
Modeling and Analysing Cyber-Physical
Systems in HOL-CSP

Paolo Crisafulli1, Safouan Taha2, and Burkhart Wolff3

1 IRT SystemX, Palaiseau
paolo.crisafulli@irt-systemx.fr

2 LMF, CentraleSupelec
safouan.taha@lri.fr

3 LMF, Université Paris-Saclay
wolff@lri.fr

Abstract. Modelling and Analysing Cyber-Physical Systems (CPS) is
a challenge for Formal Methods and therefore a field of active research.
It is characteristic of CPSs that models comprise aspects of Newtonian
Physics appearing in system environments, the difficulties of their dis-
cretisation, the problems of communication and interaction between ac-
tors in this environment as well as calculations respecting time-bounds.
We present a novel framework to address these problems developed with
industrial partners involved in the Autonomous Car domain. Based on
HOL-CSP, we model time, physical evolution, “scenes” (global states)
and “scenarios” (traces) as well as the interaction of “actors” (vehicles,
pedestrians, traffic lights) inside this framework. In particular, discrete
samplings are modelled by infinite internal choices.
For several instances of the modelling framework, we give formal proofs of
a particular safety property for Autonomous Cars: if each car follows the
same driving strategy defined by the so-called Responsibility-Sensitive
Safety (RSS), no collision will occur. The proofs give rise to a number of
variants of RSS and optimisations as well as a test-case partitioning of
abstract test cases and a test-strategy for integration tests.
Keywords: Cyber-Physical Systems, Autonomous Cars, Safety-Critical
Systems, Process-Algebra, Concurrency, Proof-based Verification

1 Introduction
As Cyber-Physical Systems (CPS) such as robots or Autonomous Vehicles

(AV) are a developing industrial field, the need for safety certification is widening.
Therefore, there is an important opportunity for formal methods to address this
type of systems and a need to meet the respective scientific challenges. A widely
acceptable definition of CPSs characterises them by:

– concurrent interaction of digitally controlled actors and an environment ...
– ... with continuous observables obeying the laws of Newtonian physics, and
– based on dense time �+ (or an even richer dense and compact structure).

2

Since we are interested in a refinement-based approach leading to concrete im-
plementations of the actor-controllers, we would like to add the following two
items to this list:

– actors possess only a discretised view of continuous observables (the world
is sampled into “snapshots”), and

– computations in sensors and control systems typically have to meet hard
time bounds.

Our understanding of “analysis” of CPS implies the establishment of their system
properties by means of systematic formal test and mechanized proof. These
techniques allow for stronger guarantees than simulations of scenarios which
are widely used in the industrial practice albeit known limitations discussed in
Sect. 6.1 in more detail.

In this paper, we present a framework developed in [11] for modeling and
formally analysing CPS in general and concrete instances in the form of case
studies from the AV domain. Roughly speaking, our framework is based on a
conservative embedding of the theory of Communicating Sequential Processes
(CSP) [25,7,38,42] into Isabelle/HOL [33] which serves both as modeling and
analysis environment.

It turns out that CSP standard refinement notions can be adapted to mean-
ingful notions in the CPS domain, and that in particular the discretized/sampled
view of continuous variables lends itself to classical refinement reasoning. Finally,
our approach paves the way to low level, machine oriented bitvector calculations
in C programs verified by the Isabelle/AutoCorres environment [47,22].

This paper proceeds as follows: after an introduction to HOL-CSP, we present
the general framework of interacting autonomous cars, which may be modeled
in an object-oriented manner as in the domain-specific ontology languages such
as MOSAR 4 or ASAM’s OpenSCENARIO 2.0 5. The framework assumes AVs
to be HOL-CSP processes called actors that agree on specific time points on a
global physical state. (see Fig. 3) Based on this global physical state, a particular
function inside an actor, the driving strategy, computes a set of possible acceler-
ations. One of them is non-deterministically chosen and constantly executed in
the time interval. The actor state will change in this time interval according to
its kinematics.

Subsequently, inside this framework, we present a concrete topology and
scenario with two or more cars on a lane, that follow the Responsibility-Sensitive
Safety (RSS) principles defined in [40], providing a concrete formal definition of
a driving strategy compatible with the law (“Duty of Care”) and a paper-and-
pencil proof trying to establish a safety property for it. RSS has been subject to
numerous studies (see Sect. 6.1).
4 https://www.mosar.io
5 https://asam-ev.github.io/public_release_candidate/asam-openscenario/2.

0.0/welcome.html

https://www.mosar.io
https://asam-ev.github.io/public_release_candidate/asam-openscenario/2.0.0/welcome.html
https://asam-ev.github.io/public_release_candidate/asam-openscenario/2.0.0/welcome.html

3

In the last part of this paper, we formalize, correct, and generalize this analy-
sis by machine checked proofs — several of them are, to our knowledge, formally
stated and analysed for the first time. Our formal analysis also allows for sub-
stantial improvements of the strategy (smaller safety distances by same safety
goals) and work out ways to extract test data for system integration tests from
the formal proofs.

2 Background

2.1 Classic CSP

The theory of CSP was first described in 1978 in a book by Tony Hoare [25],
but has since evolved substantially [6,7,38]. The basic blocks of this compositional
process language are atomic events e1, e2, ... from some set Σ, which were used
to form the most basic processes via the prefix operator e → P (e happens,
then the process P continues. Recursion 𝜇X . P(X) allows for the description
of infinite processes: 𝜇X . e → X describes the process that engages infinitely
many times in the e event. CSP comes with a denotational semantics that can be
described by projections: traces 𝒯 and failures ℱ 6. The simplest one, the traces
of 𝒯(𝜇X . e → X) map the process to the prefix-closed set of strings {[], [e],
[e,e], ...} similarly to the language of regular expressions. There are two types
of alternatives in the CSP language:

1. the external choice, written -2-, which forces a process to “follow” whatever
the environment offers, and

2. the internal choice, written -⊓-, which imposes on the environment of a
process to “follow” the non-deterministic choices made.

The difference becomes more clear if we consider some generalisations of
them: Let 2x∈{e1,...,e𝑛}→P(x) be an abbreviation for e1→P(e1) 2 ... 2

e𝑛→P(e𝑛) (and ⨅ x∈A→P(x) analogously). Then the former can be understood
as a ”read” and the latter as a ”write” to the process context. This gave rise
to the syntactic sugar c?x∈A→P(x) resp. c!x∈A→P(x) for an injective func-
tion c into Σ (called channel) for reading or non-deterministically writing events
along a channel. The failures ℱ enable to distinguish -2- and -⊓- by anno-
tating the traces by the sets of events that a process can not engage in. CSP
describes the most common communication and synchronization mechanisms
with one single language primitive: synchronous communication written P[[A]]Q
(P synchronizes with Q over the synchronization set A). With (c?x∈A→P(x))
[[A]] (c!x∈A→P(x)) the reading process can be set into a process context with
a writer since both processes can only proceed if the reader follows the writer.
Note that (e1→P ⊓ e2→P) [[{e1,e2}]] (e1→Q) may result in a deadlock pro-
cess denoted by Stop, and note further, that processes have only to agree on
the elements in the e1→(P[[{e1}]]Q) ⊓ e2→(P[[{e1}]](e1→Q)). The interleaving

6 A third component, the divergences 𝒟, is not relevant for this paper.

4

operator P∣∣∣P ′ and the parallel operator P∣∣P ′ are special instances of the syn-
chronization which result from the empty resp. the universal synchronization
set; generalisations of these operators for finite families of processes are written
[[S]]i∈A. P(i) and ∣∣∣i∈A. P(i).

The key contribution of CSP is a large set of equivalences (the “laws”) and
refinement notions based on trace and failures inclusion. In particular, the com-
positionality of the language is reflected in numerous monotonicity rules which
represent a powerful tool for proofs over processes and an alternative to reasoning
over coinductive definitions or automata-based constructions.

2.2 Isabelle and Higher-order Logic (HOL)

Isabelle/HOL 7 is a semi-automated proof assistant for higher-order logic
(HOL). As an LCF-style theorem prover, it is based on a small logical core to
increase the trustworthiness of proofs without requiring — yet supporting —
explicit proof objects. Both the logics as well as the kernel-architecture of the
implementation are fairly well-studied and attracted over the nearly 40 years of
development a fairly large user-community.

Isabelle is available inside a flexible system framework allowing for logically
safe (“conservative”) extensions, which comprise both theories as well as imple-
mentations for code generation, documentation, and specific support for a variety
of formal methods. In recent years, a substantial number of theories and system
extensions have been collected in the Archive of Formal Proofs 8. Isabelle/HOL
comes with very substantial libaries which have been constructed via conserva-
tive extensions; notably HOL-LCF capturing Scott’s logic of continuous func-
tions [39] and HOL-Analysis covering the major part of the mathematics taught
in graduate level analysis classes.
2.3 Isabelle and HOL-CSP

Our theory HOL-CSP [42] is based on [45], which has been the most com-
prehensive attempt to formalize the denotational failure/divergence semantics of
[38]. HOL-CSP is a conservative embedding in HOL providing an abstract type
𝛼 process encapsulating the failure/divergence domain parameterized by arbi-
trary, in particular infinite HOL types 𝛼. The type 𝛼 process has been shown
to be a Scott complete partial order (cpo) such that processes can be based on
HOL-LCF providing a fixpoint theory and continuous function spaces.

Particular effort has been invested in the generalisation of the operators to
infinite sets for synchronization and prefixing, which all (with the exception of
the hiding operator) have been shown to be continuous wrt. the underlying cpos.
As a consequence, HOL-CSP can have events carrying real-time and physical
states involving sets of multidimensional vectors, for example.
Example: We define in HOL-CSP notation a process satisfying the recursive
equation:
7 https://isabelle.in.tum.de/doc/tutorial.pdf
8 https://www.isa-afp.org

https://isabelle.in.tum.de/doc/tutorial.pdf
https://www.isa-afp.org

5

P(t) = time?Δt∈{0 .. 5} → calc!(sqrt(t+Δt)) → P(t+Δt)

where the channels time and calc are defined via the data-type event ≡ time �
∣ calc �.

The parameterized process P has the type � ⇒ event process. It can engage
in an arbitrary real-value from the interval {0 .. 5} offered in the channel time,
computes the elapsed time from the initial time and sends via the channel calc
the square root of the elapsed time (as a rough approximate of a braking curve
distance).

In the set of traces 𝒯(P(0)), there are, e. g., the scenarios:

– [time 0, calc 0, time 1, calc 1, time 1, calc (sqrt 2), ...]
– [time 𝜋, calc (sqrt 𝜋), time 0, calc (sqrt 𝜋), time 1, calc (sqrt (1+𝜋)), ...],

but also:
– [time 0, calc 0, time 0, calc 0, time 0, calc 0, ...].

Note that the latter scenario, also called Zeno-scenario or time-freeze-
scenario, is no particular problem for our framework since the traces mono-
tonically grow and the above process equation has therefore a uniquely defined
fixed-point.

