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Abstract. This paper presents work on technology for transformational
proof and program development, as used by window inference calculi
and transformation systems. The calculi are characterised by a certain
class of theorems in the underlying logic. Our transformation system
TAS compiles these rules to concrete deduction support, complete with
a graphical user interface with command-language-free user interaction
by gestures like drag&drop and proof-by-pointing, and a development
management for transformational proofs. It is generic in the sense that
it is completely independent of the particular window inference or trans-
formational calculus, and can be instantiated to many different ones;
three such instantiations are presented in the paper.

1 Introduction

Tools supporting formal program development should present proofs and pro-
gram developments in the form in which they are most easily understood by
the user, and should not require the user to adapt to the particular form of
presentation as implemented by the system. Here, a serious clash of cultures
prevails which hampers the wider usage of formal methods: theorem provers em-
ploy presentations stemming from their roots in symbolic logic (e.g. Isabelle uses
natural deduction), whereas engineers are more likely to be used to proofs by
transformation as in calculus. As a way out of this dilemma, a number of systems
have been developed to support transformational development. However, many
of these systems such as CIP [3], KIDS [21] or PROSPECTRA [12] suffered from
a lack of proof support and proven correctness. On the other hand, a variety of
calculi have been developed which allow formal proof in a transformational way
and are proven correct [8–10,28, 11, 2], some even with a graphical user interface
[14,6]. However, what has been lacking is a systematic, generic and reusable way
to obtain a user-friendly tool implementing transformational reasoning, with an
open system architecture capable of coping with the fast changes in technology in
user interfaces, theorem provers and formal methods. Reusability of components
is crucial, since we hope that the considerable task of developing appropriate
GUIs for formal method tools can be shared with other research groups.

In [15], we have proposed an open architecture to build graphical user in-
terfaces for theorem provers in a functional language; here, we instantiate this



architecture with a generic transformation system which implements transforma-
tional calculi (geared towards refinement proofs) on top of an LCF-like prover.
By generic, we mean that the system takes a high-level characterisation of a
refinement calculus and returns a user-friendly, formally correct transformation
or window inference system. The system can be used for various object logics
and formal methods (a property for which Isabelle is particularly well suited as
a basis). The instantiation of the system is very straightforward once the formal
method (including the refinement relation) has been encoded. Various aspects
of this overall task have been addressed before, such as logical engines, window-
inference packages and prototypical GUIs. In contrast, TAS is an integrated

solution, bringing existing approaches into one technical framework, and filling
missing links like a generic pretty-printer producing markups in mathematical
text.

This paper is structured as follows: in Sect. 2 we give an introduction to win-
dow inference, surveying previous work and presenting the basic concepts. We
explain how the formulation of the basic concepts in terms of ML theorems leads
to the implementation of TAS. We demonstrate the versatility of our approach
in Sects. 3, 4 and 5 by showing examples of classical transformational program
development, for process-oriented refinement proofs and for data-oriented refine-
ment proofs. Sect. 6 finishes with conclusions and an outlook.

2 A Generic Scheme of Window Inference

Window inference [18], structured calculational proof [8, 1, 2] and transforma-
tional hierarchical reasoning [11] are closely related formalisations of proof by
transformation. In this paper, we will use the format of [1], although we will
refer to it as window inference.

2.1 An Introduction to Window Inference

As motivating example, consider the proof for ` (A ∧ B ⇒ C) ⇒ (B ∧A ⇒ C).
In natural deduction, a proof would look like (in the notation of [27]; we assume
that the reader is roughly familiar with derivations like this):

[B ∧A]1

A
∧E

[B ∧ A]1

B
∧E

A ∧ B
∧I

[A ∧ B ⇒ C]2

C
⇒ E

B ∧ A ⇒ C
⇒ I1

(A ∧ B ⇒ C) ⇒ (B ∧ A ⇒ C)
⇒ I2

(1)

The following equivalent calculational proof is far more compact. We start
with B ∧ A ⇒ C. In the first step, we open a subwindow on the sub-expression
B ∧ A, denoted by the markers. We then transform the sub-window and obtain



the desired result for the whole expression:

� B ∧ A � ⇒ C

⇐ {focus on B ∧ A}
• B ∧ A

= {∧ is commutative}
A ∧ B

·

�
A ∧ B

�
⇒ C

(2)

The proof profits from the fact that we can replace equivalent subexpressions.
This is formalised by window rules [11]. In this case the rule has the form

Γ ` A = B

Γ ` E[A] ⇒ E[B] (3)

where the second-order variable E stands for the unchanged context, while the
subterm A (the focus of the transformation) is replaced by the transformation.

