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Abstract. This paper describes the modelling of transformational program development
inside a tactical theorem prover. The main characteristics of this approach is its genericity,
leading to tools suitable for transformational program development in various, different
formal methods which are logically embedded into the theorem prover. Combined with a
systematic way of building graphical user interfaces, this yields a unifying framework for
tool-supported formal program development, with correctness guaranteed by the theorem
prover.

1 Introduction

During recent years, the need for formal methods in software development has been
recognised increasingly. Along with this recognition, awareness has grown that
“there is no single theory for all stages of the development of software” (C. A. R.
Hoare [4]), and that formal methods have to be supported by appropriate tools.
Thus if formal methods are to gain industrial relevance there is the need for a
framework integrating different formal methods and formal methods tools.

The main aim of UniForM project [10] is to develop such a framework. Dif-
ferent formal methods and tools are combined into one universal development
environment, with a common user interface and repository management covering
the whole of the software life cycle.

The methodology of the UniForM workbench emphasises transformational pro-
gram development. This paper describes our modelling of transformational pro-
gram development inside a tactical theorem prover (here, Isabelle [12]). This mod-
elling is generic over both the logic and the transformation relation, and together
with a logical embedding of a formal method into the theorem prover, we can
uniformly describe transformational program development in the context of dif-
ferent formal methods such as Z or CSP. We will sketch a way in which graphical
user interfaces for applications based on tactical theorem provers can be built. To
tickle the reader’s curiosity, we will first give an impression of the Transformation
Application System.

* This work has been supported by the German Ministry for Education and Research
(BMBF) as part of the project UniForM under grant No. FKZ 01 IS 521 B2.



2 The Transformation Application System at Work

We will now given an example concerning the refinement of CSP process specifica-
tions. The example aims at demonstrating the look and feel of the Transformation
Application System (TAS). We assume a passing knowledge of CSP or another pro-
cess calculus such as CCS, but even without any previous knowledge the reader
will hopefully be able to form an impression. The development starts out with
two processes COPY1 and COPY2 running in parallel. Both accept requests, and
send responses; one may perhaps think of this as the specification of a concur-
rent data base server. When implementing such a server, we may not want “real”
concurrency, since both processes may access shared resources; so we have to syn-
chronize the two server processes with a central scheduler. This development will
be described as a refinement of CSP specifications in the following.
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Fig. 1. Initial Configuration

Fig. 1 shows a screenshot of TAS set up for this example. On the notepad, the
window on the left side, we can see various icons representing objects, such as
the theory in which all the CSP transformations live (upper left hand corner), the
transformational development in its initial stage (which is shaded, because it is
open in the construction area below), and a couple of transformations for use later.
The notepad only contains transformations which the user has explicitly placed
there, not all transformations known in the system, since there would be too many
of them.

A transformation is applied by dragging it down into the construction area.
To apply a transformation in context, the subterm of the current specification in
the construction area is selected with the mouse. After replacing COPY1 and COPY2
with their definition, we want to introduce buffer processes. The transformation
introducing buffers can be visualised as in Fig. 3, and intuitively replaces the single
process COPY with two processes SEND and RECV synchronised via two channels
mid and ack, which are the parameters of this transformation. The applicability
condition of this transformation is that the instantiation for mid and ack are
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pairwise disjoint from each other and from left and right. To apply this rule,
we mark the relevant subterm, and drag the rule into the construction area. A
window pops up querying for the instantiations of the the parameters, which we
have to supply (see Fig. 2).
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Fig. 4. Displaying proof obligations

We can do the same with the COPY2 process, and arrive at the stage of develop-
ment shown in Fig. 4. Note that we now have two proof obligations, which can be
displayed by clicking on the button labelled proof obligations. At any stage during
the development process, proof obligations can be dragged from this window into
the IsaWin window, where they can be proven.

As the Isabelle/CSP notation can become fairly lengthy, we can visualise the
transformational development in the style of Fig. 3; Fig. 5 shows the double appli-
cation of the buffer-introducing transformation just described. This visualisation
does not show the hiding operators, though, and can hence be misleading.