Further note that the trace generator of [16] could be combined with our
framework. It randomly chooses scenarios out of 𝒯(P(0)); depending on the
underlying code-generator configuration, more or less precise values for terms
such as sqrt 𝜋 can be computed. It is straight-forward to feed this output in
conventional visualization tools used in simulator approaches, giving engineers
an immediate response when changing our actor models. However, in this paper
we focus on techniques that allow to establish properties over complete trace
sets, not just randomly chosen (large) example-sets which inherently depend on
the limitations of calculations.

2.4 Responsibility Sensitive Safety (RSS)

The target of our analysis is described as follows: we aim at finding a suit-
able model of the safety property “no collision” for the Responsibility-Sensitive
Safety (RSS), a particular driving strategy that controls acceleration, speed and
distance to the car in front. This represents a concrete instance of the aforemen-
tioned general modeling framework designed to formally analyse safety proper-
ties by proof techniques.

More concretely: we will formalize the concepts of [40] in the framework and
formally verify the intended safety property (“no collision” in all situations).
1. We outline the RSS as presented in [40]:

– A formal model and an analysis of the collision hazard
– Formal definition of a behaviour (the “driving strategy”) compatible with

the law (“Duty of Care”)
– Paper-and-pencil proof that this behaviour ensures global safety

(“Utopia is possible”)

6

2. we provide an instantiation of our general framework for actors as a CSP
based model

3. formally verify the reformulation of the problem as an invariant-preservation
proof, and

4. analyse extensions of the original paper.

Assumption 1 RSS makes a number of fundamental assumptions worth being
made explicit:
1. Sensors are perfect: all actors in the model “know” at certain points in time

the absolute physical state (position, speed, acceleration) of all other actors.
This implies that no noise on captors like false speed measurements or false
LIDAR-results.

2. Actors are truly autonomous : when the physical state of all actors is known,
the system chooses an acceleration that will be constant in a time interval.
No other force, glitch, resistance, etc. will be relevant than this choice.

3. No actor confusion: all actors are correctly identified, i. e. there are no sce-
narios implying confusion of a car with, for example, a pedestrian.

4. Competent drivers: all actors follow the same driving strategy.
5. Topology is respected: all actors drive on lanes and stay on them.

The function that chooses the acceleration (dependant on the physical states)
is called a driving strategy, we refer to “classic” RSS as just a particular one.

For convenience, RSS is introduced in [40] for two cars on a straight lane;
these modeling restrictions were stepwise lifted throughout their argument. More
precisely, the cars were called front and rear car. Fig. 1 presents the global
scenario.

𝑑𝑟𝑠𝑠 = [𝑣𝑟 𝜌 + 1
2

𝑎𝑚𝑎𝑥,𝑎𝑐𝑐𝑒𝑙 𝜌2 +
(𝑣𝑟 + 𝜌 𝑎𝑚𝑎𝑥,𝑎𝑐𝑐𝑒𝑙)2

2 𝑎𝑚𝑖𝑛,𝑏𝑟𝑎𝑘𝑒
−

𝑣2
𝑓

2 𝑎𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒
]

+

Assumption 2 Furthermore, the RSS assumes the following modeling param-
eters:

– reaction time called 𝜚 of all actors, assuming to be the overall time interval
comprising capturing time, processing time, time lapses for communication
and the reaction time of actors.

– minimal longitudinal distance that actors have to respect is called d𝑟𝑠𝑠.
– speeds for “rear” and “front” cars: v𝑟,v𝑓
– the model assumes three accelerations, and they are assumed to be equal for

the front and the rear car: a𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒 is the maximal negative acceleration
of both cars, a𝑚𝑖𝑛,𝑏𝑟𝑎𝑘𝑒 is the minimal negative acceleration of the rear car
when braking is required and a𝑚𝑎𝑥,𝑎𝑐𝑐𝑒𝑙 the maximal positive acceleration.

This results in the calculation of the minimal distance d𝑟𝑠𝑠 as defined in the
formula above and visualized in Fig. 1.

7

Fig. 1: Safe Longitudinal Distance in RSS

3 Our CPS Modeling Framework and RSS Instances

3.1 Foundations: Actors as Processes

Our view that actors and scenarios in AV simulations are processes in the
sense of CSP lends itself to an extremely compact notation, and a proof based
approach to the analysis of large classes of functional and abstract scenarios.

In the following, we will illustrate how the CSP formula for scenarios provides
a formal semantics that captures user defined scenarios at their different levels of
abstraction, as well as their subsumption relationships through CSP refinement.

Fig. 2: Acceleration Vector Space vs. Speed Vectors

In particular, the Assumption 1 can be altogether captured by a hypothetical
process9 that:

1. chooses non-deterministically a Δt and communicates this to its environment
(this is the time interval in which the actors will be observed in their physical
state)

2. ... and collects all individual states of actors to the global state 𝜎𝑔∈Σ of the
scene on which the actors all have to agree via synchronization:

demon ≡ ⨅ Δt∈�+ → 2𝜎𝑔∈Σ → demon

9 We call this global process “Maxwell demon” after a thought experiment by the
physicist James Maxwell in the context of thermodynamics; in our setting, the demon
“knows” all individual states of all actors at his choice of the time Δt.

8

The global schema of an actor, which is a parameterised process depending
on an actor identity id and a driving strategy ds, is then defined as a process that
“reads” the time interval Δt set by the demon, and calculates on the basis of the
prior state 𝜎𝑔 and Δt via the driving strategy ds this set of possible accelerations
for id. The kinematics maps the local state of the actor pointwise into the set of
possible accelerations, which gives a set of future local states. The actor chooses
non-deterministically a global state where “his” substate must agree with one
of these. Note that we usually bound the time-space sometimes by some model
parameter 𝜚.

More formally, this is captured in HOL-CSP as follows:

actor 𝑖𝑑 ds 𝜎𝑔 ≡ 2 Δt∈�+ → ⊓ 𝜎 ′
𝑔 ∈ {Σ ∣ Σ[id] ∈ moves} → actor 𝑖𝑑 ds 𝜎 ′

𝑔

where moves ≡ (kinematics (𝜎𝑔[id]) Δt) ‘ (ds id 𝜎𝑔).
Note that the global states Σ are just a family of local states; Σ[id] therefore

denotes the local state of actor id. The function moves abbreviates the calculation
of the driving strategy on a global state 𝜎𝑔, which gives a set of accelerations for
the actor id, and its translation into the set of resulting physical states of the
actor via the kinematics of the actor.

Note that our concept of actor is fairly distinct from other modeling ap-
proaches in the CPS domain attempting to determinise them [12]. Rather than
assuming a set of functions for positions and define their derivatives speed and
acceleration by postulating some constraints on them, we use non-determinism
to model the set of possible trajectories and time intervals under consideration
(see Fig. 2). In particular, actor decisions may result in non-continuity and non-
differentiality of observables.

Since we consider all time intervals and all possible accelerations of an ac-
tor, these two points of view can be made mathematically equivalent. However,
having actors as explicit processes paves the way to a proper treatment of re-
finement and the specific problems due to discretisation (sampling) (see Fig. 4).
Moreover, we argue that our point of view lends itself more easily to driving
strategies that take the communication with the environment into account, be
it by explicit modeling of interaction with the signaling infrastructure or be it
by explicit modeling of exchange protocols between cars as shown below.

On the basis of the demon and the actors, autonomous car simulations can be
defined as composition of the following processes (see schema Fig. 3). The demon
is synchronized via the disjoint set of times and global states with a family of
actor threads, that live their life independently from each other except in the
synchronization points set by the demon in Fig. 3, and their synchronizations
by agreement on a global state.

S 𝜎0 ≡ demon [[� ⊎ Σ]] (∣∣∣ id ∈ IDS . actor 𝑖𝑑 ds 𝜎0)

The key notion of scenarios in the autonomous car domain is then easily defined
as the traces of this process: 𝒯(S 𝜎0) where 𝜎0 is the initial global state (the
initial scene).

9

Fig. 3: Maxwell’s demon vs. Cut-In Scenarios

Note that the above definition of the scenario process S does not provide any
interaction between the actors; this is sufficient for our main application, aimed
at verifying the RSS driving strategy. In general, if we wish to allow communi-
cation between the actors (e. g., a car reads from a traffic light directly its status,
or, a car communicates “driving intentions” to another one for optimization
purposes), we will use the generalized form:

S𝑃
′ 𝜎0 ≡ demon [[� ⊎ Σ]] (([[I]] id ∈ IDS . actor 𝑖𝑑 ds 𝜎0) \ {I})

where I is the set of internal events used only for the communication between
actors, and - \ - the hiding operator of CSP; this concealment allows actors to
pursue local communication without changing the overall process composition
and impacting proofs over the general architecture.

The assumptions truly autonomous and constant acceleration in Δt lead to
a fairly conventional kinematics for our analysis of RSS. If we assume a local
physical state of an actor to consist of the triple of the real-vector functions
position x, speed v and acceleration a, then the future state (x ′, v ′, a ′) can be
computed based on the constant acceleration a0 by:

x ′ = x + Δt ∗ v + (Δt2/2) ∗ a0,
v ′ = v + Δt ∗ a0,
a ′ = a0

However, our framework is not restricted to this kinematics; since HOL-
Analysis provides the theory for the derivation and integration operators, deriv
and integrate, it is perfectly possible to model the kinematics as the solution of
a differential equation system:

10

SOME (x ′,v ′,a ′). v ′ = deriv x ∧ a ′ = deriv v
∧ (x ′,v ′,a ′) = M (x ′, v ′, a ′)
∧ x ′(0) = x(0) ∧ v ′(0) = v(0) ∧ a ′(0) = a0

Here, the matrix of higher-order functions M is a placeholder for arbitrary (lin-
ear) combinations of (derivatives) of x ′, v ′, a ′. The HOL Hilbert-Choice SOME
yields the solution of this ODE system, provided that it is uniquely defined by M.
Even in this case, however, note the existence of these functions does not mean
that we have in general an calculative means to construct them. Isabelle/HOL
just provides a means to model ODEs and to verify a given solution by formal
proof, at least in principle. 10

So far, we did not make any restriction on the type of elements in our time
space, so it can be just the set of real numbers �. In our concrete model instances,
we will usually require that time is positive, the interval Δt can be infinitesimally
small and is in any case assumed to be substantially smaller than a certain model
parameter, the reaction time 𝜚.

The view “actors are processes” also lends itself to a straightforward notion
to compare driving strategies as a trace refinement problem: given two driving
strategies ds1 and ds2, we can state for any initial global scene 𝜎0 that:

∀ 𝜎0. actor𝑐𝑎𝑟 ds1 𝜎0 ⊑𝒯 actor𝑐𝑎𝑟 ds2 𝜎0

which is to say that the sets of possible scenarios are included one in another:

∀ 𝜎0. 𝒯(actor𝑐𝑎𝑟 ds2 𝜎0) ⊆ 𝒯(actor𝑐𝑎𝑟 ds1 𝜎0)

Note that the (trace)-refinement notion ⊑𝒯 in CSP is defined contravariant
wrt. the subset inclusion, since the traditional view on process refinement is P
refines P ′ iff it is more deterministic and more defined [38].