Comparing this proof with the natural deduction proof, we see that in the lat-
ter we have to decompose the context by applying one rule per operator, whereas
the calculational proof employs second-order matching to achieve the same effect
directly. Although in this format, which goes back to Dijkstra and Scholten [8],
proofs tend to be shorter and more abstract, there are known counterexamples
such as proof by contradiction.

In Grundy’s work [11], window inference proofs are presented in terms of
natural deduction proofs. By showing every natural deduction proof can be con-
structed using window inference rules, completeness of window inference for first-
order logic is shown. This allows the implementation of window inference in a
theorem prover. A similar technique underlies our implementation: the system
constructs Isabelle proofs from window inference proofs.

As was shown in [11,1], window inference proofs are not restricted to first-
order logic or standard proof refinement, i.e. calculational proofs based on the
implication and equality. It is natural to admit a family {Ri}i∈I of reflexive and
transitive binary relations that enjoy a generalised form of monotonicity (in the
form of (3) above).

Extending the framework of window inference in these directions allows to
profit from its intuitive conciseness not only in high-school mathematics and
traditional calculus, which deals with manipulating equations, but also in formal
systems development, where the refinement of specifications is often the central
notion. However, adequate user interface support is needed if we want to exploit
this intuitive conciseness; the user interaction to set a focus on a subterm should
be little more than marking the subterm with the mouse (point&click), otherwise
the whole beneficial effect would be lost again.

2.2 The Concepts

Just as equality is at the heart of algebra, at the heart of window inference there
is a family of binary preorders (reflexive and transitive relations) {vi}i∈I . These



preorders are called the refinement relations. Practically relevant examples of
refinement relations in formal system development are impliedness S ⇐ P (used
for algebraic model inclusion, see Sect. 3), process refinement S vFD P (the
process P is more defined and more deterministic than the process S, see Sect. 4),
set inclusion (see Sect. 5), or arithmetic orderings for numerical approximations
[29]. An example for an infinite family of refinement relations in HOL is the
Scott-definedness ordering for higher-order function spaces (where the indexing
set I is given by the types):

f v(α→β)×(α→β)→Bool g ≡ ∀x. f x vβ×β→Bool g x (4)

The refinement relations have to satisfy a number of properties, given as a
number of theorems. Firstly, we require reflexivity and transitivity for all i ∈ I:

a vi a [Refli]

a vi b ∧ b vi c ⇒ a vi c [Transi]

The refinement relations can be ordered. We say vi is weaker than vj if vi is
a subset of vj, i.e. if a vi b implies a vj b:

a vib ⇒ a vj b [Weaki,j]

The ordering is optional; in a given instantiation, the refinement relations may
not be related at all. However, because of reflexivity, equality is weaker than any
other relation, i.e. for all i ∈ I, the following is a derived theorem:1

a = b ⇒ a vi b (5)

The main device of window inferencing are the window rules shown in the
previous section:

(A ⇒ a vi b) ⇒ F a vj F b [MonoF
i,j]

Here, F can either be a meta-variable2, or a constant-head expression, i.e. a term
of the form λy1 . . . ym.cx1 . . .xn with c a constant. Note how there are different
refinement relations in the premise and conclusion of the rule. Using a family of
rules instead of one monotonicity rule has two advantages: firstly, it allows us
to handle, on a case by case basis, instantiations where the refinement relations
are not congruences, and secondly, by allowing an additional assumption A in
the monotonicity rules, we get more assumptions when refining inside a context.
These contextual assumptions are crucial, many proofs depend on them.3

1 In order to keep our transformation system independent of the object logic being
used, we do not include any equality per default, as different object logics may have
different equalities.

2 In Isabelle, meta-variables are variables in the meta-logic, which are subject to uni-
fication. Users of other theorem provers can think of them just as variables.

