
on Isabelle/UTP.

The paper is organized as follows: we describe UTP and Isabelle/UTP in
section 2. In section 3, we introduce forward Hoare logic for Isabelle/UTP. We
implement a prototype of VCG using Eisbach [25,26]. The VCG uses Hoare rules
to compute strongest postconditions (SPs) in the assertion logic of UTP. Our
case studies on the sorting algorithms insertion sort and quicksort are presented
in section 4. Finally, in section 5, we discuss the results and further steps for
building a functional correctness toolchain based on Isabelle/UTP.

Additionally, much of this work is also covered in the Master’s thesis of Joshua
Bockenek [2], albeit in a form intended for a more general audience. To try out
the case studies, download and extract the Isabelle session provided at https:
//drive.google.com/open?id=1KbkeHjGCbARj7_3MWDaVXh_RYTh6BxAT.

2 Background

2.1 UTP

In their UTP book [19], Hoare and He provided a generic framework for defining
and working with formal denotational semantics that extends to different pro-
gramming paradigms. In UTP, a programming language is defined as a theory,
consisting of the following components:

alphabet The state of the program.

https://drive.google.com/open?id=1KbkeHjGCbARj7_3MWDaVXh_RYTh6BxAT
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signature The set of operations that manipulate the state.
healthiness conditions Semantic restrictions represented by H P = P, where H

is an idempotent sanitizer function and P is the program under consideration.
order A relation on the alphabet used to represent correctness.

Assertions in UTP are represented by the theory of alphabetized predicates.
In a logical deep embedding setting, an alphabetized predicate is simply a pair
of alphabet and predicate such that the predicate only uses variables from its
associated alphabet.

The alphabetized relations theory is built on top of alphabetized predicates.
The theory of relations is used to provide a denotational semantics for the
different programming constructs. In this setting, the alphabet consists of input
variables (the value of a variable in the program’s initial state) and output
variables (the value of the variable at the program’s final state). Two types
of alphabetized relations are distinguished: 1. Heterogeneous relations, where
the input and output alphabets belong to different state spaces. An example
of such a relation is a hardware description language (HDL) such as Verilog,
where modules can have inputs and outputs with different types. 2. Homogeneous
relations, where the input and output alphabets belong to the same state space.
An example of such a relation is the set of state transitions over the Instruction
Set Architecture (ISA) instructions of a microprocessor [4]. In the theory of
alphabetized relational calculus, for the case of partial correctness of imperative
programs, the healthiness conditions are the identity function. Our work is solely
interested in partial correctness for now, meaning the theory of relations suffices
for our case study.

In UTP, specifications are represented using the predicate theory. Programs
are represented using the relation theory, which is a subset of the predicate
theory. This allows for a unified framework where predicates and relations can
manipulate the same externally-viewable alphabet. In this way, the correctness
relation is represented by an order between specifications and relations stating
that a specification is refined by a program. In other words, a specification
contains more nondeterminism and covers more final states than the actual
program. The formal notation for refinement in UTP is A w B. It can be seen as
universal reverse implication on the alphabet [B ⇒ A] [5].

2.2 Isabelle/UTP
Among many other mechanizations, we use Foster’s Isabelle/UTP [12]. Is-
abelle/UTP is a mechanization of the UTP book in the ITP Isabelle [27]. As
our long-term goal is to build a verification toolchain for imperative code, we
chose to use Foster’s Isabelle/UTP for the following reasons: 1. In general, UTP
is an extensible framework; it is not specific to one programming language nor to
one programming paradigm. 2. Foster’s UTP mechanization uses Isabelle and its
powerful infrastructure allowing for parallel proof checking, tactic customization,
sophisticated method implementation via Eisbach [25,26], and strong back-end
tools such as sledgehammer [3, 28]. 3. Foster’s shallow embedding for UTP re-
duces the work required for proof automation at the expense of metatheoretic



1 typedef (’t, ’α) uexpr = ‹UNIV :: (’α ⇒ ’t) set› ..
2 type_synonym ’α upred = ‹(bool, ’α) uexpr›
3 translations
4 (type) ‹’α upred› <= (type) "(bool, ’α) uexpr"
5 type_synonym ’α cond = ‹’α upred›
6 type_synonym (’α, ’β) rel = ‹(’α × ’β) upred›
7 type_synonym ’α hrel = ‹(’α × ’α) upred›
8 type_synonym (’a, ’α) hexpr = ‹(’a, ’α × ’α) uexpr›
9 translations

10 (type) ‹(’α, ’β) rel› <= (type) ‹(’α × ’β) upred›
11 lift_definition lit :: ‹’t ⇒ (’t, ’α) uexpr› is ‹λ v b. v› .
12 lift_definition uop :: ‹(’a ⇒ ’b) ⇒ (’a, ’α) uexpr ⇒ (’b, ’α) uexpr›

is
13 ‹λ f e b. f (e b)› .
14 lift_definition bop :: ‹(’a ⇒ ’b ⇒ ’c) ⇒ (’a, ’α) uexpr ⇒ (’b, ’α)

uexpr ⇒ (’c, ’α) uexpr› is
15 ‹λ f u v b. f (u b) (v b)› .
16 (...)