3.2 An Extensible Model of Scenes

So far, there was no need to detail the structure of the state space of scenarios
S, and the concrete global scenes such as the initial Σ0 in particular.

This choice of abstraction level is deliberate: the relevant ISO standard SO-
TIF (ISO 21448) [44] for road vehicles introduces a classification of scenarios in
several categories called

[...] known not hazardous, known hazardous, unknown not hazardous and un-
known hazardous, depending on whether the scenario is known during the
design of the system or discovered during the test phase, and depending on
whether the scenario does not destabilize the system or cause it to fail.

10 The precise formalisation of generalized kinematics in HOL can be found in the last
section of the theory Framework.thy.

11

Fig. 4: Samplings of Continuous Observables

In our work, it is also a question of defining an approach to list the cases
covered and compliant (with success criteria) by proof or simulation, in order
to be able to identify a safe perimeter of use (Operational Design Domain or
ODD). In the spirit of the SOTIF standard, this amounts to (see [44], p. 20):

– Perform a risk acceptance evaluation of [known hazardous scenarios] based
on the analysis of the intended functionality.

– Reduce the probability of known scenarios causing hazardous behaviour [...]
to an acceptable level of risk.

– Reduce the probability of the unknown scenarios causing potentially hazardous
behaviour [...] to an acceptable level of risk.

We do not propose a truly probabilistic setting for our analysis, since the
probabilistic weights on, e. g., Markov automata, can only be validated on the
basis of a very large real-world experimental dataset. Such experimental data will
only be available in a very late stage of the development. While remaining in a
strictly possibilistic setting, a refinement notion in the sense “more deterministic,
more defined” as proposed by CSP captures the essence of the desire to avoid
“known hazardous” scenarios while maintaining the prognostic power of models
and their analysis.

Abstraction resulting in non-determinism and its analytic control via CSP
refinement (rather than probability) is therefore one answer to the objective of
the SOTIF standard to master known hazardous and even unknown hazardous
risks of autonomous vehicles.

Parameterised specifications and extensible state-spaces as offered by HOL-
CSP will be another answer. In the following, we address the problem to specify
the internal structure of actors in an extensible way. As we will see, extensibility
of our models will even allow to establish properties which remain valid under
extensions of the model, as long as they respect a certain monotonicity expressed
via typing constraints instances of the underlying framework.

We will formalize the basic actor state via a specification construct in Is-
abelle/HOL called record inspired by many programming languages.

12

record (′𝜐∶∶real-normed-vector) as = — for actor state
pos ∶∶ ′𝜐 — current position
speed ∶∶ ′𝜐 — current speed
acc ∶∶ ′𝜐 — current acceleration

Actor states are explicitly parameterized by the type variable ′𝜐 which is
constrained by the type-class real-normed-vector imported from the HOL library.
This class provides a theory for vector spaces such as,e. g., �𝑛 or �𝑛 that possess
a scalar product in �.

The record notation generates a theory based on the semantics of cartesian
products 𝜏1 × ... × 𝜏𝑛 × ′𝛼 where the 𝜏𝑖 correspond to the types of the attributes
(in our case: ′𝜐) and the type-variable ′𝛼 stands for an “extension field” of the
record. For the actor states, this type is given the alternative type notation (′𝜐,
′𝛼) as-scheme which we will denote (′𝜐, ′𝛼) as- for short. The attributes of a
record become projection functions into the cartesian tuple. The constructors
of a record can be denoted by (∣ pos = a, speed = b, acc = c, … = m ∣), and
the resulting projection rules like pos (∣ pos = a, speed = b, acc = c, … =
m ∣) = a were derived from the underlying semantics of the cartesian products
automatically. Note that a property P established on some expression e∶∶(′𝜐, ′𝛼)
as- remains valid for any type instance of ′𝜐 or ′𝛼, so in particular e∶∶(′𝜐,unit)
as- or e∶∶(′𝜐,some extension) as-; this is a fundamental property of HOL. Now
we can extend the actor states with some more structure, for example by saying
that it has a physical extension (relevant for defining collisions) and a specific
set of possible accelerations of an actor. In this model, this set of accelerations
can also take braking and nonlinear movement into account:

record (′𝜐∶∶real-normed-vector) as𝑟𝑎𝑛𝑔𝑒 = ‹ ′𝜐 as› +
acc-range ∶∶ ‹ ′𝜐 set›
extension-field ∶∶ ‹ ′𝜐 set›

This Isabelle/HOL syntax generates an extension of the ′𝜐 as- type. techni-
cally, this means that a new type (′𝜐, ′𝛼) as𝑟𝑎𝑛𝑔𝑒- is defined as synonym to

(′𝜐,(∣ acc-range ∶∶ ′𝜐 set, extension-field ∶∶ ′𝜐 set, … ∶∶ ′𝛼 ∣)) as-

and again, that properties proven over objects of type (′𝜐, ′𝛼) as- will remain
valid for (′𝜐, ′𝛼) as𝑟𝑎𝑛𝑔𝑒-, whatever the future extensions ′𝛼 and ′𝜐 are.

The patient reader might ask why are we explaining this in this gory level
of detail. The point is that our formal model is extensible and therefore able to
make predictive statements over some form of unknown hazardous behaviour,
notably over actors based on actor states that were not yet modeled in the
subclass hierarchy.

Such subclass hierarchies are used in common simulator technology in the
autonomous car domain for the modeling of so-called “ontologies” for the actor

13

states in, e. g., the MOSAR platform 11 or ASAM’s OpenSCENARIO 2.0 12. An
extract of MOSAR data modeling is shown in Fig. 5.

Fig. 5: Extract of a MOSAR Ontology

These kinds of models can be, if suitably extended by typed information such
as the vector spaces, compiled in a straightforward way into our framework.

To wrap up, it remains to clarify the state space of global scenes S as a map
from the set IDS to the root class of our actor state spaces:

type-synonym (′𝜐, ′𝛼) scene- = ‹id𝑎𝑐𝑡𝑜𝑟 ⇒ (′𝜐, ′𝛼) as-›

... where IDS is just the set of all elements of the type id𝑎𝑐𝑡𝑜𝑟.

4 Formal Analysis by Machine-checked Proofs

To be very clear, in our view, the work presented in [40] represents a milestone
towards a clarification of basic concepts in the autonomous car domain, and a
major step towards their formal analysis. As the regulatory standards such as the
SOTIF [44] seem still to be emerging, works like these play an imminent role in
clarifying the foundations. A rigorous application of state-of-the-art techniques
and tools represent a rewarding target in order to increase the trustworthiness of
this complex and safety critical technology. We believe there is relevance for all
three: the scientific community, the industrial stakeholders as well as regulators.

4.1 A Critique of the Paper-and-Pencil Proof of “classic RSS”

Unfortunately, the paper-and-pencil proofs presented in [40] revealed a num-
ber of substantial shortcomings. Discovering these is not unusual when doing
formal, machine-assisted proof by an interactive proof assistant, be it in tradi-
tional mathematical textbooks or scientific papers in theoretical computer sci-
ence. Paradoxically, it is also not unusual that the presented proofs are incorrect,
11 https://www.mosar.io
12 https://asam-ev.github.io/public_release_candidate/asam-openscenario/2.

0.0/welcome.html

https://www.mosar.io
https://asam-ev.github.io/public_release_candidate/asam-openscenario/2.0.0/welcome.html
https://asam-ev.github.io/public_release_candidate/asam-openscenario/2.0.0/welcome.html

14

but due to ingenious human intuition, the overall conjecture is true nevertheless.
Often, this means that the theorem has to be established by a different proof
argument or technique.

This is also the case for RSS, where the key conjecture is circumscribed by:

if the fundamental assumptions listed in Sect. 2.4 are met, RSS is safe in
the sense that there will be no collision.

(a) Front accelerating, back braking. (b) Front braking, back braking.

Fig. 6: Erroneous Arguments in RSS Safety Proof

The proof uses arguments roughly as follows for any time interval defined by
the reaction time 𝜚 of the car:

– if the front car is in front at the beginning and the end of the time interval,
and if the front car is accelerating and the back car is braking, there will be
no collision.

– if the front car is in front at the beginning and the end of the time interval,
and if both cars are braking, there will be no collision.

Fig. 6 shows for both cases that the argument does not hold: there are
monotonous acceleration and braking functions that actually intersect under
these premises. A particular difficulty is that the derivative of the braking func-
tion is non-continuous: if the car stops, its position becomes the constant function
rather than the square root. The authors of [40] mention this problem without
actually addressing it in their proof.

Conceptually, it is unsatisfactory in the proof not to distinguish the reaction
time 𝜚 from the sampling interval Δt. The former is a system parameter, it

15

is an objective of the safety target to establish that it is chosen appropriately
in the concrete system design to establish safety. This has to be shown for any
sufficiently small Δt, which is part of the safety property, not a system parameter.
Identifying these results in an improper separation between analysis and system-
design to be analysed.

In our model, there is sufficient freedom to establish that within a chosen
Δt, and a given set of assumptions, some safety property holds, and this will be
true for all smaller Δt.

(a) Majorante max(x) and Mean
Value t. (b) Section-wise Approximations.

Fig. 7: Calculation via Majorants and Minorants.

For example, one can apply the mean value theorem to construct a majorant
max(x)(or minorant, respectively) in the interval [t..t+Δt] (see Fig. 7 (left)). In
our concrete problem, we suggest a section-wise argument based on majorants
and minorants for the position functions within Δt, which is supposed to be
smaller than 𝜚 (see Fig. 7 (right)). Inside a proof, discontinuities will have to be
discussed systematically within all intervals Δt.

4.2 The Target: “Classic” RSS and three Variants

We instantiated our framework to four cases:

– RSS in the sense of the paper: two cars, the front car f and the back car b,
in a linear lane. The situation covered and analysed in [40].

– RSS𝑛 — an extension to scenarios with n cars alltogether respecting RSS,
thus replacing a mere “proof-by-analogy” argument in [40].

16

– RSS+ — an optimized variant of RSS allowing for shorter safety distance
and better comfort,

– and finally the RSS𝑙𝑎𝑡𝑒𝑟𝑎𝑙-case were we consider the lateral distance to cars
and obstacles.

For all cases, we provide a formal proof of the safety: if the initial scene does not
contain a collision – any two cars have different positions – then in all scenarios,
so all tr ∈ 𝒯(S𝑃 Σ0), there will be no collision.

The proofs for the RSS scenarios boil immediately down to an induction proof
over all tr that start with an initial scene Σ0 that is safe, and the induction step
establishes preservation. In more detail, the induction proof assumes for any
time interval Δt < 𝜚 the transition from a safe scene will result in a safe scene
after Δt.