3 They already featured in the pioneering CIP-S system [3] in 1984.



Dependencies between refinement relations can be more complicated than
the restricted form of weakening rules [Weaki,j] above may be able to express;
for example, (4) cannot be expressed by a weakening rule in either direction
because of the outermost quantor on the right side. For this reason, there is a
further need for refinement conversions, i.e. tactical procedures that attempt to
rewrite one refinement proof goal into another.

To finish off the picture, we consider transformation rules. A transformation
rule is given by a logical core theorem of the form

A ⇒ (I vj O) (6)

where A is the application condition, I the input pattern and O the output

pattern. In other words, transformation rules are theorems the conclusion of
which is a refinement relation.

2.3 Parameters

The parameters for a transformation rule given by core theorem schema (6) are
meta-variables occuring in the output pattern O but not in the input pattern I.
After applying the transformation, a parameter occurs as a free meta-variable in
the proof state. This is not always useful, hence parameters enjoy special support.
In particular, in transformational program development (see Sect. 3) we have
rather complex transformations with a lot of parameters and their instantiation
is an important design decision. As a simple example, consider the theorem

t ⇔ if b then t else t

which as a transformation rule from the left to the right introduces a case distinc-
tion on b. This is not very helpful unless we supply a concrete value for b which
helps us to further develop t in the two different branches of the conditional
expression under the respective assumption that b holds, or does not.

TAS supports parameters by when applying a transformation checking whether
it contains parameters, and if so querying for their instantiation. It further allows
parameter instantiations to be stored, edited and reused. This avoids having to
retype instantiations, which can get quite lengthy, and makes TAS suitable for
transformational program development as well as calculational proof.

2.4 The Trafos package

The Trafos package implements the basic window inferencing operations as
Isabelle tactics, such as:

– opening and closing subwindows,
– applying transformations,
– searching for applicable transformations,
– and starting and concluding developments.



In general, our implementation follows Staples’ approach [23], for example in the
use of the transitivity rules to translate the forward chaining of transformation
steps into backwards proofs on top of Isabelle’s goal package, or the reflexivity
rules to close subwindows or conclude developments.The distinctive features of
our implementation are the subterm and search functionalities, so we concentrate
on these in the following.

In order to open a subwindow or apply a transformation at a particular sub-
term, Trafos implements an abstract datatype path and operations apply trafo,

open sub taking such a path (and a transformation) as arguments. To allow
direct manipulation by point&click, we extend Isabelle’s powerful syntax and
pretty-printing machinery by annotations [15]. Annotations are markup sequences
containing a textual representation of the path, which are attached to the terms.
They do not print in the user interface, but instead generate a binding which
invokes the respective operations with the corresponding path as argument. In
general, users do not need to modify their theories to use the subterm selection
facilities, they can be used as they are, including user-defined pretty-printing.4

The operations apply trafo and open sub analyse the context, and for each
operation making up the context, the most specific [MonoF

i ] rule is selected, and
a proof step is generated. In order to speed up this selection, the monotonicity
rules are indexed by their head symbol, so we can discard rules which cannot
possibly unify; still, the application of the selected rules may fail, so a tactic
is constructed which tries to apply any combination of possibly fitting rules,
starting with the most specific.

Further, for each refinement relation vi, we try to find a rule [MonoF
i,i] where

F is just a meta-variable and the condition A is void — this rule would state
that vi is a congruence. If we can find such a rule, we can use it to handle, in
one step, large parts of the context consisting of operations for which no more
specific rule can be found. If no such congruence rule can be found, we do not
construct a step-by-step proof but instead use Isabelle’s efficient rewriter, the
simplifier, with the appropriate rules to break down larger contexts in one step.

As an example why the more specific rules are applied first, consider the
expression E = x + (if x = 0 then u + x else v + x). If we want to simplify
u+x, then we can do so under the assumption that x = 0, and we have x+0 ⇒
u + x = u because of the theorem

(B ⇒ x = y) ⇒ (if B then x else z = if B then y else z) [MonoIf= ]

But if we had just used the congruence rule for equality x = y ⇒ f x = f y

we would have lost the contextual assumption x = 0 in the refinement of the
if-branch of the conditional.