Now follow two transformations which prepare the specification for the trans-
formation introducing the scheduling process. The first of these transforms the
specification from two synchronized buffer processes consisting of a sender and
receiver process each to one buffer process consisting of two synchronized sender
and receiver processes; the second pushes all hiding operators to the outside. The
scheduling process itself consists actually of two processes, one to synchronize the
received messages, and one to synchronize the outgoing acknowledgements. Ap-
plying the transformation to introduce the first of these shown in Fig. 7. The
transformation has applicability conditions and parameters (viz, the names of the
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freshly introduced channels a1 and a2 and the usual disjoint conditions. Applica-
tion of this transformation twice yields the final stage of the development, shown
as a screenshot in Fig. 6. The development can be displayed with a hypertext
browser (Fig. 9). Furthermore, it can be closed and turned into a new transfor-
mation rule — i.e. we can abstract from the particular development. Fig. 8 shows
the relevant menu being activated, and the new transformation rule has already
appeared in the lower left corner.

3 Transformational Program Development in Isabelle

In this section, we will give a brief introduction to the LCF prover Isabelle, and
describe how a transformational development like the one presented in Sect. 2 can
be realized inside Isabelle with the Transformation Application System. It should
be pointed out that the technicalities described in this section all remain hidden
from the actual user of the system.

3.1 LCF Theorem Provers and Isabelle

The family of LCF theorem provers originate from the seminal Edinburgh LCF
system by Milner, Wadsworth and Gordon in the 70’s [3]. Their main character-
istics are the way they are embedded into the functional programming language
ML, and their flexibility due to so-called tactics.
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Fig. 9. Displaying developments




An LCF prover essentially consists of a collection of ML modules and functions.
The user types ML expressions or ML programs, which are evaluated and their
result printed. This design obviously leaves something to be desired as far as user-
friendliness is concerned, but it is very powerful and extendible. Using specific
functions provided by the prover, the user can program tactics as ML programs,
allowing a higher degree of proof automation.

The main contemporary LCF provers are the HOL system [2] and Isabelle [12],
the latter of which is used in our work, since it is more flexible, and more powerful
(offering built-in tools for automatic proof such as a rewriter, and a so-called
classical reasoner).

The two basic proof methods in Isabelle are forward resolution and backward
resolution. Forward resolution is a way to derive new theorems: if we have two
theorems g and £, and we can find substitutions o, 7 such that ¢(Q) = 7(R),
then we can derive (by the associativity of the implication) the new theorem %.
Backward resolution drives the proof activity. If we wish to prove a goal P, then

Ql:"':Qn

backward resolution with a theorem T means that we find a substitution

o which when applied to @ yields P, o(Q) = P. To prove P, we now have to prove
a(Q1),0(Q1),...,0(Qn). These new goals are called subgoals. The main way to
prove the subgoals is by proving them separately. Isabelle keeps track of them,
and displays them as a list of numbered subgoals rather than one conjunction.
Isabelle will assist in finding the substitutions mentioned above, but this involves
higher-order unification which is in general undecidable, so it is not guaranteed
that Isabelle will find such a substitution if it exists.

3.2 Transformational Program Development

In general, transformational development is described by a sequence of specifica-
tions
SPy ~ ...~ SP, (1)

In a full transformational development SP; is the requirement specification and
SP,, the executable specification (from which a program can be generated), but
a transformational development may describe any subsequence of this as a single
step in the overall development process, deriving a more refined specification or
program from a more general one.

In this framework, we consider the SP; to be arbitrary formulae of higher-order
logic, and development steps SP; ~» SP;;; are described by a relation ~ called
the transformation relation. The transformation relation can be any transitive-
reflexive relation; additional monotonicity allows transformations to be applied
inside a context (see below). The transformation relation can be thought of as the
refinement relation underlying the transformational development, i.e. SP ~ SP'
iff SP' is a refinement of SP. The transformational development above amounts to
proving formula (1) from preconceived rules called transformations (below we will
show examples of these). Steps in the proof correspond to applying transformation
rules.