4.3 Formal Safety Proof of “classic” RSS

We adopt the most general and non-deterministic definition of the RSS driving
strategy to handle all cases:

drive𝑟𝑠𝑠 ... ≡ if d𝑟𝑠𝑠 ≤ d𝑟𝑒𝑎𝑙 then [−a𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒 ... a𝑚𝑎𝑥,𝑎𝑐𝑐𝑒𝑙]
else [−a𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒 ... −a𝑚𝑖𝑛,𝑏𝑟𝑎𝑘𝑒]

If the situation is safe, d𝑟𝑠𝑠 ≤ d𝑟𝑒𝑎𝑙 meaning that the real distance is greater
than the RSS safety distance, we can apply any acceleration in the interval
[−a𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒 ... a𝑚𝑎𝑥,𝑎𝑐𝑐𝑒𝑙] (from max braking to max acceleration), but if the
situation is not safe, the car should brake with any value within [−a𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒
... −a𝑚𝑖𝑛,𝑏𝑟𝑎𝑘𝑒].

In order for this induction to be provable, we need to reinforce it with an
invariant that is stronger than the non-collision predicate alone. For this purpose
we define a new distance d𝑚𝑖𝑛 that is shorter than d𝑟𝑠𝑠 as follows:

cd𝑚𝑖𝑛 = [b𝑟 − b𝑓]+ = [v𝑟
2/2a𝑚𝑖𝑛,𝑏𝑟𝑎𝑘𝑒 − v𝑓

2/2a𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒]+

where

[x∶∶int]+ ≡ max(0, x)

Compared to the RSS safety distance d𝑟𝑠𝑠, the distance d𝑚𝑖𝑛 only considers
the difference in braking distances (between rear and front cars) and does not
take into account a possible acceleration during the reaction time 𝜚.

The induction invariant is d𝑚𝑖𝑛 < d𝑟𝑒𝑎𝑙. It states that the driving strat-
egy keeps the real distance (the difference between the front and the rear car
positions) greater than d𝑚𝑖𝑛 in all circumstances. Especially during a non-safe
period where d𝑟𝑒𝑎𝑙 < d𝑟𝑠𝑠 when the real distance is under the safety distance
as defined in RSS and the rear car applying the drive𝑟𝑠𝑠 strategy is supposed to
be braking.

The proof of the induction invariant requires many smaller steps and distin-
guishing many cases. Let us first introduce many variables/measures:

17

– p𝑓, v𝑓, a𝑓 and b𝑓 ≡ v𝑓
2/2a𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒 are respectively the position, the speed,

the acceleration and the braking distance characterizing the state of the front
car right before Δt,

– p ′
𝑓, v ′

𝑓, a ′
𝑓 and b ′

𝑓 ≡ v ′
𝑓

2/2a𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒 characterize the state of the the
front car right after Δt,

– p𝑟, v𝑟, a𝑟, b𝑟 ≡ v𝑟
2/2a𝑚𝑖𝑛,𝑏𝑟𝑎𝑘𝑒, p ′

𝑟, v ′
𝑟, a ′

𝑟 and b ′
𝑟 ≡ v ′

𝑟
2/2a𝑚𝑖𝑛,𝑏𝑟𝑎𝑘𝑒

characterize similarly the two states of the rear car.

Then the invariant proof consists of:
– showing that when the rear car applies the drive𝑟𝑠𝑠 driving strategy, we

preserve:
d𝑚𝑖𝑛 = [b𝑟−b𝑓]+ < p𝑓 − p𝑟 = d𝑟𝑒𝑎𝑙

⟹ d ′
𝑚𝑖𝑛 = [b ′

𝑟−b ′
𝑓]+ < p ′

𝑓 − p ′
𝑟 = d ′

𝑟𝑒𝑎𝑙,

– ... and concluding safety as a direct consequence of the invariant statement
as d𝑚𝑖𝑛 is positive by definition, we deduce that d𝑟𝑒𝑎𝑙 will remain strictly
positive.

The invariant proof requires 700 lines of Isabelle/Isar proof code using au-
tomated proof procedures. Case distinctions lead to subcases representing inter-
mediate results. Due to lack of space, we will only provide four of them: 13

– [b𝑓−b ′
𝑓]+ ≤ p ′

𝑓 − p𝑓 ∶ The front car will travel a distance greater than the
difference between its braking distances before and after Δt. This is due to its
acceleration a𝑓 which is necessarily weaker than the max brake −a𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒.

– d𝑟𝑒𝑎𝑙 < d𝑟𝑠𝑠 ⟹ p ′
𝑟 − p𝑟 ≤ b𝑟−b ′

𝑟 ∶ If the rear car applying the RSS
driving strategy is in a state where the safety distance is not respected, it is
therefore in a braking phase where its acceleration a𝑟 belongs to the interval
[−a𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒 ... −a𝑚𝑖𝑛,𝑏𝑟𝑎𝑘𝑒]. So, it will travel a distance shorter than the
difference between its braking distances before and after Δt.

– d𝑟𝑠𝑠 ≤ d𝑟𝑒𝑎𝑙 ⟹ b𝑟 − b𝑓 < p𝑓 − p ′
𝑟 ∶ In a safe state where the RSS safety

distance is respected, we prove a very strong statement far from being trivial:
the rear car will move forward without even reaching the previous position
of the front car, i.e. even if the front car does not move forward, the vehicle
will not violate d𝑚𝑖𝑛 during that step.

Note that the RSS safety distance formula assures that the computed distance
has a small value and may even be zero when the front car has a higher braking
distance b𝑓 ≫ b𝑟, i.e. we can drive very close behind a car with weak brakes! As
consequence the previous statement inequality only helps to prove non-collision
in the case where b𝑓 ≤ b𝑟, otherwise we proved a new inequality:

b𝑟 < b𝑓 ∧ d𝑟𝑠𝑠 ≤ d𝑟𝑒𝑎𝑙 ⟹ p ′
𝑟 − p𝑟 − b𝑟 ≤ p ′

𝑓 − p𝑓 − b𝑓

In a safe state where the RSS safety distance is respected and the rear car
has a shorter braking distance (implying that d𝑟𝑠𝑠 ≈ 0 is close to 0), we succeed
to prove that the difference between the travel distance and the braking distance
of the rear car is shorter.
13 The reader may explore the complete Isabelle proof in [11].

18

4.4 Formal Safety Proof of RSS for n Cars

The original paper claims that the extension to an n Car-scenario, where all
cars respect the RSS driving strategy, would be straight-forward. In this case,
we agree with the authors: the proof just adds another induction layer with about
100 lines of proof code to arrive at the safety theorem. The model and verification
technique has strong similarities with the “Platoon Control Strategies” analysed
in [37] with the HOL-light system.

4.5 Formal Proof of “optimized” RSS+

The RSS strategy is based on the worst case assumption wrt. the safety distance
d𝑟𝑠𝑠 that the rear car would apply a maximum acceleration a𝑚𝑎𝑥,𝑎𝑐𝑐𝑒𝑙 during
the entire response time 𝜚. This is too strong an assumption since we know our
current acceleration which can be considerably smaller a𝑟 ≪ a𝑚𝑎𝑥,𝑎𝑐𝑐𝑒𝑙. In our
optimized version of RSS that we call RSS+, we adopt a shorter safety distance
by replacing occurrences of a𝑚𝑎𝑥,𝑎𝑐𝑐𝑒𝑙 in the d𝑟𝑠𝑠 formula by a𝑟.

d𝑠𝑎𝑓𝑒 a𝑟 = [𝜚 v𝑟 + (𝜚2/2) a𝑟 + (v𝑟 + 𝜚 a𝑟)2/2a𝑚𝑖𝑛,𝑏𝑟𝑎𝑘𝑒 − v𝑓
2/2a𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒]+

The RSS safety distance is then a particular case when the maximum accel-
eration is applied: d𝑟𝑠𝑠 = d𝑠𝑎𝑓𝑒 a𝑚𝑎𝑥,𝑎𝑐𝑐𝑒𝑙 ≫ d𝑠𝑎𝑓𝑒 a𝑟. We managed to prove
that this shorter distance is safe.

As a consequence, we can notably improve the RSS driving strategy while
adding more comfort, i. e. by ruling out short-term brake-and-accelerate flutter-
ing. As recalled in the previous section, the RSS driving strategy was binary: we
either drive with any acceleration under a𝑚𝑎𝑥,𝑎𝑐𝑐𝑒𝑙 when safe d𝑟𝑠𝑠 ≤ d𝑟𝑒𝑎𝑙 or
we brake otherwise. Thanks to our optimized safety distance taking into account
a𝑟, the advantage is twofold:

1. we can avoid braking in many cases where d𝑠𝑎𝑓𝑒 a𝑟 ≤ d𝑟𝑒𝑎𝑙 < d𝑟𝑠𝑠 while
keeping safe.

2. we can adapt our acceleration to keep d𝑠𝑎𝑓𝑒 a𝑟 ≤ d𝑟𝑒𝑎𝑙 without braking a𝑟
≥ −a𝑚𝑖𝑛,𝑏𝑟𝑎𝑘𝑒.

We define our “smoothened” version of the RSS driving strategy as follows:

drive𝑠𝑚𝑜𝑜𝑡ℎ ... ≡ {−a𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒 ... a𝑚𝑎𝑥,𝑎𝑐𝑐𝑒𝑙}
∩ {a. a > −a𝑚𝑖𝑛,𝑏𝑟𝑎𝑘𝑒 ⟶ d𝑠𝑎𝑓𝑒 a ≤ d𝑟𝑒𝑎𝑙}

We had been able to profit from the previous RSS proof structure: the RSS+

proof is more complex but the splitting of cases remains basically unchanged.
Overall, the safety proof is about 200 loc longer.

19

4.6 Model and Proof of the RSS𝑙𝑎𝑡𝑒𝑟𝑎𝑙 - Strategy

In the previous sections we considered driving strategies that control the longi-
tudinal distance to other actors. In this section, we treat the lateral behaviour
– for short, the second dimension relevant for AV movements. In the original
paper, it was claimed that an extension to the lateral case would be straight-
forward, without presenting any details neither for the generalized strategy nor
the invariant.

(a) The Lateral Scenario. (b) Consequence: A simple Lane-Model.

Fig. 8: Lateral Driving Strategies

In this section we present such a generalization and its safety proof 14. We
consider a scenario for N cars as shown in Fig. 8 (left). The sweetspot of this
model is that also gives a driving strategy for staying on a linear lane: by adding
two actors which just represent the borders as shown in Fig. 8 (right).

We found the generalization to be very complex, mostly due to the fact that
RSS only considers positive speeds: if the front car gets too close, then the rear
car just stops. In the lateral case, however, negative relative speeds naturally
arise which have to be covered.

In more detail, we need to define the auxilliary functions:

1. a𝑚𝑎𝑥𝑎𝑐𝑐𝑒𝑙∶∶id𝑎𝑐𝑡𝑜𝑟 ⇒ real and a𝑚𝑖𝑛𝑎𝑐𝑐𝑒𝑙∶∶ id𝑎𝑐𝑡𝑜𝑟 ⇒ real: the maximum
acceleration in direction of the right and of the left of the car (a𝑚𝑖𝑛𝑎𝑐𝑐𝑒𝑙 is
negative).