When looking for applicable transformations, performance becomes an issue,
and there is an inherent trade-off between the speed and accuracy of the search.
In principle, we have to go through all theorems in Isabelle’s database and check

4 Except if Isabelle’s freely programmable so-called print translations are used (which
is rarely the case). In this case, there are facilities to aid in programming markup-
generation analogously to these print-translations.



whether they can be considered as transformation rule, and if so if the input
pattern of the rule matches. Many theorems can be excluded straight away since
their conclusion is not a refinement. For the rest, we can either superficially check
whether they might fit, which is much faster but bears the risk of returning rules
which actually do not fit, or we can construct and apply the relevant tactic. We
let users decide (by setting a search option) whether they want fast or accurate
search. Another speed-up heuristic is to be able to specify that rules are only
collected from certain theories (called active theories). Finally, users can exclude
expanding rules (where the left-hand side is only a variable), because most (but
not all) of the time these are not really helpful. In this way, users can guide the
search for applicable transformations by selecting appropriate heuristics.

When instantiating the functor Trafos, the preprocessing of the monotonic-
ity rules as described above takes place (calculation of the simplifier sets, head
constants etc.) Further, some consistency checks are carried out (e.g. that there
are transitivity and reflexivity rules for all refinement relations).

2.5 Genericity by Functors

In Standard ML (SML), modules are called structures. Signatures are module
types, describing the interface, and functors are parameterised modules, map-
ping structures to structures. Since in LCF provers theorems are elements of an
abstract SML datatype, we can describe the properties of a window inference
calculus as described in Sect. 2.2 above using SML’s module language, and im-
plement TAS a functor, taking a structure containing the necessary theorems,
and returning a transformation or window inferencing system complete with
graphical user interface built on top of this:

functor TAS(TrfThy: TRAFOTHY) = ...

The signature TRAFOTHY specifies a structure which contains all the theorems of
Sect. 2.2. Abstracted a little (by omitting some parameters for special tactical
support), it reads as follows:

signature TRAFOTHY =

sig val topthy : string

val refl : thm list

val trans : thm list

val weak : thm list

val mono : thm list

val ref_conv : (string* (int-> tactic)) list

...

end

To instantiate TAS, we need to provide a theory (named topthy) which en-
codes the formal method of our choice and where our refinement lives, theorems
describing the transitivity, reflexivity and monotonicity of the refinement rela-
tion(s), and a list of refinement conversions, which consist of a name, and a tactic



when when applied to a particular subgoal converts the subgoal into another re-
finement relation.

When applying this functor by supplying appropriate arguments, we obtain a
structure which implements a window inferencing system, complete with a graph-
ical user interface. The graphical user interface abstracts from the command line
interface of most LCF provers (where functions and values are referred to by
names) by implementing a notepad, on which objects (theorems, theories, etc.)
can be manipulated by drag&drop. It provides a construction area where the
current on-going proof is displayed, and which has a focus to open subwindows,
apply transformations to subterms or search the theorem database for applicable
transformations. We can navigate the history (going backwards and forwards),
and display the history concisely, or in detail through an active display, which
allows us to show and hide subdevelopments. Further, the user interface provides
an active object management (keeping track of changes to external objects like
theories), and a session management which allows to save the system state and
return to it later. All of these features are available for any instance of TAS, and
require no additional implementation; and this is what we mean by calling TAS
generic.

The implementation of TAS consists of two components: a kernel transfor-
mation system, which is the package Trafos as described in Sect. 2.4, and a
graphical user interface on top of this. We can write this simplified as

functor TAS(TrfThy : TRAFOTHY) = GenGUI(Trafos(TrfThy : TRAFOTHY))

The graphical user interface is implemented by the functor GenGUI, and is
independent of Trafos and Isabelle. For a detailed description, we refer to [15],
but in a nutshell, the graphical user interface is implemented entirely in SML,
using a typed functional encapsulation of Tcl/Tk called sml_tk. Most of the
GUI features mentioned above (such as the notepad, and the history, object and
session management) are implemented at this more general level.

The division of the implementation into a kernel system and a generic graph-
ical user interface has two major advantages: firstly, the GUI is reusable for
similar applications (for example, we have used it to implement a GUI IsaWin
to Isabelle itself); and secondly, it allows us to run the transformation system
without the graphical user interface, e.g. as a scripting engine to check proofs.