Listing 1.1: Expression language in Isabelle/UTP

manipulation; 4. and lenses [11, 13], which provide a general abstraction of views
into data; that is, variables are represented as lenses whose state space is left
completely polymorphic. Thus, pointwise algebraic laws of programming [18] can
be expressed and a generic framework for memory models can be instantiated
for different programming languages.

The expressions model as well as the predicate and relational model are
represented by Foster as in listing 1.1. On top of this expression language, the
predicate theory, i.e. the assertion logic, is defined as in listing 1.2. The type
(’a =⇒ ’α) denotes a lens with state type ’α and view type ’a.

1 lift_definition impl :: ‹’α upred ⇒ ’α upred ⇒ ’α upred› is
2 ‹λ P Q A. P A −→ Q A› .
3
4 lift_definition iff_upred :: ‹’α upred ⇒ ’α upred ⇒ ’α upred› is
5 ‹λ P Q A. P A ←→ Q A› .
6
7 lift_definition ex :: ‹(’a =⇒ ’α) ⇒ ’α upred ⇒ ’α upred› is
8 ‹λ x P b. (∃ v. P (put x b v))› .
9

10 lift_definition shEx :: ‹[’β ⇒’ α upred] ⇒ ’α upred› is
11 ‹λ P A. ∃ x. (P x) A› .
12
13 lift_definition all :: ‹(’a =⇒ ’α) ⇒ ’α upred ⇒ ’α upred› is
14 ‹λ x P b. (∀ v. P (put x b v))› .
15
16 lift_definition shAll :: ‹[’β ⇒’ α upred] ⇒ ’α upred› is



17 ‹λ P A. ∀ x. (P x) A› .

Listing 1.2: Assertion logic in Isabelle/UTP

On top of the predicate calculus, a denotational semantics for a nondeterministic
imperative programming language is defined as in listing 1.3. In this notation,
dconde< is a lifting of cond from predicates to relations. The lifting is done using
dconde< ≡ cond ⊕p fstL such that ⊕p is defined as λ P x b. P (get x b), fstL

is a lens with the standard projection function fst as a lens get function, and
(λ (σ, %) u. (σ, u)) as a lens put function.

The developers of Isabelle/UTP provided many syntax translations to mimic
the notation used in the UTP book. This occasionally causes problems with proof
reconstruction in sledgehammer and ambiguous parse warnings or errors due to
heavy usage of ad-hoc overloading, but is useful for those who want their work to
look more like the UTP book. Figure 1 shows some of the equivalences between
UTP and higher-order logic (HOL) features, while some additional features are
described below.
«v» An HOL literal; depending on the context, explicit usage may not be neces-

sary (such as with numeric literals) but is usually required when reasoning
with logical variables.

JP Ke (s, t) A statement that input state s and output state t are consistent for
program/predicate P .

P Ju/xK A substitution of the (input) expression u for accesses of lens x in
program/predicate P ; this notation can also be used for input ($x) and
output ($x′) substitutions, in which case u must be lifted with due< and
due> (previously seen in listing 1.4), respectively.

$Σ The entire input alphabet (i.e. the whole state) as a lens; as usual, the
corresponding output lens is $Σ′.

&x Gets value as expression from lens.

II The null operation, a no-op, SKIP; used when a statement is required but a
state change is undesired.

:== Basic assignment of an expression to a lens.
;; Sequential composition; this is used to compose statements.
P C b B Q The conditional; ifu b then P else Q is the wrapper notation we use

for a nicer look.
µX • P Least fixed point (LFP) recursion of program P with X occurring in P

and representing the point where the recursion is “unfolded”, so to speak.
νX • P Greatest fixed point (GFP) recursion, otherwise same as the above.
Iteration Achieved with a wrapper around the recursion construct, either LFP

or GFP depending on total or partial correctness, with notation akin to
while b do P od where P is repeatedly executed until b becomes false.

3 Forward reasoning in Isabelle/UTP

The UTP book as well as the initial version of Isabelle/UTP both utilize Dijkstra’s
WP, or backwards, reasoning [9]. In our work we use SP, or forward, reasoning [14].