2. d𝑟𝑒𝑎𝑙 ∶∶ real scene ⇒ id𝑎𝑐𝑡𝑜𝑟 ⇒ real: actual distance between a vehicle and
its right neighbor (the distance with its left neighbor is given by d𝑟𝑒𝑎𝑙 for
the car with id𝑎 − 1.

3. d𝑟𝑠𝑠∶∶ real scene ⇒ id𝑎𝑐𝑡𝑜𝑟 ⇒ real: Safe lateral distance (to the right, still).
4. d𝑚𝑖𝑛∶∶ real ⇒ real ⇒ id𝑎𝑐𝑡𝑜𝑟 ⇒ real: Minimal safe distance corresponding

to immediate response 𝜚 = 0 - the invariant of the proof being that d𝑚𝑖𝑛 is
always respected.

5. drive𝑠𝑎𝑓𝑒 id𝑎 𝛿t 𝜎𝑔 : the function computing the set of possible lateral ac-
celerations, i. e. the core of RSS𝑙𝑎𝑡𝑒𝑟𝑎𝑙.

14 The details of the Isabelle formalization can be found in the theory
RSS_Ncars_lateral

20

For reasons of limited space, we will only show the definition of the latter:

{if speed (𝜎𝑔 id𝑎) ≤ 0 ∧ d𝑟𝑠𝑠 𝜎𝑔 (id𝑎−1) > d𝑟𝑒𝑎𝑙 𝜎𝑔 (id𝑎−1)
then if speed (𝜎𝑔 id𝑎) = 0

then 0
else a𝑚𝑖𝑛𝑎𝑐𝑐𝑒𝑙 id𝑎

else −a𝑚𝑎𝑥𝑎𝑐𝑐𝑒𝑙 id𝑎
..
if speed (𝜎𝑔 id𝑎) ≥ 0 ∧ d𝑟𝑠𝑠 𝜎𝑔 id𝑎 > d𝑟𝑒𝑎𝑙 𝜎𝑔 id𝑎
then if speed (𝜎𝑔 id𝑎) = 0

then 0
else −a𝑚𝑖𝑛𝑎𝑐𝑐𝑒𝑙 id𝑎

else a𝑚𝑎𝑥𝑎𝑐𝑐𝑒𝑙 id𝑎 }

The safety proof is the most complex one in this paper. It requires 64 case
distinctions, nearly all involving non-linear approximations and majorant/mino-
rant reasoning as before.

5 An Application to Safety Tests of Autonomous Vehicles

5.1 Safety Validation in the Context of a V &V Process

The Verification and Validation of AVs relies on evaluations during actual or
simulated road tests, described under the form of scenarios (see [44,46]). Sce-
narios were divided further into classes using decreasing levels of abstraction:
abstract, logical, concrete (see [2]) in order to cope with the exploding trace-
spaces. Instead of simulations, so finite and usually very large sets of concrete,
logical and abstract scenarios, we have shown how semi-automated formal proof
can guarantee exhaustive coverage for infinite and uncountable scenario classes.

Nevertheless, the approach demonstrated refers to a model and only indi-
rectly to reality. In this section, we will show how proofs can be used to produce
a senseful classification for actual road tests, a.k.a system integration tests, which
validate both our model and its underlying assumptions as well as its implemen-
tation within a concrete AV system.

In a system integration test, the vehicle is considered as a black box, embed-
ded in an omniscience of the observer-validator, which makes the hypothesis of
perfect sensors much less problematic. This hypothesis can be attained in a test
environment providing proper instrumentation during real-world road tests.

The RSS driving strategy, or “proper response” as named and described
in [40], reinterpreted from the point of view of Validation, provides us with a
sufficient condition for safety with regard to the collision hazard. In other words,
any vehicle whose observed acceleration a satisfies the rss𝑚𝑜𝑡𝑖𝑜𝑛 formula given
in Sect. 4 at any time is sure to be safe, i. e. any vehicle whose driving strategy
lies within the envelope defined by the RSS is sure to enforce this invariant, as
illustrated in Fig. ??.

21

(a) Driving Strategy RSS. (b) Driving Strategy RSS+.

Fig. 9: Acceleration Trajectories of Two Strategies (𝑣𝑟 = 𝑣𝑓 > 0).

5.2 From Proofs to Functional Tests

We suggest to use the proof structure to construct a finite set of abstract test
classes. The approach is roughly similar to the decomposition of a specification
into its Disjunctive Normal Form and a selection of a test set to cover its clauses,
a method going back to [13] and used in many disguises in functional testing.

The proof structure inside the induction step consists of a number case dis-
tinctions which represent “tipping points” within continuous behaviour. Since
these case distinctions usually reflect that between such tipping points, one proof
argument works for all instances, it can be speculated that an implementation of
this function might work in this interval uniformly, and is therefore a noteworthy
target to test. In any case, if the proof needed a different argument to establish
the safety property, it is relevant to see if the implementation behaves well, in
particular if test values close to the tipping points were chosen.

For example, following the proof, the validation activity can be broken down
to abstract test classes such as:

– whenever d𝑟𝑒𝑎𝑙<d𝑟𝑠𝑠, the observed acceleration of the automated vehicle
must be below −a𝑚𝑖𝑛,𝑏𝑟𝑎𝑘𝑒;

– otherwise, the observed acceleration of the automated vehicle must be com-
prised between −a𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒 and a𝑚𝑎𝑥,𝑎𝑐𝑐𝑒𝑙. In other words, there is nothing
to check, since these are the physical limitations of the vehicle.

Using the structure of the proof gives us the guarantee that the partitioning
into abstract test cases is complete. In Fig. 10, we illustrate how to “manually”
extract these test cases from the structure of the Isabelle/Isar proof: for example,
the circled sub-conditions give rise respectively to abstract scenarios 3 and 4 in
Table 1. For driving strategy drive𝑟𝑠𝑠, the analysis of the proof tree in order to
derive test cases is the following:

– subcases verifying d𝑟𝑠𝑠≤d𝑟𝑒𝑎𝑙 do not generate a test: if the initial
situation is safe, the rear vehicle can have any acceleration within
[−a𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒,a𝑚𝑎𝑥,𝑎𝑐𝑐𝑒𝑙] during 𝜚;

22

Fig. 10: Sub-conditions Establishing Abstract Test Classes (“Logical Scenarios”)

– subcases verifying d𝑟𝑒𝑎𝑙<d𝑚𝑖𝑛 also do not generate a test: they correspond
to proofs by contradiction and can be interpreted as infeasible scenarios of
the AV where a collision is inevitable;

– subcases verifying d𝑚𝑖𝑛≤d𝑟𝑒𝑎𝑙<d𝑟𝑠𝑠 generate test classes: if the initial sit-
uation is hazardous, the rear vehicle must brake, by having an acceleration
below −a𝑚𝑖𝑛,𝑏𝑟𝑎𝑘𝑒.

The latter subcases divide into two main categories, generating each two test
classes in Table 1:

1. b𝑟 − b𝑓 is positive at t0+𝜚 (tests 1 and 2);
2. b𝑟 − b𝑓 turns from positive at t0 to negative at t0+𝜚 (tests 3 and 4).

The term b𝑟 − b𝑓 represents the difference between the two vehicles worst case
braking distances: when positive, the rear car braking distance is potentially
longer than that of the front car. Note that we did this extraction of abstract
test clauses by hand at present, but this process is entirely syntactic and could
be automated.

As usual in functional testing, a small number of abstract test-cases seems
not to be suited for a system test; in particular, if the usual uniformity hypothesis
(“if the test passes from one pick of the class, we assume correctness for the entire
class”) is applied. Combinations with a borderline analysis are usually applied
to get a finer set of concrete tests.

We propose therefore another test selection strategy, which is described by
“select a uniform grid out of the test class”. We observe that the space of initial
conditions can be reduced to only three depending dimensions: v𝑟, v𝑓 and d𝑟𝑒𝑎𝑙.
Hence, it can be represented as in Fig. 11a, where the green surface corresponds
to d𝑟𝑒𝑎𝑙 = d𝑟𝑠𝑠 and the red surface corresponds to d𝑟𝑒𝑎𝑙 = d𝑚𝑖𝑛.

This shapes our Design of Experiments (DOE): as explained above, the sub-
space located “before” the green surface represents situations where the AV may
choose any acceleration; the subspace located “after” the red surface represents
situations of potential inevitable collision, unreachable under the assumption
that all AVs respect the RSS driving strategy. The grid represented on Fig. 11b

23

No Test Case description Conditions

1 t0, non-safe distance d𝑟𝑠𝑠 > d𝑟𝑒𝑎𝑙
minimal distance d𝑚𝑖𝑛 ≤ d𝑟𝑒𝑎𝑙

t0+𝜚, r-car has a longer braking distance b ′
𝑟 − b ′

𝑓 ≥ 0
r-car doesn’t stop v ′

𝑟 > 0

2 t0, non-safe distance d𝑟𝑠𝑠 > d𝑟𝑒𝑎𝑙
minimal distance d𝑚𝑖𝑛 ≤ d𝑟𝑒𝑎𝑙

t0+𝜚, r-car has a longer braking distance b ′
𝑟 − b ′

𝑓 ≥ 0
r-car stops v ′

𝑟 = 0

3 t0, non-safe distance d𝑟𝑠𝑠 > d𝑟𝑒𝑎𝑙
minimal distance d𝑚𝑖𝑛 ≤ d𝑟𝑒𝑎𝑙
r-car has a longer braking distance b𝑟 − b𝑓 > 0
f-car very slow (may stop) v𝑓 − a𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒 ∗ 𝜚 ≤ 0

t0+𝜚, r-car has a shorter braking distance b ′
𝑟 − b ′

𝑓 < 0
f-car doesn’t stop (braking or accelerating) v ′

𝑓 > 0

4 t0, non-safe distance d𝑟𝑠𝑠 > d𝑟𝑒𝑎𝑙
minimal distance d𝑚𝑖𝑛 ≤ d𝑟𝑒𝑎𝑙
r-car has a longer braking distance b𝑟 − b𝑓 > 0
f-car not very slow (can’t stop) v𝑓 − a𝑚𝑎𝑥,𝑏𝑟𝑎𝑘𝑒 ∗ 𝜚 > 0

t0+𝜚, r-car has a shorter braking distance b ′
𝑟 − b ′

𝑓 < 0
f-car doesn’t stop (braking or accelerating) v ′

𝑓 > 0

Table 1: Table with Abstract Test Cases for drive𝑟𝑠𝑠

now represents a test selection grid which is located between the two surfaces.
Density and starting points of the grid are configurable test parameters. Note
that for realistic values of 𝜚, such as 30 ms for instance, the two surfaces are
very close.

These surfaces can also be used for more realistic DOEs represented in fig-
ures 11c and 11d, relaxing the assumption that all other vehicles respect RSS.
Figure 11c illustrates the need to test that the AV does apply a𝑚𝑖𝑛,𝑏𝑟𝑎𝑘𝑒 when
distance to the front car lies right after the red surface (“tipping points”) or
drops suddenly (e.g. in case front car crashes). Figure 11d illustrates a DOE
aiming at verifying if the AV applies some emergency braking between the green
surface (usual RSS safety distance) and the red surface (RSS safety distance for
the highest deceleration physically achievable).