3 Design Transformations in Classical Program

Transformation

In the design of algorithms, certain schemata can be identified [7]. When such
a schema is formalised as a theorem in the form of (6), we call the result-
ing transformation rule a design transformation. Examples include divide and

conquer [20], global search [22] or branch and bound. Recall from Sect. 2.2
that transformation rules are represented by a logical core theorem with an
input pattern and an output pattern. Characteristically, design transforma-
tions have as input pattern a specification, and as output pattern a program.



Here, a specification is given by a pre- and a postcondition, i.e. a function
f : X → Y is specified by an implication Pre(x) −→ Post(x, f(x)), where
Pre : X → Bool, Post : X × Y → Bool. A program is given by a recursive
scheme, such as well-founded recursion; the proof of the logical core theorem
must accordingly be based on the corresponding induction principles, i.e. here
well-founded induction. Thus, a function f : X → Y can be given as

let fun f(x) = E in f end measure < (7)

where E is an expression of type Y , possibly containing f , and < ⊆ X ×X is a
well-founded relation, the measure, which must decrease with every recursive call
of f . The notational proximity of (7) to SML is intended: (7) can be considered
as a functional program.

As refinement relation, we will use model-inclusion — when refining a spec-
ification of some function f , the set of possible interpretations for f is reduced.
The logical equivalent of this kind of refinement is the implication, which leads
to the following definition:

v : Bool ×Bool → Bool P v Q
def

= Q −→ P

Based on this definition, we easily prove the theorems ref trans and ref refl

(transitivity and reflexivity of v). We can also prove that v is monotone for all
boolean operators, e.g.

s v t ⇒ s ∧ u v t ∧ u ref conj1

Most importantly, we can show that

(B ⇒ s v t) ⇒ if B then s else u v if B then t else u ref if

(¬B ⇒ u v v) ⇒ if B then s else u v if B then s else v ref then

which provides the contextual assumptions mentioned above. When instantiating
the functor, we also have to specify equality as a refinement relation. Since we can
reuse the relevant definitions for all theories based on HOL, they have been put
in a separate functor functor HolEqTrfThy(TrfThy : TRAFOTHY) : TRAFOTHY

In particular, this functor proves the weakening theorems (5) for all refinement
relations, and appends them to the list weak. Thus, the full functor instantiation
reads

structure HolRefThy =

struct val name = "HolRef"

val trans = [ref_trans]

val refl = [ref_refl]

val weak = []

val mono = [ref_if, ref_else, ref_conj1, ref_conj2,

ref_disj1, ref_disj2, ...]

val ref_conv = []

...

end

structure TAS = TAS(HolEqTrfThy(HolRefThy))



The divide and conquer design transformation [20] implements a program
f : X → Y by splitting X into two parts: the termination part of f , which
can be directly embedded into the codomain Y of f , and the rest, where the
values are divided into smaller parts, processed recursively, and reassembled.
The core theorem for divide and conquer based on model-inclusion refinement
and well-founded recursion reads:5

A −→ (Pre(x) −→ Post(x, f(x))
v
Pre(x) −→ f = let fun F (x) = if isPrim(x) then Dir(x)

else Com(〈G, F 〉(Decom(x)))
in F end measure <)

(8)

As explained above, the parameters of the transformation are the meta-variables
appearing in the output pattern but not in the input pattern of the logical core
theorem (8). Here, these are

– the termination criterion isPrim : X → Bool;
– the embedding of terminal values Dir : X → Y ;
– the decomposition function of input values Decom : X → Z × X;
– a function G : Z → U for those values which are not calculated by recursive

calls of F ;
– the composition function Com : U ×Y → Y that joins the subsolutions given

by G and recursive calls of F ;
– and the measure < assuring termination.

We will now apply this transformation to synthesise a sorting algorithm in
the theory of lists. We start with the usual specification of sort, as shown on
the left of Fig. 1. We can see the notepad, on which the transformation object
Divide & Conquer is represented by an icon. The workspace shows the current
state of the already started development. The highlighting indicates the focus
set by the user. Now we drag the transformation onto the focus; TAS interprets
this gesture as application of the transformation at the focus. In this case, TAS
infers that there are parameters to be provided by the user, who is thus guided
to the necessary design decisions. The parameter instantiations are fairly simple:
the termination condition is the empty list, which is sorted (hence Dir is the
identity). The decomposition function splits off the head and the tail; the tail is
sorted recursively, and the head is inserted into the sorted list (hence, G is the
identity). Finally, the measure relates non-empty lists to their tails (since the
recursive call always passes the tail of the argument; a relation easily proven to
be well-founded).