A transformation for a transformation relation ~» is given by a logical core
theorem of the following general form:

VP,...,Py. A=~ 0 (2)

where Py,..., P, are the parameters of the rule, A the applicability condition, I
the input pattern and O the output pattern.
The transformational development is started by creating an initial proof state

1. SP; ~7Z

where ?Z is the Isabelle notation for a so-called meta variable representing the
final result. Meta variables are free variables in a term subject to unification, and
can be thought of as named “holes” in the term.

The transformation given by the core theorem 2 is applied by performing the
following sequence of tactical operations: first, a resolution with the transitivity of
~ is carried out. This leads to a proof state with two subgoals:

2.7 w77

where 7Y is the new intermediate specification and ?Z remains the ultimate tar-
get of the development. In the second step, 7Y is substituted by the transformed
specification SP;: by forward resolution of the logical core theorem 2 with the
elimination rules for the universal quantifier and the implication, one obtains the

logical core theorem in a form where the variables Py, ..., P, bound by the uni-
versal quantifier are substituted by meta variables 7Py, ..., 7P,
AI
TwO (3)

We now find a substitution o such that o(I') = SP;, and resolve the transformed
core theorem 3 with subgoal 1. The unification of the conclusion of 3 and subgoal
1 yields a substitution for the meta-variable 7Y, which is the transformed program
Sp, & o(0"); applying it to the applicability conditions yields the proof obligation
LY o(A"). The proof obligations will appear as a new subgoal, since they also
need to be proven to make the transformation sound; in fact, the applicability
condition is typically a conjunction A = Ay A...ANA,,s0 L=0c(A|AN...NA]) =
a(AD) AL oA o(A]) is a conjunction as well, which will show up as n subgoals.
The proof state after applying the transformation thus reads

1. o(4)
n.  o(Al)

The application of the next transformation will be focused on subgoal n + 1
and so forth. This way, transformational developments can be represented within



the infrastructure of Isabelle, allowing browsing and copying developments and
abstract operations on them.

The hard part with real-life design transformations (such as Global Search [8] or
Split of Postcondition [5]) is finding the right instantiation of the rule’s parameters.
In these cases, the instantiation o above will most likely not be found automatically
by Isabelle’s unification, but users will have to supply instantiations Ri,..., Ry,
for the parameters 7Py, ..., 7P, (after careful thought on their part), from which
Isabelle will be able to find the correct o by unification. On the other hand,
for simple transformations, e.g. those based on folding or unfolding an equation,
Isabelle will most likely find the substitution o if it exists. Note that the unification
of I' with SP; can fail, which means that the transformation is not applicable here.

To apply a transformation in a context, the transformation relation needs to
be monotone with respect to that particular context. In higher-order logic, con-
texts are represented as A-abstractions; so e.g. C[SP] (the specification SP in the
context C') is represented as (Ax.Cz)SP. When applying transformation 3 to SP
in the contexrt C, a new subgoal is generated which requires ~» to be monotone
with respect to C":

n+1.78 ~?T = C(?5) ~ C(?T)
n+2.SPy 72

This subgoal will either be resolved automatically by Isabelle’s rewriting (by ap-
plying congruence rules for single operators with respect to ~» top-down), or if it
cannot be resolved, the transformation in context fails. This means that C' contains
an operation with respect to which ~» is not monotone (a typical example here
is the process refinement ordering for CSP processes from Sect. 2, which is not
monotone with respect to hiding). One might have thought of requiring the trans-
formation relation ~» to be monotone with all contexts (i.e. being a congruence),
but this turns out to be too strong a requirement, excluding useful transformation
relations.

The sequence of steps just described forms the basic tactical sugar of the trans-
formation. The tactical sugar can vary in many respects; e.g. it might contain
standard proof procedures which remove trivial proof obligations, or it may use
more sophisticated, semantic matching techniques [13]. Hence, a transformation
rule is given by a core theorem and the tactical sugar governing its application.
The same core theorem can give rise to more than one transformation rule by
endowing it with different tactical sugar.