1 abbreviation cond ::
2 ‹(’a,’α) uexpr ⇒ ’α upred ⇒ (’a,’α) uexpr ⇒ (’a,’α) uexpr›
3 ("(3_ / _ ./ _)" [52,0,53] 52) where
4 ‹P / b . Q ≡ trop If b P Q›
5 abbreviation rcond ::
6 ‹(’α, ’β) rel ⇒ ’α cond ⇒ (’α, ’β) rel ⇒ (’α, ’β) rel›
7 ("(3_ / _ .r/ _)" [52,0,53] 52) where
8 ‹(P / b .r Q) ≡ (P / dbe< . Q)›
9

10 lift_definition seqr :: ‹(’α, ’β) rel ⇒ (’β, ’γ) rel ⇒ (’α, ’γ) rel›
is

11 ‹λ P Q r. r ∈ ({p. P p} O {q. Q q})› . - ‹Heterogeneous Sequential
composition›

12
13 abbreviation seqh :: ‹’α hrel ⇒ ’α hrel ⇒ ’α hrel› (infixr ";;h" 71)

where
14 ‹seqh P Q ≡ (P ;; Q)› - ‹Homogeneous Sequential composition›
15
16 lift_definition assigns_r :: ‹’α usubst ⇒ ’α hrel› is
17 ‹λ σ (A, A’). A’ = σ(A)› . - ‹assignement›
18
19 definition skip_r :: ‹’α hrel› where
20 [urel_defs]: ‹skip_r = assigns_r id› - ‹No op›
21
22 definition rassume :: ‹’α upred ⇒ ’α hrel› ("_>" [999] 999) where
23 [urel_defs]: ‹rassume c = II / c .r false› - ‹assumption›
24
25 definition rassert :: ‹’α upred ⇒ ’α hrel› ("_⊥" [999] 999) where
26 [urel_defs]: ‹rassert c = II / c .r true› - ‹assertion›
27
28 abbreviation truer :: ‹’α hrel› ("trueh") where
29 ‹truer ≡ true› - ‹the abort program›
30
31 abbreviation falser :: ‹’α hrel› ("falseh") where
32 ‹falser ≡ false› - ‹the miracle program›
33
34 definition
35 ‹(while> b do body od) = (ν X ··· bif b then (body ;; X) else SKIPr eif)›
36
37 definition
38 ‹(while⊥ b do body od) = (µ X ··· bif b then (body ;; X) else SKIPr eif)›

Listing 1.3: Programming constructs as relations in Isabelle/UTP



length xs
card s
pcard p
[1, 2, 3]
xs @ ys
xs ! i
f x
x :: ’a
fst t
snd t
xs[i := x]
set xs
λx. p
−→

(a) Isabelle/HOL

#u(xs)
#u(s)
#u(p)
〈1, 2, 3〉
xs ^u ys
xs(i)a

f(x)a

x :u ’a
π1(t)
π2(t)
xs(i 7→ x)u

ranu(xs)
λ x ··· p
⇒

(b) Isabelle/UTP

Fig. 1: Some Isabelle/UTP Syntax Comparisons

1 definition hoare_r :: ‹’α cond ⇒ ’α hrel ⇒ ’α cond ⇒ bool› ("{|_|}_{|_|}u

") where
2 ‹{|p|}Q{|r|}u = ((dpe< ⇒ dre>) v Q)›

Listing 1.4: Hoare Logic

In forward reasoning, we fix the precondition and the body of the program under
verification, and then we compute, in a syntax directed way, the strongest
postcondition using Hoare rules. A Hoare triple in Isabelle/UTP is a refinement
relation between specification and program defined as in listing 1.4. On this basis
we defined Hoare rules for forward reasoning, shown in listing 1.5. For the most
part, we used the same Hoare rules that Isabelle/UTP supplies, only adding those
additional rules needed for forward reasoning. On line 1 of listing 1.5, p is a UTP
predicate, x is a lens, e is a UTP expression, and v is an HOL logical variable
lifted to a UTP expression using «v». The notation eJ«v»/xK means that «v» is
substituted for x in e. This rule is referred to as the Floyd assignment rule [14]
after Robert W. Floyd, and it is easy to express in our setting as Isabelle/UTP has
a substitution theory4. Namely, reasoning on assignment boils down to reasoning
on substitutions. More details on the substitution theory in use can be found
in [13].