This transformation step readily produces the desired program (right of
Fig. 1). However, this step is only valid if the application conditions of the
transformation hold. When applying a transformation, these conditions turn
into proof obligations underlying a special bookkeeping. The proof obligations

5 〈f, g〉 is the pairing of functions defined as 〈f, g〉(x, y)
def
= (f(x), f(y)).



Fig. 1. TAS and its graphical user interface. To the left, the initial stage of the develop-
ment, and the parameters supplied for the transformation; to the right, the development
after applying the divide and conquer transformation. On the top of the window, we
can see the notepad with the theory SortDC, the transformation Divide&Conquer, the
specification sort spec, the ongoing development (shaded) and the parameter instan-
tiation divconq inst.

can be proven with a number of proof procedures. Typically, these include au-
tomatic proof via Isabelle’s simplifier or classical reasoner and interactive proof
via IsaWin. Depending on the particular logic, further proof procedures may
be at our disposal, such as specialised tactics or model-checkers integrated into
Isabelle.

Another well-known scheme in algorithm design is global search which has
been investigated formally in [22]. It represents another powerful design trans-
formation which has already been formalised in an earlier version of TAS [13].

4 Process Modelling with CSP

This section shows how to instantiate TAS for refinement with CSP [19], and
will briefly present an example how the resulting system can be used. CSP is a
language designed to describe systems of interacting components. It is supported
by an underlying theory for reasoning about their equivalences, and in particular
their refinements. In this section, we use the embedding HOL-CSP [26] of CSP
into Isabelle/HOL. Even though shortage of space precludes us the set out the
basics of CSP here, a detailed understanding of CSP is not required in the
following; suffice it to say that CSP is a language to model distributed programs
as communicating processes.

CSP is interesting in this context because it has three refinement relations,
namely trace refinement, failures refinement and failures-divergence refinement.



Fig. 2. TAS in the CSP instance. On the right, the construction history is shown. The
development proceeded by subdevelopments on COPY1 and COPY2, which can be shown
and hidden by clicking on [Subdevelopment]. Similarly, proof obligations can be shown
and hidden. In the lower part of the main window, the focus is set on a subterm, and all
applicable transformations are shown. By clicking on the name of the transformations,
their structure can be displayed (not shown).

Here, we only use the third, since it is the one most commonly used when devel-
oping systems from specifications, but e.g. trace refinement can be relevant to
show security properties.

Recall from Sect. 2.5 that to instantiate TAS we need a theory encoding our
formal method, and theorems describing the refinement relation. The relevant
theory is called CspTrafos, which contains the core theorems of some (simple)
transformations built on top of Csp, the encoding of CSP into Isabelle/HOL.

For brevity, we only describe instantiation with failure-divergence refinement;
the other two refinements would be similar. The theorems stating transitivity
and reflexivity of failure-divergence refinement are called ref_ord_trans and
ref_ord_refl, respectively. For monotonicity, we have a family of theorems
describing monotonicity of the operators of CSP over this relation, but since the
relation is monotone only with respect to the CSP relations it is not a proper
congruence. This gives us the following functor instantiation:

structure CspRefThy = struct

val name = "CspTrafos"



val trans = [ref_ord_trans]

val refl = [ref_ord_refl]

val mono = [mono_mprefix_ref,mono_prefix_ref,mono_ndet_ref,

mono_det_ref,mono_Ren_ref,mono_hide_set_ref,

mono_PaI_ref,mono_Inter_ref]

val weak = []

val ref_conv = []

...

end

structure TAS = TAS(HolEqTrfThy(CspRefThy))

Fig. 2 shows the resulting, instantiated system in use. We can see an ongoing
development on the left, and the opened construction history showing the devel-
opment up to this point on the left. As we see, the development started with two
processes in parallel; we focussed on both of these in turn to develop them sep-
arately, and afterwards rearranged the resulting process, using algebraic laws of
CSP such as sync interl dist which states the distributivity of synchronisation
over interleaving under some conditions. The development does not use powerful
design transformations as in Sect. 3, but just employs a couple of the algebraic
laws of CSP, showing how we can effectively use previously proven theorems for
transformational development. Finding design transformations like divide and
conquer for CSP is still an open research problem.