5.3 Improvement of the Safe Distance Formula: RSS vs RSS+

We want to illustrate the RSS and RSS+ safe distance formulas, calculated on
the basis of a set of plausible values for the constants and variables that compose
them. We also want to estimate their relevance, by comparing them to some well-
known safety distances: the stopping distance (d𝑠𝑡𝑜𝑝, see [48], Section 2) and the
security distance (d𝑠𝑒𝑐, see [49]), corresponding to the “two-second rule” (see
[50]).

24

(a) d𝑚𝑖𝑛 (red) and d𝑟𝑠𝑠 (green) for 𝜚=1s (b) DOE for AVs respecting the RSS

(c) DOE for an AV respecting the RSS,
among vehicles not respecting it

(d) DOE to analyse how an AV applies
emergency braking

Fig. 11: Several ways to leverage the RSS safety distances to design DOEs

𝜌 = 1 s and 3 × 10−2 s
𝑎𝑚𝑎𝑥,𝑎𝑐𝑐𝑒𝑙 = 3.5 m s−2

𝑎𝑚𝑖𝑛,𝑏𝑟𝑒𝑎𝑘 = 5.8 m s−2

𝑎𝑚𝑎𝑥,𝑏𝑟𝑒𝑎𝑘 = 11 m s−2

Reaction time values are for a typical human (𝜚=1s) and for an automated
driving system (𝜚=30ms). Acceleration values are deduced from [48], Section 2.

25

𝜚
(s)

𝑣𝑟 = 𝑣𝑓
(km/h)

𝑑𝑟𝑠𝑠
(m)

𝑑𝑟𝑠𝑠+
(m)

a𝑟=0

𝑑𝑟𝑠𝑠+
(m)

a𝑟=−5.8

𝑑𝑠𝑒𝑐
(m)

𝑑𝑠𝑡𝑜𝑝
(m)

1 30 19 11 3 17 11
0.03 30 3 3 3 17 4
1 50 33 22 8 28 23

0.03 50 9 8 8 28 11
1 80 58 42 20 44 44

0.03 80 21 21 20 44 24
1 110 90 69 38 61 73

0.03 110 40 39 38 61 46
1 130 114 89 53 72 95

0.03 130 55 54 53 72 63
Table 2: Comparison of safety distance values computed with various formulas

Looking at Table 2, we can draw the following conclusions:

– The numerical application of the enhanced safety distance formula is rather
low for the typical reaction time of an automated driving system.

– Interestingly, RSS+ safe distance proves very relevant for human reaction
times, which could be leveraged to raise warnings during periods of non-
automated driving.

On the other hand, the RSS+ formula produces an envelope which is smoother
and thus tolerates less jolts from the driving strategies, as illustrated in Fig. ??.

6 Conclusion

The growth of the autonomous vehicle industry is conditioned by its acceptance
by the general public. Public support will largely depend on the confidence in the
safety of these novel transport systems (cf. [9] for a survey). First standardization
approaches targeting the development and implementation processes related to
AVs attempt to address this need, most notably the ISO 21448 standard SOTIF.

In this paper, we present a number of novel modeling and V &V techniques
intended to represent an alternative to widespread simulations, i. e. finite and
usually very large sets of calculations of concrete, logical and abstract scenarios.
Instead, we suggest semi-automated formal proof that can guarantee the exhaus-
tive coverage of these scenario classes. By representing classes of scenarios by
HOL-CSP processes (see Sect. 2.3), we can

– give a formal semantics for extensional scenarios and scenario classes, their
various levels of abstraction and subsumption relationships (see Sect. 3);

26

– a rigorous (formal) definition of the safety goal in the validation activity
itself on the conceptual and concrete level (see Sect. 4 and Sect. 5.1);

– a proof-based coverage criterion and a method to compose a covering set of
abstract validation tests (see Sect. 5.2); and

– an improved driving strategy with regard to RSS (see Sect. 5.3).

Overall, we provide a groundwork to study the formalization, the analysis
and the combination of driving strategies in AVs. We would like to stress that
although we are critical of some aspects of the SOTIF in its present form, our
results are compatible with its safety goals and concepts.

We believe that the exhaustive coverage is the adequate means to reduce
“known hazards”, and together with non-determinism and model extensionabil-
ity our approach can reduce the “unknown hazards”, too.˙

6.1 Related Work

Since the term has been coined around 2006 by the American Science Founda-
tion, there have been numerous approaches to model and analyse Cyber-Physical
Systems.

Simulation-based approaches, which are common practice in the emerging
AV industry, suffer from a number of short-comings: First, simulators which are
usually based on floating point calculations, have principally difficulties to cover
non-continuous (e.g. bouncing) behaviour of physical systems. Depending on
parameters and used abstractions, there is even the danger to overlook critical
points in scenarios, and secondly, the question of exhaustiveness of simulations
is often a major obstacle in formal certifications. Third, used abstractions tend
to be ad-hoc and are difficult to justify, but without them complexity barriers
are hit early. Forth, changes of models imply reruns of billions of scenarios which
can slow down the development. In contrast, our approach covers the complete
set of possible scenarios, computations are made symbolically on mathematical
real numbers and reruns of our proofs due to changes take just a few minutes.
By the way, these kind of limitations have been the reason for industrial partners
to fund this study.

Model-checking based approaches require constructing a finite transitions
system through a discrete abstraction such as a hybrid automaton. These ap-
proaches are based on computing a set of reachable states to automatically verify
that the system satisfies a set of expected properties. Tools [3,24,19,20] are usu-
ally restricted to linear hybrid systems, or are limited to numerical approxima-
tion methods (see [21] for a survey). More recent approaches such as [10,18,27]
use bounded model checking for reachability analysis to prove safety properties
on these systems. Concerning the implementation side, these tools are direct
implementations in some programming language, which is in contrast to the ad-
vantages of a conservative derivation approach. Moreover, all these approaches
have seen only limited success due to lacking flexibility in modeling and too
strong limitations with respect to proof power.

27

In order to overcome these limitations, and also profiting from the increas-
ing maturity of implementing systems, proof-based approaches seem nowadays
the most promising route towards the formal analysis of not-too-simple CPS.
Offering more expressivity, models were commonly divided into event-triggered
and time-triggered systems. The former let evolve a differential equation system
up to a point where a particular condition, the guard, is met which gives back
control to the discrete control system. The latter foresee an active sampling on
the side of the discrete controller. While event-triggered models are reputed to
be easier to specify, they are as such not implementable, which is the advantage
of the latter. Obviously, our approach is in the time-triggered camp.

Platzer [5,35] suggests to use first-order dynamic logic (dL) used in an imple-
mentation of the KeYmaera system. Recent re-implementations are also based
on a kernel architecture and a small axiomatization of a first-order fragment
of linear differential equation theory (proven sound itself in a separate work
in HOL [34,36]). Still, the trustbase of the KeYmaera system is significantly
larger; HOL-CSP, in contrast, and the used Isabelle/HOL-Analysis- library
are strictly definitional, therefore consistent to ZFC which is proven inside the
system. Moreover, the fundamental restriction to linear differential equation the-
ory excludes the possibility to reason over, for example, the floor-function ⌊x⌋,
which has to be modeled by continuous and differentiable approximations. In our
view, ⌊x⌋ is the key element in the modeling of the discretization-phase of CPS
and its theory should be addressed directly rather than beeing abstracted away
(an abstraction which will come at the price of a heavy foundational machinery).
Finally, we find it important to contribute and profit from the open platform
HOL and its fairly large user community makeing available thousands of system
extensions (theories and components) in the Archive of Formal Proofs [15]. It is
this community effort which makes the large scale verification efforts possible,
that range from physics to the nitty-gritty details of controller hardware, albeit
still based on safe logical extension principles. Last but not least, [35] and sub-
sequent publications suggest to model communications between actors via game
theory; we prefer classical analysis of deadlock and lifeness properties of concur-
rent systems along the lines of [43]. Either way, these two modeling approaches
will boil down to the construction of a global invariant of the concurrent system
which will be notoriously difficult. Both frameworks provide a refinement notion
based either on symbolic trajectories or symbolic traces; the precise relationship
between these two notions needs further investigation.

Differential Hoare Logics (dH) [17] is another proof-based approach offering
also differential refinement using Isabelle/HOL. Properties like ordinary differ-
ential equation liveness or program correctness were stated in dH, broken down
into (simpler) step-by-step refinements using dR and proved in Isabelle. The ap-
proach uses the Kleene algebras [1] with tests and the Morgan-style approach to
derive rules for verification condition generation and refinement laws of dR. The
authors have developed specific support [32] for the modeling and verification
tasks.

28

And finally, Event-B and the Rodin platform have been proposed to formalize
CPS as abstract machines which were refined to (still rather abstract) implemen-
tations [41,8,14]. The approach suffers from the relatively weak automated proof
support and the necessary axiomatizations of the mathematic foundations.

Car control is a deep area that has been studied by various different commu-
nities; consequently, there is a growing body of literature on collision avoidance
algorithms for AVs. Some approaches propose discrete-time point based temporal
logics or discrete time automata [30,4]. Substantial abstractions on the dynam-
ics of AVs have to be made in these approaches. Other approaches are based on
trajectory planning an checking, based on reachable sets [26,31] in ODE‘s; while
these approaches take quite complex dynamics into account, it seems unclear if
this approach leads to sufficiently robust and fast algorithms that can be used
“on-board” in an AV. An early major case study on “Adaptive Cruise Control”
[29] treats the problem of distributed car control system; unfortunately, the ac-
companying technical report contains only a fairly abstract presentation of the
proof work done.

As far as testing is concerned, by contrast with [23], which uses RSS to select
relevant scenarios among variations of a specific scenario for a given automated
system, we aim at defining a priori the whole subspace of relevant (hazardous)
scenarios for a wide family of safety controllers (namely, all such systems with
perfect sensors and relying on detection of actors restricted to their current
position and speed).

6.2 Future Work

We are currently generalizing RSS and its variants to two-dimensional topologies
and study the combinations of RSS and variants thereof with topology-aware
driving strategies (curved lanes, crossings, etc.). Other possible directions are
the inclusion of models for noise on the global scene, in order to go beyond the
unrealistic “captors are perfect” assumption. And furthermore, the kinematics
model might be refined admitting external forces and resistances, as suggested
in [28].

An interesting future extension is the use of the Isabelle code generation
facilities, which have been used to randomly generate traces from CSP-like lan-
guages[16]. This way, HOL-CSP could be used to generate simulators directly
from scenario processes. This could help to improve the acceptance of our ap-
proach by traditional engineers in the AV domain, and speed up the process of
validation by different means than proof.

And finally: a fascinating extension of this work is the refinement of models
capturing driving strategies to actual controller code in a realistic programming
language such as C. Again, the versatility of the Isabelle/HOL platform offers the
potential to make this work: components with semantic theories for C offering
sufficient proof automation such as [22] are available. Thus, a seamless transition
from high-level CPS models down to realistic implementations can be assured,
based solely on theories constructed in a definitional, logically safe way.