Lines 6 and 15 in listing 1.5 are the conditional rules we used for forward
reasoning. Note that both conditional rules require an annotation for branches in
order to avoid unnecessary reasoning about two different postconditions, thereby
preventing exponential subgoal growth by doing a merge immediately after the
application of the rule. We have two rules for conditional statements as separate
4 https://github.com/isabelle-utp/utp-main/blob/master/utp/utp_subst.thy

https://github.com/isabelle-utp/utp-main/blob/master/utp/utp_subst.thy


1 lemma assigns_floyd_r [hoare]:
2 assumes ‹vwb_lens x›
3 shows ‹{|p|}x :== e{|∃∃∃ v ··· pJ«v»/xK ∧ &x =u eJ«v»/xK|}u›
4 proof <>
5
6 lemma cond_assert_hoare_r[hoare_rules]:
7 assumes ‹{|b ∧ p|}C1{|q|}u›
8 and ‹{|¬b ∧ p|}C2{|s|}u›
9 and ‹‘q ⇒ A‘›

10 and ‹‘s ⇒ A‘›
11 and ‹{|A|}P{|A’|}u›
12 shows ‹{|p|}(ifu b then C1 else C2);; A⊥;; P{|A’|}u›
13 proof <>
14
15 lemma cond_assert_last_hoare_r[hoare_rules]:
16 assumes ‹{|b ∧ p|}C1{|q|}u›
17 and ‹{|¬b ∧ p|}C2{|s|}u›
18 and ‹‘q ⇒ A‘›
19 and ‹‘s ⇒ A‘›
20 shows ‹{|p|}(ifu b then C1 else C2);; A⊥{|A|}u›
21 proof <>
22
23 lemma while_invr_hoare_r’[hoare_rules]:
24 assumes ‹‘p ⇒ i‘› and ‹{|i ∧ b|}C{|q|}u› and ‹‘q ⇒ i‘›
25 shows ‹{|p|}while b invr i do C od{|¬b ∧ i|}u›
26 by (metis while_inv_def assms hoare_post_weak hoare_pre_str

while_hoare_r)

Listing 1.5: Forward Hoare rules

handling is required for conditionals at the end of a series of statements versus
conditionals that have more statements following.

For iterations, we used the while rule on line 23 in listing 1.5. That rule asserts
that the invariant i holds after completion of the loop, as well as requiring that
the precondition p implies i, there is some postcondition q that holds after each
iteration of the loop given i (though q does not necessarily hold after the loop
terminates), and q implies i. Reading the while rule leads to drawing the control
flow graph of the while statement!

While applying the forward Hoare rules, and in order to avoid the VCG running
into infinite loops, our first solution was to enforce a given order for premises
in the different rules. This allowed an automatic execution while generating the
VCs; however, in Dr. Lammich’s course materials5, he used a better solution
where his VCG automatically defers a goal as soon as a Hoare rule cannot be
applied on that goal.
5 https://bitbucket.org/plammich/certprog_public/src/
4698b3509065369693ed144b9bb99ba8b632440b/Project/IMPlusPlus.thy

https://bitbucket.org/plammich/certprog_public/src/4698b3509065369693ed144b9bb99ba8b632440b/Project/IMPlusPlus.thy
https://bitbucket.org/plammich/certprog_public/src/4698b3509065369693ed144b9bb99ba8b632440b/Project/IMPlusPlus.thy


1 method exp_vcg_pre = (simp only: seqr_assoc[symmetric])?, rule
hoare_post_weak

2 method solve_dests = safe?; simp?; drule vcg_dests; assumption?; (simp
add: vcg_simps)?

3 method solve_vcg = assumption|pred_simp?, (simp add: vcg_simps)?;(
solve_dests; fail)?

4 method vcg_hoare_rule = rule hoare_rules_extra|rule hoare_rules
5 method exp_vcg_step = vcg_hoare_rule|solve_vcg; fail
6 method exp_vcg = exp_vcg_pre, exp_vcg_step+

Listing 1.6: VCG Methods

As a last note, the additional quantifiers added by the forward assignment
rule could decrease performance if used with proofs involving satisfiability modulo
theories (SMT) solvers [22] and possibly with other proof methods as well. A
solution for dealing with nested existential quantifiers can be found in [14], but
for our work, we have judged that is not necessarily an issue as the pseudocode
of the algorithms in the case study is quite small.