3.3 Abstraction and Reuse

A development is closed by resolving with the reflexivity law ?A ~~? A which simply
unifies the current result SP; of the transformational development with the final
result 7Z. (Note that this does not imply that the specification is executable in
any sense, it just allows termination of the transformational development.) Once
a development is closed, we can extract a theorem from it, which can be the core
theorem for a new transformation rule, where the unproven proof obligations would
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appear as application conditions; hence, we can abstract from specific developments
to more general ones.

The Transformation Application System is designed to hide the internal tactical
steps, the existence of meta variables and other Isabelle technicalities etc. from
the user. It comes with a graphical user interface described below. Users of the
Transformation Application System will not have to worry about the details of
how the transformational process is implemented within Isabelle — in fact, they
will not need to have any knowledge of Isabelle at all. Since the proof of side
conditions can be deferred to a later stage, users can concentrate on the main
design decisions of transformational program development: which transformation
to apply, and how to instantiate its parameters.

3.4 Examples for Transformation Relations and Rules

The methodology described here is generic in two respects: firstly, over the logic
employed, and secondly over the transformation relation. This means that the
same system (i.e. TAS) can be used for transformational program development
in different formal methods, provided there exists a logical embedding of the for-
mal method into Isabelle. Two main logical embeddings have been developed in
the course of the UniForM project, for the process calculus CSP [15] and for the
specification language Z [9], besides “cheap” embeddings such as transformational
development in higher-order logic itself, or the Bird-Meertens calculus. Although
developing a logical embedding for real-life formal methods such as these is by no
means a routine task, we still believe it is worth the effort, for the benefit of being
able to use it as much as for the benefit of validating the formal method itself—
during the development of the formal embedding of CSP, a small but persistent
error in the theory of CSP was found which went undetected for years.

The most simple transformation relation, available in all embeddings, is equal-
ity. A theorem s =t then gives rise to two transformations which fold (s ~ t) or
unfold (¢ ~» s) the equation. The equation can be as basic as commutativity of an
operation, or as complex as the global search transformation given in [8].

A more sophisticated example of a transformation relation is the refinement
process ordering from CSP, where a process ) refines a process P if roughly
speaking @) can do everything P can and diverges less often. This refinement
relation is an example of a relation which is not monotone with respect to contexts,
failing for particular hiding operations.

For Z, the transformation relation could be model inclusion (i.e. SP; ~~ SPs
iff. Mod(SPy) D Mod(SP;)) or refinement of specifications. In both cases, the
open question under investigation at the moment is the formulation of appropriate
higher-level transformations, which help the user to guide the development process
in the right way.

4 Tool Support

As demonstrated in Sect. 2, the Transformation Application System comes with a
graphical user interface. This interface has been designed in a flexible and generic
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way, allowing to quickly construct graphical user interfaces for any formal method
embedded into Isabelle. In this section, we will briefly sketch how this is achieved.

4.1 System Architecture: Generic and Open

The tools are implemented with a highly generic and open system design, building
entirely on well-documented, public domain systems. We will here only briefly
sketch the implementation; a more detailed description can be found in [6] and [7].

Application |
GenGUI
Isabelle/HOL
— =
sml_tk
-
Standard ML

Fig. 10. System Architecture

The system is entirely implemented in Standard ML (SML) (see Fig. 10), be-
cause one can extend Isabelle conservatively by writing ML functions, using the
abstract datatypes provided by Isabelle. ML’s typing discipline and structuring
mechanisms protect the theorem-proving core of Isabelle from being logically cor-
rupted, and provide a closely coupled and safe (in particular, typed) interaction
with Isabelle. Moreover, one can take advantage of SML’s powerful structuring
mechanisms to obtain a highly generic and open system architecture.