If we restrict ourselves to finite state processes (by requiring that the channels
only carry finite messages), then we can even check the development above with
the CSP model checker FDR [19], connected to Isabelle as a so-called oracle (a
trusted external prover). This speeds up development at the cost of generality
and can e.g. be used for rapid prototyping.

5 Data Refinement in the Refinement Calculus

In this section, we will emphasise a particular aspect of the genericity of TAS and
demonstrate its potential for reuse of given logical embeddings. As we mentioned,
TAS is generic with respect to the underlying refinement calculus, which in par-
ticular means that it is generic with respect to the underlying object logic. In the
previous examples, we used higher-order logic (as encoded in Isabelle/HOL); in
this example, we will use Zermelo-Fränkel set theory (as encoded in Isabelle/ZF).
On top of Isabelle/ZF, Mark Staples has built a substantial theory for impera-
tive program refinement and data refinement [24,25] following the lines of Back’s
Refinement Calculus RC [2].

RC is based on a weakest precondition semantics, where predicates and pred-
icate transformers are represented as sets of states and functions taking sets of
states to sets of states respectively. The distinctive feature of Staples’ work over
previous implementations of refinement calculi is the use of sets in the sense of
ZF based on an open type universe. This allows derivations where the types of
program variables are unknown at the beginning, and become more and more
concrete after a sequence of development steps.



In order to give an idea of Staples’ formalisation, we very briefly review some
of the definitions of Back’s core language in his presentation:6

Skip
A

def

= λq :
�
(A).q

a ; b
def

= λq : dom(b).a ‘ b ‘ q

if g then a else b fi
def

= λq : dom(a) ∪ dom(b).
(g ∩ a ‘ q) ∪ ((

⋃
(dom(a) ∪ dom(b)) − g) ∩ b ‘ q)

while g do c od
def

= λq :
�
(A). lfpA N.(g ∩ c ‘ N ) ∪ ((A − g) ∩ q)

. . .

This theory could be used for an instantiation of TAS, called TAS/RC. The
instantiation follows essentially the lines discussed in the previous sections; with
respect to the syntactic presentation, the configuration for the pretty-printing
engine had to provide special support for 5 print-translations comprising 100
lines of code, and a particular set-up for the tactics providing reasoning over
well-typedness, regularity and monotonicity. (We omit the details here for space
reasons). As a result, a larger case study in [24] for the development of an BDD-
related algorithm as a data-refinement from truth tables to decision trees can be
represented inside TAS.

6 Conclusions and Outlook

This paper has presented the transformation system TAS. TAS is generic in
the sense that it takes a set of theorems, describing a refinement relation, and
turns them into a window inference or transformation system, complete with an
easy-to-use, graphical user interface. This genericity means that the system can
be instantiated both to a transformation system for transformational program
development in the vein of traditional transformation systems such as CIP, KIDS
or PROSPECTRA, or as system for window inference. We have demonstrated
this versatility by showing instantiations from the provenance of each the two
areas just mentioned, complemented with an instantiation from a different area,
namely reasoning about processes using CSP.

The effort required for the actual instantiation of TAS is very small indeed,
since merely the values for the parameters of the functor need to be provided.
(Only rarely will tactical programming be needed, such as mentioned in Sect. 5,
and even then it only amounts to a few lines of code.) It takes far more effort
to set up the logical encoding of the formal method, in particular if one does so
conservatively.

TAS’ graphical user interface complements the intuitiveness of transforma-
tional calculi with a command-language-free user interface based on gestures

6 Note that the backquote operator ‘ is infix function application in Isabelle/ZF.



such as drag&drop and proof-by-pointing. It further provides technical infras-
tructure such as development management (replay, reuse, history navigation),
object management and session management.

TAS is implemented on top of the prover Isabelle, such that the consistency of
the underlying logics and its rules can be ensured by the LCF-style architecture
of Isabelle and well-known embedding techniques. It benefits further from the
LCF architecture, because we can use SML’s structuring mechanisms (such as
functors) to implement reusable, generic proof components across a wide variety
of logics.