3.1 VCG

While tactic implementation in Isabelle is typically done on the Meta Language
(ML) level, in recent years the introduction of Eisbach [25, 26] has allowed
development of advanced proof methods on the Isar [31] level. Though not
necessarily as efficient or in-depth as ML-level functionality, usage of Eisbach
allows faster and easier development of complex methods, and thus we primarily
utilized Eisbach for the initial work on the VCG. The basic VCG methods we
developed are shown in listing 1.6, with the main entry point being exp_vcg.
The method exp_vcg starts by transforming the goal state into a suitable form
for forward verification and then repeatedly applies the VCG’s step method.
The exp_vcg_step method attempts to apply one of a set of Hoare rules (from
the hoare_rules_extra or hoare_rules lemma sets) to break down the current
statement to a VC. If that fails, it applies solve_vcg to discharge the current
subgoal. Discharging the goal may be simple if a trivial subgoal was introduced or
may be more complicated, requiring either simplification using a developed library
of simplification rules (vcg_simps) or application of destruction rules (vcg_dests)
followed by additional simplifications. The VCG stops when it reaches a subgoal
it cannot discharge, at which point the user must develop additional lemmas to
add to vcg_simps or vcg_dests.

4 Case Studies

As relatively simple but non-trivial algorithms, standard imperative sorts seemed
useful as basic case studies for testing modular reasoning in Isabelle/UTP. We



focused on two sorts, insertion sort and quicksort; while we proved the full
algorithm for the former, the latter’s proof was limited to only a component of
the algorithm due to the limitations of Isabelle/UTP at the time. For both case
studies, we focused on partial rather than total correctness as we did not have
a working version of the theory of designs [32] or a proper implementation of
measure function handling at the time.

4.1 Insertion sort

A simple but relatively efficient algorithm for small data sets, insertion sort [24]
served as a useful case for testing the modular handling of nested programs in
Isabelle/UTP. Insertion sort contains two nested programs such that: the outer
program does sorting and the inner program does insertion. We represent the
latters by a basic procedure that involves an inner and outer loop with the outer
loop maintaining the portion of the list/array that is sorted (which increases
by one on each iteration) while the inner loop moves the next element to be
sorted into its sorted position. This continues until the sorted portion of the list
encompasses the entire list.

Proof Setup The insertion sort algorithm does not require any particular pre-
conditions other than some basic lens property assumptions and type constraints
(which are satisfied by type restrictions of the syntax here); for the postcondition,
we have two properties:

1. The list is sorted afterwards.
2. The contents of the list remain the same.

Strictly speaking, insertion sort also provides stability (items that compare equal
given a specific sort key function maintain the same relative order in the sorted
list), but that was not covered in our proof as we only used the notion of order
to restrict our types.

We used an auxiliary variable to ensure the contents of the list did not change
as the list was sorted, and the swap_atu

6 function on line 14 produces a new list
with the elements at &j and &j - 1 swapped.

Invariants Each loop in the insertion sort algorithm requires an invariant, as
you can see on lines 10 and 13. For modularity and ease of proving, the invariants
were extracted and represented as Isabelle/HOL definitions lifted to Isabelle/UTP
expressions (shown in listings 1.8 and 1.9). This allowed us to formulate lemmas
about the invariant interactions strictly on the HOL level.

6 For our purposes, usage of u with functions like swap_at on line 14 indicates an
HOL function that has been lifted to UTP and is thus usable with Isabelle/UTP
expressions.



1 lemma insertion_sort:
2 assumes ‹lens_indep_all [i, j]›
3 and ‹vwb_lens array› and ‹array ] old_array›
4 and ‹i ./ array› and ‹i ] old_array›
5 and ‹j ./ array› and ‹j ] old_array›
6 shows
7 ‹{|&array =u old_array|}
8 i :== 1;;
9 while &i <u #u(&array)

10 invr outer_invru (&i) (&array) old_array do
11 j :== &i;;
12 (while &j >u 0 ∧ &array(&j - 1)a >u &array(&j)a

13 invr inner_invru (&i) (&j) (&array) old_array do
14 array :== swap_atu (&j) (&array);;
15 j :== (&j - 1)
16 od);;
17 i :== (&i + 1)
18 od
19 {|msetu(&array) =u msetu(old_array) ∧ sortedu(&array)|}u›
20 by (insert assms) exp_vcg

Listing 1.7: Proof of Insertion Sort Correctness

1 definition ‹outer_invr i array old_array ≡
2 mset array = mset old_array
3 ∧ sorted (take i array) (* everything up to i-1 is sorted *)
4 ›
5 abbreviation ‹outer_invru ≡ trop outer_invr›

Listing 1.8: Insertion Sort Outer Invariant

1 definition ‹inner_invr i j array old_array ≡
2 i < length array
3 ∧ i ≥ j
4 ∧ mset array = mset old_array
5 ∧ (let xs1 = take j array; x = array!j; xs2 = drop (Suc j) (take (Suc i)

array)
6 in sorted (xs1 @ xs2) ∧ (∀ y ∈ set xs2. x < y))
7 ›
8 abbreviation ‹inner_invru ≡ qtop inner_invr›

Listing 1.9: Insertion Sort Inner Invariant

The lemmas required to satisfy the verification conditions generated for the
outer loop are shown in listings 1.10 to 1.12. For the inner loop, the initial
condition was somewhat trivial (listing 1.13), but because we did not develop a
good library of simplification lemmas for expressions involving swap_at, the step
condition needed a large proof (listing 1.14). There was no need for a lemma for
the final state of the inner loop as that was already handled by listing 1.11.