29

Acknowledgment

This work has been supported by the French government under the ”France
2030” program, as part of the SystemX Technological Research Institute.

References

1. Armstrong, A., Gomes, V.B.F., Struth, G.: Building program construction and
verification tools from algebraic principles. Formal Aspects Comput. 28(2),
265–293 (2016). https://doi.org/10.1007/s00165-015-0343-1, https://doi.
org/10.1007/s00165-015-0343-1

2. ASAM: ASAM OpenSCENARIO V2.0.0-PRC.1, §6.3.1 Levels of scenario ab-
straction (Dec 2021), https://asam-ev.github.io/public_release_candidate/
asam-openscenario/2.0.0/conceptual-overview/scenario-abstraction.html

3. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems.
In: Brinksma, E., Larsen, K.G. (eds.) Computer Aided Verification. pp. 365–370.
Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

4. Bannour, B., Niol, J., Crisafulli, P.: Symbolic model-based design and genera-
tion of logical scenarios for autonomous vehicles validation. In: IEEE Intelligent
Vehicles Symposium, IV 2021, Nagoya, Japan, July 11-17, 2021. pp. 215–222.
IEEE (2021). https://doi.org/10.1109/IV48863.2021.9575528, https://doi.
org/10.1109/IV48863.2021.9575528

5. Beckert, B., Platzer, A.: Dynamic logic with non-rigid functions. In: Furbach, U.,
Shankar, N. (eds.) Automated Reasoning (IJCAR). LNCS, vol. 4130, pp. 266–280.
Springer (2006). https://doi.org/10.1007/11814771_23

6. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984)

7. Brookes, S.D., Roscoe, A.W.: An improved failures model for communicating se-
quential processes. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.) Seminar
on Concurrency. pp. 281–305. Springer, Berlin, Heidelberg (1985)

8. Butler, M.J., Abrial, J., Banach, R.: Modelling and refining hybrid systems in
event-b and rodin. In: Petre, L., Sekerinski, E. (eds.) From Action Systems
to Distributed Systems - The Refinement Approach, pp. 29–42. Chapman and
Hall/CRC (2016). https://doi.org/10.1201/b20053-5, https://doi.org/10.
1201/b20053-5

9. Cartenì, A.: The acceptability value of autonomous vehicles: A quantitative anal-
ysis of the willingness to pay for shared autonomous vehicles (SAVs) mobility ser-
vices. Transportation Research Interdisciplinary Perspectives 8, 100224 (10 2020).
https://doi.org/10.1016/j.trip.2020.100224

10. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification.
pp. 258–263. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

11. Crisafulli, P., Taha, S., Wolff, B.: Modelling and Proving Safety in Autonomous
Cars Scenarios in HOL-CSP. Research report, University Paris-Saclay ; IRT Sys-
temX, Palaiseau (Oct 2021), https://hal.inria.fr/hal-03429597

12. Derler, P., Lee, E.A., Sangiovanni-Vincentelli, A.: Modeling Cyber-Physical Sys-
tems. Proceedings of the IEEE (special issue on CPS) 100(1), 13 – 28 (January
2012), http://chess.eecs.berkeley.edu/pubs/843.html

https://doi.org/10.1007/s00165-015-0343-1
https://doi.org/10.1007/s00165-015-0343-1
https://doi.org/10.1007/s00165-015-0343-1
https://doi.org/10.1007/s00165-015-0343-1
https://asam-ev.github.io/public_release_candidate/asam-openscenario/2.0.0/conceptual-overview/scenario-abstraction.html
https://asam-ev.github.io/public_release_candidate/asam-openscenario/2.0.0/conceptual-overview/scenario-abstraction.html
https://doi.org/10.1109/IV48863.2021.9575528
https://doi.org/10.1109/IV48863.2021.9575528
https://doi.org/10.1109/IV48863.2021.9575528
https://doi.org/10.1109/IV48863.2021.9575528
https://doi.org/10.1007/11814771_23
https://doi.org/10.1007/11814771_23
https://doi.org/10.1201/b20053-5
https://doi.org/10.1201/b20053-5
https://doi.org/10.1201/b20053-5
https://doi.org/10.1201/b20053-5
https://doi.org/10.1016/j.trip.2020.100224
https://doi.org/10.1016/j.trip.2020.100224
https://hal.inria.fr/hal-03429597
http://chess.eecs.berkeley.edu/pubs/843.html

30

13. Dick, J., Faivre, A.: Automating the generation and sequencing of test cases from
model-based specications. In: Woodcock, J., Larsen, P. (eds.) Formal Methods
Europe 93: Industrial-Strength Formal Methods. LNCS, vol. 670, pp. 268–284.
Springer (Apr 1993)

14. Dupont, G., Ameur, Y.A., Singh, N.K., Pantel, M.: Formally verified architectural
patterns of hybrid systems using proof and refinement with event-b. Sci. Comput.
Program. 216, 102765 (2022). https://doi.org/10.1016/j.scico.2021.102765,
https://doi.org/10.1016/j.scico.2021.102765

15. Eberl, M., Klein, G., Lochbihler, A., Paulson, L., Nipkow, T., Thiemann(eds.), R.:
Archive of Formal Proofs (afp) (2022), https://www.isa-afp.org/

16. Foster, S., Hur, C., Woodcock, J.: Formally verified simulations of state-rich
processes using interaction trees in isabelle/hol. In: Haddad, S., Varacca, D.
(eds.) 32nd International Conference on Concurrency Theory, CONCUR 2021,
August 24-27, 2021, Virtual Conference. LIPIcs, vol. 203, pp. 20:1–20:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/
LIPIcs.CONCUR.2021.20, https://doi.org/10.4230/LIPIcs.CONCUR.2021.20

17. Foster, S., y Munive, J.J.H., Struth, G.: Differential Hoare Logics and Refine-
ment Calculi for Hybrid Systems with Isabelle/HOL. In: Fahrenberg, U., Jipsen,
P., Winter, M. (eds.) Relational and Algebraic Methods in Computer Science
- 18th International Conference, RAMiCS 2020, Palaiseau, France, April 8-11,
2020, Proceedings [postponed]. Lecture Notes in Computer Science, vol. 12062, pp.
169–186. Springer (2020). https://doi.org/10.1007/978-3-030-43520-2_11,
https://doi.org/10.1007/978-3-030-43520-2_11

18. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient Solving of
Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure.
J. Satisf. Boolean Model. Comput. 1(3-4), 209–236 (2007). https://doi.org/10.
3233/sat190012, https://doi.org/10.3233/sat190012

19. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech 10(3),
263–279 (2008). https://doi.org/10.1007/s10009-007-0062-x

20. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable Verification of Hybrid Systems.
In: Ganesh Gopalakrishnan, S.Q. (ed.) Proc. 23rd International Conference on
Computer Aided Verification (CAV). LNCS, Springer (2011)

21. Geretti, L., Sandretto, J.A.D., Althoff, M., Benet, L., Collins, P., Duggirala, P.,
Forets, M., Kim, E., Mitsch, S., Schilling, C., Wetzlinger, M.: Arch-comp22 cate-
gory report: Continuous and hybrid systems with nonlinear dynamics. In: Frehse,
G., Althoff, M., Schoitsch, E., Guiochet, J. (eds.) Proceedings of 9th International
Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH22).
EPiC Series in Computing, vol. 90, pp. 86–112. EasyChair (2022). https://doi.
org/10.29007/fnzc, https://easychair.org/publications/paper/JrQ4

22. Greenaway, D., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff: For-
mal verification of C code without the pain. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation. pp. 429–439. ACM, Edin-
burgh, UK (Jun 2014). https://doi.org/10.1145/2594291.2594296

23. Hekmatnejad, M., Hoxha, B., Fainekos, G.: Search-based Test-Case Generation
by Monitoring Responsibility Safety Rules (2020). https://doi.org/10.48550/
ARXIV.2005.00326, https://arxiv.org/abs/2005.00326

24. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: A model checker for hybrid sys-
tems. In: Grumberg, O. (ed.) Computer Aided Verification. pp. 460–463. Springer
Berlin Heidelberg, Berlin, Heidelberg (1997)

https://doi.org/10.1016/j.scico.2021.102765
https://doi.org/10.1016/j.scico.2021.102765
https://doi.org/10.1016/j.scico.2021.102765
https://www.isa-afp.org/
https://doi.org/10.4230/LIPIcs.CONCUR.2021.20
https://doi.org/10.4230/LIPIcs.CONCUR.2021.20
https://doi.org/10.4230/LIPIcs.CONCUR.2021.20
https://doi.org/10.4230/LIPIcs.CONCUR.2021.20
https://doi.org/10.4230/LIPIcs.CONCUR.2021.20
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.1007/978-3-030-43520-2_11
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.1007/s10009-007-0062-x
https://doi.org/10.1007/s10009-007-0062-x
https://doi.org/10.29007/fnzc
https://doi.org/10.29007/fnzc
https://doi.org/10.29007/fnzc
https://doi.org/10.29007/fnzc
https://easychair.org/publications/paper/JrQ4
https://doi.org/10.1145/2594291.2594296
https://doi.org/10.1145/2594291.2594296
https://doi.org/10.48550/ARXIV.2005.00326
https://doi.org/10.48550/ARXIV.2005.00326
https://doi.org/10.48550/ARXIV.2005.00326
https://doi.org/10.48550/ARXIV.2005.00326
https://arxiv.org/abs/2005.00326

31

25. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA (1985)

26. Kochdumper, N., Gassert, P., Althoff, M.: Verification of collision avoidance
for commonroad traffic scenarios. In: Frehse, G., Althoff, M. (eds.) 8th Inter-
national Workshop on Applied Verification of Continuous and Hybrid Systems
(ARCH21), Brussels, Belgium, July 9, 2021. EPiC Series in Computing, vol. 80,
pp. 184–194. EasyChair (2021). https://doi.org/10.29007/1973, https://doi.
org/10.29007/1973

27. Kong, S., Gao, S., Chen, W., Clarke, E.: dreach: 𝛿-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems. pp. 200–205. Springer Berlin Heidelberg, Berlin,
Heidelberg (2015)

28. Koopman, P., Osyk, B., Weast, J.: Autonomous Vehicles Meet the Physical World:
RSS, Variability, Uncertainty, and Proving Safety (Expanded Version) (2019).
https://doi.org/10.48550/ARXIV.1911.01207, https://arxiv.org/abs/1911.
01207

29. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, distributed,
and now formally verified. In: Butler, M.J., Schulte, W. (eds.) FM 2011: Formal
Methods - 17th International Symposium on Formal Methods, Limerick, Ireland,
June 20-24, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6664,
pp. 42–56. Springer (2011). https://doi.org/10.1007/978-3-642-21437-0_6,
https://doi.org/10.1007/978-3-642-21437-0_6