Internally, we spent much effort to organise TAS componentwise, easing the
reuse of as much code as possible for completely different logical environments.
The GUI and large parts of TAS (except the package Trafos) are designed to
work with a different SML-based prover, and are readily available for other re-
search groups to provide GUI support for similar applications. On the other
hand, the logical embeddings (such as HOL-CSP) which form the basis of the
transformation calculi do not depend on TAS either. This allowed the easy in-
tegration of Staples’ encoding of the refinement calculus into our system, as
presented in Sect. 5.

6.1 Discussion and Related Work

This work attempts to synthesise previous work on transformational program
development [3,21, 12] which developed a huge body of formalised developments
and design schemes, but suffered from ad-hoc, inflexible calculi, correctness prob-
lems and lack of proof support, with the work on window inferencing [18,11] and
structured calculational proof [2, 1], which provides proven correctness by LCF
design and proof support from HOL or Isabelle.

PRT [6] is a program refinement tool (using window inference) which is built
on top of the Ergo theorem prover. It offers an interface based on Emacs, which
allows development management and search functionalities. However, the Tk-
WinHOL system [14] comes closest to our own system conception: it is based
on Tcl/Tk (making it platform independent), and offers focusing with a mouse,
drag&drop in transformational goals, and a formally proven sound calculus im-
plemented by derived rules in HOL. On the technical side it uses Tcl directly
instead of an encapsulation (which in our estimate will make it much harder
to maintain). On the logical side, it is also generic in the sense that it can be
used with different refinement relations, but requires more work to be adapted
to a new refinement relation; for example, users need to provide a pretty-printer
which generates the correct mark-up code to be able to click on subterms. In
contrast, TAS extends Isabelle’s infrastructure (like the pretty-printer) into the
graphical user interface, leaving the user with less work when instantiating the
system.

The essential difference between window inferencing and structured calcula-
tional proof [1] is that the latter can live with more than one transformational
goal. This difference is not that crucial for TAS since it can represent more



than one transformational development on the notepad and is customisable for
appropriate interaction between them via drag&drop operations.

Another possible generalisation would be to drop the requirement that all
refinement relations be reflexive. However, this would complicate the tactical
programming considerably without offering us perceivable benefit at the mo-
ment, so we have decided against it.

6.2 Future Work

Future work can be found in several directions. Firstly, the user interaction can
still be improved in a variety of ways. Although in the present system, the user
can ask for transformations which are applicable, this can considerably be im-
proved by a best-fit strategy and, for example, stronger matching algorithms
like AC-matching. The problem here is to help the user to find the few interest-
ing transformations in the multitude of uninteresting (trivial, misleading) ones.
Supporting design decisions at the highest possible user-oriented level must still
count as an open problem, in particular in a generic setting.

Secondly, the interface to the outside world can be improved. Ideally, the
system should interface to a variety of externally available proof formats, and
export web-browsable proof scripts.

A rather more ambitious research goal is the reuse and abstraction of trans-
formational developments. A first step in this direction would be to allow to
cut&paste manipulation of the history of a proof.

Thirdly, going beyond classical hierarchical transformational proofs the con-
cept of indexed window inferencing [29] appears highly interesting. The overall
idea is to add an additional parameter to the refinement relation that allows
to calculate the concrete refinement relation on the fly during transformational
deduction. Besides the obvious advantage of relaxing the requirements to refine-
ment relations to irreflexive ones (already pointed out in [23]), indexed window
inferencing can also be used for a very natural representation of operational se-
mantics rules. Thus, the system could immediately be used as an animator for,
say, CSP, given the operational semantics rules for this language.

Finally, we would like to see more instances for TAS. Transformational de-
velopment and proof in the specification languages Z and CASL should not be
too hard, since for both embeddings into Isabelle are available [13, 16]. The main
step here is to formalise appropriate notions of refinement. A rather simple dif-
ferent instantiation is obtained by turning the refinement relation around. This
amounts to abstracting a concrete program to a specification describing aspects
of its behaviour, which can then be validated by a model-checker. For example,
deadlock checks using CSP and FDR have been carried out in this manner, where
the abstraction has been done manually[4,5, 17]. Thus we believe that TAS rep-
resents an important step towards our ultimate goal of a transformation system
which is similarly flexible with respect to underlying specification languages and
refinement calculi as Isabelle is for conventional logical calculi.
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