1 lemma outer_invr_init[vcg_simps]:
2 assumes ‹mset array = mset old_array›
3 shows ‹outer_invr (Suc 0) array old_array›
4 using assms unfolding outer_invr_def
5 by (metis sorted_single sorted_take take_0 take_Suc)

Listing 1.10: Insertion Sort Outer Invariant Initial Condition

1 lemma outer_invr_step[vcg_simps]:
2 assumes ‹inner_invr i j array old_array›
3 and ‹j = 0 ∨ ¬ array ! j < array ! (j - Suc 0)›
4 shows ‹outer_invr (Suc i) array old_array›
5 proof <>

Listing 1.11: Insertion Sort Outer Invariant Step Condition

1 lemma outer_invr_final[vcg_dests]:
2 assumes ‹outer_invr i array old_array›
3 and ‹¬ i < length array›
4 shows ‹mset array = mset old_array›
5 and ‹sorted array›
6 using assms unfolding outer_invr_def
7 by auto

Listing 1.12: Insertion Sort Outer Invariant Final Condition

1 lemma inner_invr_init[vcg_simps]:
2 assumes ‹outer_invr i array old_array›
3 and ‹j = i›
4 and ‹i < length array›
5 shows ‹inner_invr i j array old_array›
6 using assms unfolding outer_invr_def inner_invr_def
7 by auto

Listing 1.13: Insertion Sort Inner Invariant Initial Condition

1 lemma inner_invr_step[vcg_simps]:
2 assumes ‹inner_invr i j array old_array›
3 and ‹j > 0›
4 and ‹array!(j - Suc 0) > array!j›
5 shows ‹inner_invr i (j - Suc 0) (swap_at j array) old_array›
6 proof <>

Listing 1.14: Insertion Sort Inner Invariant Step Condition



4.2 Quicksort

Coincidentally developed by Hoare [16], quicksort is a reasonably efficient recursive
algorithm even for large data sets. As with insertion sort, it is an in-place sort,
but unlike insertion sort, it is not stable. We are interested in quicksort since it
allows testing the handling of recursive calls in Isabelle/UTP.

The algorithm basically works by choosing a value in the portion of the
list under consideration as a “pivot”, rearranging that portion of the list until
everything in it less than or equal to the pivot is below the pivot and everything
greater than or equal to the pivot is above the pivot, and then recursing on
the regions now above and below the pivot until the list is sorted. There are
multiple possible partitioning schemes usable for quicksort with varying levels of
efficiency; in our case, we used a Lomuto-style methodology [1,7]. Lomuto-style is
less efficient than Hoare’s original formulation, but it was easier to reason about
and prove.

As we did not have a fully developed rule and VCG procedure for working
with generalized recursion and handling functions with local variables at the time
this case study was done, the quicksort proof was restricted to the partitioning
component of the algorithm, the our work representation which is shown in
listing 1.15.

Proof Setup Because lo and hi are never assigned to, they do not need to
be lenses and can simply be UTP expressions, but they still need some simple
preconditions to ensure correctness (lo is less than hi and hi is less than the length
of the list to sort, plus the various assumptions for lenses). For the postconditions,
the proof must show that, after partitioning:

– Everything below the pivot in the slice of the list operated on is less than or
equal to the pivot.

– Everything above it in the slice of the list operated on is greater than or
equal to the pivot.

– The contents of the slice are the same.
– The rest of the list is not modified by the partitioning.

Invariant While the partition invariant in listing 1.16 is longer than either of the
insertion sort invariants, most of the reasoning is either easy to intuit (maintaining
orders between variables) or is just a repeat of postcondition requirements. The
important bits in terms of the loop behavior are lines 9 and 10; with these lines,
the invariant establishes that, during each iteration, everything less than i in
the list slice is less than or equal to the pivot and everything from i to j-1 (the
upper value of slice is exclusive) is greater than or equal to the pivot. The
simplification lemmas in listings 1.17, 1.18, 1.20, and 1.22 were developed to
resolve the generated verification conditions for the quicksort partition loop,
and note in particular listings 1.18 and 1.20; two separate step lemmas were
necessary for the two branches of the conditional (one when the next element
is found to be less than the pivot, the other when it is not). the if-statement