30. Maierhofer, S., Moosbrugger, P., Althoff, M.: Formalization of intersection traf-
fic rules in temporal logic. In: 2022 IEEE Intelligent Vehicles Symposium, IV
2022, Aachen, Germany, June 4-9, 2022. pp. 1135–1144. IEEE (2022). https://
doi.org/10.1109/IV51971.2022.9827153, https://doi.org/10.1109/IV51971.
2022.9827153

31. Manzinger, S., Pek, C., Althoff, M.: Using reachable sets for trajectory planning of
automated vehicles. IEEE Trans. Intell. Veh. 6(2), 232–248 (2021). https://doi.
org/10.1109/TIV.2020.3017342, https://doi.org/10.1109/TIV.2020.3017342

32. Huerta y Munive, J., Struth, G.: Predicate transformer semantics for hybrid sys-
tems: Verification components for isabelle/hol. Journal of Automated Reasoning
66 (02 2022). https://doi.org/10.1007/s10817-021-09607-x

33. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002). https://doi.org/10.
1007/3-540-45949-9

34. Platzer, A.: A Complete Axiomatization of Quantified Differential Dynamic Logic
for Distributed Hybrid Systems. Logical Methods in Computer Science Volume
8, Issue 4 (Nov 2012). https://doi.org/10.2168/LMCS-8(4:17)2012, https:
//lmcs.episciences.org/720

35. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-63588-0

36. Platzer, A., Tan, Y.K.: Differential equation axiomatization: The impressive power
of differential ghosts. In: Dawar, A., Grädel, E. (eds.) Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Ox-
ford, UK, July 09-12, 2018. pp. 819–828. ACM (2018). https://doi.org/10.1145/
3209108.3209147, https://doi.org/10.1145/3209108.3209147

37. Rashid, A., Siddique, U., Hasan, O.: Formal verification of platoon control strate-
gies. In: Johnsen, E.B., Schaefer, I. (eds.) Software Engineering and Formal Meth-
ods - 16th International Conference, SEFM 2018, Held as Part of STAF 2018,

https://doi.org/10.29007/1973
https://doi.org/10.29007/1973
https://doi.org/10.29007/1973
https://doi.org/10.29007/1973
https://doi.org/10.48550/ARXIV.1911.01207
https://doi.org/10.48550/ARXIV.1911.01207
https://arxiv.org/abs/1911.01207
https://arxiv.org/abs/1911.01207
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1007/978-3-642-21437-0_6
https://doi.org/10.1109/IV51971.2022.9827153
https://doi.org/10.1109/IV51971.2022.9827153
https://doi.org/10.1109/IV51971.2022.9827153
https://doi.org/10.1109/IV51971.2022.9827153
https://doi.org/10.1109/IV51971.2022.9827153
https://doi.org/10.1109/IV51971.2022.9827153
https://doi.org/10.1109/TIV.2020.3017342
https://doi.org/10.1109/TIV.2020.3017342
https://doi.org/10.1109/TIV.2020.3017342
https://doi.org/10.1109/TIV.2020.3017342
https://doi.org/10.1109/TIV.2020.3017342
https://doi.org/10.1007/s10817-021-09607-x
https://doi.org/10.1007/s10817-021-09607-x
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.2168/LMCS-8(4:17)2012
https://doi.org/10.2168/LMCS-8(4:17)2012
https://lmcs.episciences.org/720
https://lmcs.episciences.org/720
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1145/3209108.3209147
https://doi.org/10.1145/3209108.3209147
https://doi.org/10.1145/3209108.3209147
https://doi.org/10.1145/3209108.3209147
https://doi.org/10.1145/3209108.3209147

32

Toulouse, France, June 27-29, 2018, Proceedings. Lecture Notes in Computer
Science, vol. 10886, pp. 223–238. Springer (2018). https://doi.org/10.1007/
978-3-319-92970-5_14, https://doi.org/10.1007/978-3-319-92970-5_14

38. Roscoe, A.: Theory and Practice of Concurrency. Prentice Hall (1997)
39. Scott, D.: Continuous lattices. In: Lawvere, F.W. (ed.) Toposes, Algebraic Geom-

etry and Logic. pp. 97–136. Springer, Berlin, Heidelberg (1972)
40. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a Formal Model of Safe and

Scalable Self-driving Cars. arXiv e-prints arXiv:1708.06374 (Aug 2017)
41. Su, W., Abrial, J., Zhu, H.: Formalizing hybrid systems with event-b and the rodin

platform. Sci. Comput. Program. 94, 164–202 (2014). https://doi.org/10.1016/
j.scico.2014.04.015, https://doi.org/10.1016/j.scico.2014.04.015

42. Taha, S., Ye, L., Wolff, B.: HOL-CSP Version 2.0. Archive of Formal Proofs (Apr
2019), http://isa-afp.org/entries/HOL-CSP.html

43. Taha, S., Ye, L., Wolff, B.: Philosophers may Dine - Definitively! In: Furia, C.A.
(ed.) Integrated Formal Methods (iFM). No. 12546 in Lecture Notes in Com-
puter Science, Springer-Verlag, Heidelberg (2020). https://doi.org/10.1007/
978-3-030-63461-2_23

44. Technical Committee ISO/TC 22, Subcommittee SC 32: Road vehicles — Safety of
the intended functionality. techreport ISO 21448:2021, International Organization
for Standardization, https://www.iso.org/standard/77490.html

45. Tej, H., Wolff, B.: A corrected failure divergence model for CSP in Isabelle/HOL.
In: Fitzgerald, J.S., Jones, C.B., Lucas, P. (eds.) Formal Methods Europe
(FME). LNCS, vol. 1313, pp. 318–337. Springer (1997). https://doi.org/10.
1007/3-540-63533-5_17

46. Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining
and Substantiating the Terms Scene, Situation, and Scenario for Au-
tomated Driving. In: 2015 IEEE 18th International Conference on In-
telligent Transportation Systems. pp. 982–988. IEEE, IEEE, Las Pal-
mas, Spain, http://ieeexplore.ieee.org/document/7313256/https:
//www.researchgate.net/profile/Andreas_Reschka/publication/283726201_
Defining_and_Substantiating_the_Terms_Scene_Situation_and_Scenario_
for_Automated_Driving/links/5653044608ae4988a7af37b0/Defining-and-Su

47. (UNSW), T.S.: Autocorres: automatic specification abstraction (2022), https://
trustworthy.systems/projects/TS/autocorres/

48. Wikipedia: Distance d’arrêt, https://fr.wikipedia.org/w/index.php?title=
Distance_d%27arr%C3%AAt&oldid=181727336

49. Wikipedia: Distance de sécurité en france, https://fr.wikipedia.org/w/index.
php?title=Distance_de_s%C3%A9curit%C3%A9_en_France&oldid=193199417

50. Wikipedia: Two-second rule, https://en.wikipedia.org/w/index.php?title=
Two-second_rule&oldid=1089170388

https://doi.org/10.1007/978-3-319-92970-5_14
https://doi.org/10.1007/978-3-319-92970-5_14
https://doi.org/10.1007/978-3-319-92970-5_14
https://doi.org/10.1007/978-3-319-92970-5_14
https://doi.org/10.1007/978-3-319-92970-5_14
https://doi.org/10.1016/j.scico.2014.04.015
https://doi.org/10.1016/j.scico.2014.04.015
https://doi.org/10.1016/j.scico.2014.04.015
https://doi.org/10.1016/j.scico.2014.04.015
https://doi.org/10.1016/j.scico.2014.04.015
http://isa-afp.org/entries/HOL-CSP.html
https://doi.org/10.1007/978-3-030-63461-2_23
https://doi.org/10.1007/978-3-030-63461-2_23
https://doi.org/10.1007/978-3-030-63461-2_23
https://doi.org/10.1007/978-3-030-63461-2_23
https://www.iso.org/standard/77490.html
https://doi.org/10.1007/3-540-63533-5_17
https://doi.org/10.1007/3-540-63533-5_17
https://doi.org/10.1007/3-540-63533-5_17
https://doi.org/10.1007/3-540-63533-5_17
http://ieeexplore.ieee.org/document/7313256/ https://www.researchgate.net/profile/Andreas_Reschka/publication/283726201_Defining_and_Substantiating_the_Terms_Scene_Situation_and_Scenario_for_Automated_Driving/links/5653044608ae4988a7af37b0/Defining-and-Su
http://ieeexplore.ieee.org/document/7313256/ https://www.researchgate.net/profile/Andreas_Reschka/publication/283726201_Defining_and_Substantiating_the_Terms_Scene_Situation_and_Scenario_for_Automated_Driving/links/5653044608ae4988a7af37b0/Defining-and-Su
http://ieeexplore.ieee.org/document/7313256/ https://www.researchgate.net/profile/Andreas_Reschka/publication/283726201_Defining_and_Substantiating_the_Terms_Scene_Situation_and_Scenario_for_Automated_Driving/links/5653044608ae4988a7af37b0/Defining-and-Su
http://ieeexplore.ieee.org/document/7313256/ https://www.researchgate.net/profile/Andreas_Reschka/publication/283726201_Defining_and_Substantiating_the_Terms_Scene_Situation_and_Scenario_for_Automated_Driving/links/5653044608ae4988a7af37b0/Defining-and-Su
https://trustworthy.systems/projects/TS/autocorres/
https://trustworthy.systems/projects/TS/autocorres/
https://fr.wikipedia.org/w/index.php?title=Distance_d%27arr%C3%AAt&oldid=181727336
https://fr.wikipedia.org/w/index.php?title=Distance_d%27arr%C3%AAt&oldid=181727336
https://fr.wikipedia.org/w/index.php?title=Distance_de_s%C3%A9curit%C3%A9_en_France&oldid=193199417
https://fr.wikipedia.org/w/index.php?title=Distance_de_s%C3%A9curit%C3%A9_en_France&oldid=193199417
https://en.wikipedia.org/w/index.php?title=Two-second_rule&oldid=1089170388
https://en.wikipedia.org/w/index.php?title=Two-second_rule&oldid=1089170388

	Modeling and Analysing Cyber-Physical Systems in HOL-CSP
	1 Introduction
	2 Background
	2.1 Classic CSP
	2.2 Isabelle and Higher-order Logic (HOL)
	2.3 Isabelle and HOL-CSP
	2.4 Responsibility Sensitive Safety (RSS)

	3 Our CPS Modeling Framework and RSS Instances
	3.1 Foundations: Actors as Processes
	3.2 An Extensible Model of Scenes

	4 Formal Analysis by Machine-checked Proofs
	4.1 A Critique of the Paper-and-Pencil Proof of ``classic RSS''
	4.2 The Target: ``Classic'' RSS and three Variants
	4.3 Formal Safety Proof of ``classic'' RSS
	4.4 Formal Safety Proof of RSS for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 n Cars
	4.5 Formal Proof of ``optimized'' RSS42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 +
	4.6 Model and Proof of the RSS42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lateral - Strategy

	5 An Application to Safety Tests of Autonomous Vehicles
	5.1 Safety Validation in the Context of a 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 V&V Process
	5.2 From Proofs to Functional Tests
	5.3 Improvement of the Safe Distance Formula: RSS vs RSS42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 +

	6 Conclusion
	6.1 Related Work
	6.2 Future Work