To implement the graphical user interface, we are using the interface de-
scription and command language Tcl/Tk, encapsulated into Standard ML by
the sml_tk package (also developed at the University of Bremen). This package
provides abstract ML datatypes for the Tcl/Tk objects, thus allowing the pro-
grammer to use the interface building library Tk without having to program the
control structures of the interface in the untyped, interpretative language Tcl. De-
tailed information on sml_tk can be found in [11], or at the sml_tk home page
(http://www.informatik.uni-bremen.de/"cxl/sml_tk/).

The generic graphical user interface GenGUI builds on the interface description
facilities provided by sml_tk to provide a generic graphical user interface. It is
implemented as a functor (a parameterised module)

functor GenGUI(structure appl: APPL_SIG ) = ...
which provides a graphical user interface for any application described by the

signature APPL_SIG.

12



4.2 Visual Appearance

A consequence of this approach is that all tools obtained by instantiating GenGUI
have a uniform visual appearance. Their main window always consists of two areas:
the notepad in the upper part, and the construction area in the lower part. The
notepad contains icons representing the objects, which can be dragged, moved
and dropped onto each other, whereas the construction area allows a more refined
manipulation of an object’s internals.

One prominent instantiation of GenGUI is the Transformation Application
System already demonstrated above.A different instantiation yields a graphical
user interface for Isabelle itself, called IsaWin.

4.3 IsaWin— a Graphical User Interface for Isabelle

IsaWin is an interface to Isabelle in its own right as well as the tool to prove the

proof obligations arising from transformational developments using TAS, or even
the correctness of the transformations of TAS.
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Fig.11. IsaWin
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Fig. 11 shows a screen shot of IsaWin. The icons in the notepad represent the-
orems, proofs, two types of rule sets, and theories (collections of type declarations,
theorems and rule sets). In the construction area, proofs are carried out (here, one
of the proof obligations from Sect. 2 is currently being proven); once a proof is fin-
ished, it can be turned into a theorem. The operations include backward resolution
by dropping a theorem onto a proof, forward resolution by dropping a theorem
onto a theorem, or rewriting by dropping a rule onto a proof.

5 Conclusions, Related and Future Work

The transformational approach to program development has a long tradition, start-
ing from the Munich CIP Project [1]. During the PROSPECTRA project [5], a
system has been implemented that enabled the formalisation of transformation
rules and their use during the software development process; however, this system
was severely hampered by its unstructured design and limited reasoning power,
defects which we aimed to remedy by using a powerful prover and a programming
language with powerful structuring concepts.

In KIDS [14], programs are developed by transforming problem specifications to
programs. First, high-level transformations such as global search are used to trans-
form the problem specification to an inefficient program which is then optimised
by low-level transformations. In KIDS, there is no way to check the soundness
of the implemented transformations. Here our approach offers a complementary
aspect to KIDS since we can prove the correctness of the transformation before
applying it, and discharge the resulting proof obligations in the Isabelle system.

The main emphasis during development has been put on a clear and generic
system architecture rather than bells and whistles. Having achieved the former,
we are going to concentrate on the latter, and are going to implement extensions
such as better error handling, pretty printing using mathematical notations and
focusing (applying a transformation rule or an Isabelle tactic to a subterm of the
current goal, leading to the concept of a generic focus) in the near future. Further,
instantiations of our framework for use with 7 are currently being developed.

In summary, we have demonstrated a system which implements transforma-
tional program development in a flexible and generic way. The system can be ac-
commodated to suit a wide variety of formal methods, provided the formal method
in question provides a sufficiently rigorous mathematical foundation so it can be
embedded into a theorem prover.

The main advantages of our approach, besides this considerable flexibility, are
that because the logical embedding is constructed as a conservative extension of
the theorem prover, it is guaranteed to be consistent, and since the transformation
rules are based on theorems in this logic, they are guaranteed to be correct. Further,
representing the whole transformational development as an object inside the logic
offers interesting perspectives in proof and development reuse and abstraction; the
development abstraction shown at the end of Sect. 2 should only be considered a
first, tentative step in that direction.
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