1 lemma quicksort_partition:
2 fixes pivot :: ‹_::linorder =⇒ _›
3 assumes ‹lens_indep_all [i, j]›
4 and ‹vwb_lens pivot› and ‹vwb_lens A›
5 and ‹pivot ./ i› and ‹pivot ./ j›
6 and ‹A ] oldA› and ‹A ] lo› and ‹A ] hi›
7 and ‹i ./ A› and ‹i ] oldA› and ‹i ] lo› and ‹i ] hi›
8 and ‹j ./ A› and ‹j ] oldA› and ‹j ] lo› and ‹j ] hi›
9 and ‹pivot ./ A› and ‹pivot ] oldA› and ‹pivot ] lo› and ‹pivot ] hi›

10 shows
11 ‹{|&A =u oldA
12 ∧ lo <u hi
13 ∧ hi <u #u(&A)|}
14 pivot :== &A(hi)a;;
15 i :== lo;;
16 j :== lo;;
17 (while &j <u hi invr qs_partition_invru (&A) oldA lo hi (&i) (&j) (&

pivot) do
18 (ifu &A(&j)a <u &pivot then
19 A :== swapu (&i) (&j) (&A);;
20 i :== (&i + 1)
21 else II);;
22 (qs_partition_invru (&A) oldA lo hi (&i) (&j + 1) (&pivot))⊥;;
23 j :== (&j + 1)
24 od);;
25 A :== swapu (&i) hi (&A)
26 {|msetu(sliceu lo (hi + 1) (&A)) =u msetu(sliceu lo (hi + 1) oldA)
27 ∧ takeu(lo, &A) =u takeu(lo, oldA)
28 ∧ dropu(hi + 1, &A) =u dropu(hi + 1, oldA)
29 ∧ pivot_invru (&i - lo) (sliceu lo (hi + 1) (&A))|}u›
30 by (insert assms) exp_vcg

Listing 1.15: Proof of Quicksort Partition Correctness



1 definition ‹qs_partition_invr A oldA lo hi i j pivot ≡
2 mset (slice lo (Suc hi) A) = mset (slice lo (Suc hi) oldA)
3 ∧ take lo A = take lo oldA
4 ∧ drop (Suc hi) A = drop (Suc hi) oldA
5 ∧ lo ≤ i
6 ∧ i ≤ j
7 ∧ j ≤ hi
8 ∧ hi < length A
9 ∧ (∀ x ∈ set (slice lo i A). x ≤ pivot)

10 ∧ (∀ x ∈ set (slice i j A). pivot ≤ x)
11 ∧ pivot = A!hi
12 ›
13 abbreviation ‹qs_partition_invru ≡ sepop qs_partition_invr›

Listing 1.16: Quicksort Partition Invariant

1 lemma qs_partition_invr_init[vcg_simps]:
2 assumes ‹A = oldA›
3 and ‹lo < hi›
4 and ‹hi < length A›
5 shows ‹qs_partition_invr A oldA lo hi lo lo (A!hi)›
6 using assms unfolding qs_partition_invr_def pivot_invr_def slice_def
7 by (smt drop_all empty_iff length_take less_imp_le less_trans list.set

(1) min.absorb2 order_refl)

Listing 1.17: Quicksort Partition Invariant Initial Condition

annotation mentioned in section 3 can be seen on line 22, explicitly stating that
both branches must preserve the invariant.

Unlike for insertion sort, a set of helper lemmas were developed for the
simplification of expressions involving swap and slice, which resulted in cleaner
proofs for the invariant-related lemmas. Other subproofs were also extracted and
proved separately (listings 1.19 and 1.21).

5 General conclusion

5.1 Related work

Many works attempt to provide a formal framework for verifying functional
correctness of imperative code. In [30], a generic formal imperative language
called Simpl was introduced together with a sophisticated definition for Hoare
triples that deals with behaviors such as abrupt termination and mutually
recursive functions. A VCG was implemented on top, but modular reasoning was
not discussed. The language was successfully used in the L4.verified project [23],
which introduced a highly automated toolchain for verification of the secure



1 lemma qs_partition_invr_step1[vcg_simps]:
2 fixes A :: ‹_::order list›
3 assumes ‹qs_partition_invr A oldA lo hi i j pivot›
4 and ‹j < hi›
5 and ‹A!j < pivot› -- ‹version requiring swap and i increment›
6 shows ‹qs_partition_invr (swap i j A) oldA lo hi (Suc i) (Suc j) pivot›
7 proof <>

Listing 1.18: Quicksort Partition Invariant First Step Condition

1 lemma qs_partition_invr_step2_helper:
2 fixes A :: ‹_::order list›
3 assumes ‹∀ x ∈ set (slice i j A). p ≤ x›
4 and ‹p ≤ A!j›
5 and ‹j < length A›
6 shows ‹∀ x ∈ set (slice i (Suc j) A). p ≤ x›
7 using assms
8 by (cases ‹i ≤ j›) (auto simp: slice_suc2_eq)

Listing 1.19: Quicksort Partition Invariant Step 2 Helper

1 lemma qs_partition_invr_step2[vcg_simps]:
2 fixes A :: ‹_::linorder list› -- ‹Can’t do everything with partial

ordering.›
3 assumes ‹qs_partition_invr A oldA lo hi i j pivot›
4 and ‹j < hi›
5 and ‹¬ A!j < pivot› -- ‹so array doesn’t change this step›
6 shows ‹qs_partition_invr A oldA lo hi i (Suc j) pivot›
7 using assms unfolding qs_partition_invr_def pivot_invr_def
8 using qs_partition_invr_step2_helper
9 by (auto simp: slice_suc2_eq)

Listing 1.20: Quicksort Partition Invariant Second Step Condition

1 lemma pivot_slice_swap:
2 fixes xs :: ‹_::order list›
3 assumes ‹lo ≤ i›
4 and ‹i ≤ hi›
5 and ‹hi < length xs›
6 and ‹∀ x ∈ set (slice lo i xs). x ≤ xs!hi›
7 and ‹∀ x ∈ set (slice i hi xs). xs!hi ≤ x›
8 shows ‹pivot_invr (i - lo) (slice lo (Suc hi) (swap i hi xs))›
9 using assms unfolding pivot_invr_def

10 by (auto simp: min.absorb1) (meson assms(4) order_trans
qs_partition_invr_step2_helper)

Listing 1.21: Pivot-Slice-Swap Helper



1 lemma qs_partition_invr_final[vcg_simps]:
2 fixes A :: ‹_::order list›
3 assumes ‹qs_partition_invr A oldA lo hi i j pivot›
4 and ‹¬ j < hi›
5 shows ‹mset (slice lo (Suc hi) (swap i hi A)) = mset (slice lo (Suc hi)

oldA)›
6 and ‹pivot_invr (i - lo) (slice lo (Suc hi) (swap i hi A))›
7 and ‹drop (Suc hi) (swap i hi A) = drop (Suc hi) oldA›
8 and ‹take lo (swap i hi A) = take lo oldA›
9 using assms unfolding qs_partition_invr_def

10 by (auto simp: pivot_slice_swap)

Listing 1.22: Quicksort Partition Invariant Final Condition

embedded L4 (seL4) microkernel. Another attempt at providing a verification
framework for imperative code is [15]. The tool, called AutoCorres and taking
Simpl as input, has now been integrated into the L4v toolchain. A refinement
approach was proposed where Simpl programs are abstracted to a functional,
shallowly-embedded monadic form [6]. AutoCorres is equipped with a VCG
for computing weakest precondition as well as a debugging mode that traces
the applied rules. As with Simpl’s VCG, AutoCorres does not provide modular
reasoning.

5.2 Discussion on scalability

A framework that does not scale is infeasible for use with large programs such as
compilers or even operating systems. Structuring proofs modularly (say, on the
function level) such that the proofs can be reused whenever the corresponding
code is used in a larger program is one way to handle issues of scalability, but
can be difficult to deal with when using a setup that requires statements about
memory to be carried through preconditions and postconditions even when those
statements are not necessary within the proof.

One methodology designed to minimize this issue is separation logic [29], which
adds a separation operator to Hoare logic that allows stating various variables
and regions of memory are disjunct. A different but similar methodology is to
use the concept of framing [20,21]. In this style, one lists the variables or regions
of memory that are modified by a certain statement or set of statements and all
others are considered unaffected by the verification framework. As Isabelle/UTP
does provide frame and antiframe rules, albeit for WP reasoning, we intended
to use this methodology to handle modular memory reasoning, but we did not
develop proper SP rules in time.

5.3 Conclusion

The case studies in section 4 show that our fledgling methodology, performing VC-
based formal proofs of correctness of a C-style language using SP methodology,



can indeed be used in Isabelle/UTP. One observation that was made from those
case studies was that isolating the proofs of individual VCs to work purely on the
HOL level makes for cleaner proofs in general, particularly when good libraries
of helper lemmas are developed to ease simplification. However, the work on
the quicksort case study in particular highlighted some of the features necessary
for further work that we currently lack, such as proper handling of (recursive)
function calls and memory modularization in general. Total correctness is also a
goal, for which more recent versions of the framework under development have
added the usage of measures/variants.
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