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Abstract We present a formal semantics for an object-oriented specification language. The
formal semantics is presented as a conservative shallow embedding in Isabelle/HOL and the
language is oriented towards OCL formulae in the context of UML class diagrams. On this
basis, we formally derive several equational and tableaux calculi, which form the basis of an
integrated proof environment including automatic proof support and support for the analysis
of this type of specifications.

We show applications of our proof environment to data refinement based on an adapted
standard refinement notion. Thus, we provide an integrated formal method for refinement-
based object-oriented development.
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1 Introduction

The Unified Modeling Language (UML) [25] has been widely accepted throughout the soft-
ware industry for modeling object-oriented software systems and is successfully applied to
diverse domains [19]. UML is supported by major Computer Aided Software Engineering
(CASE) tools and integrated into an object-oriented software development process model that
stood the test of time. The Object Constraint Language (OCL) [24] is a textual extension of
the core UML that allows for constraining UML models.

In research communities, UML/OCL has attracted interest for various reasons:
1. it is a formalism with a “programming language face,” which is perhaps easier to adopt

by software developers notoriously hostile to mathematical notation,
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2. it puts forward the idea of an object-oriented specification formalism, turning objects
and inheritance into the center of the modeling technique, and

3. it provides in many respects a “core language” for object-oriented modeling which
makes it a good target for research of object-oriented semantics.

Here, item 1 refers not only to the concrete syntax (which we will largely ignore throughout
this paper), but also to semantics: OCL semantics comprises the notion of undefinedness to
model exceptional computations abstractly; this concept is deeply integrated into the logic
and presents a particular challenge to deductive systems. Further, especially item 2 makes
OCL rather different from logical languages such as first-order logic, higher-order logic,
set theory and derived specification formalisms such as Z [35] or VDM [16]. Following a
long platonic tradition in logic, these languages have a foundation in the notion of values
and the definition of (hierarchies of) relations over them. In contrast, OCL allows for spec-
ifying constraints on the state consisting of object instances linked via references, i. e., its
object graphs, and the transition relation over this state. This remarkably different perspec-
tive makes semantics for object-oriented specifications difficult. Comparing OCL with the
two related approaches JML and Spec#, the main difference is that OCL attempts to abstract
from concrete object-oriented programming languages, while JML and Spec# are designed
as annotation-languages for a particular one.

In this paper, we present HOL-OCL, which is a language, based on the UML/OCL stan-
dard, as well as a system and a methodology. We will use HOL-OCL to illustrate our contri-
butions, which we divide into the following categories:
1. We present a machine-checked formal semantics for object-oriented data models (e. g.,

class systems as present in the UML) comprising subtyping, single-inheritance, casting,
dynamic and static types.

2. We present a formal, machine-checked semantics for UML and its assertion language
OCL; Since both semantics are presented as a type-safe, shallow embedding, they are
particularly suited as a basis for a proof environment.

3. Based on this semantic embedding, we derive several proof calculi consisting of derived
rules constructed by machine-checked proofs, in particular equational and tableaux cal-
culi.

4. We develop specific proof automation, both on the level of the data models, and on the
level of the derived rules.

5. We present a method to analyze object-oriented data-models and combine it with a for-
ward refinement method [31,35]; thus, high-level specifications can be refined to exe-
cutable ones.
Except from background presentation in Section 2, the plan of the paper follows the

structure of our contribution list: Section 3 is devoted to the conservative embedding of the
semantics assertions on them, Section 4 to the derivation of the proof calculi and automated
proof-support, and Section 5 is concerned with the methodology of specification analysis
and refinement.

2 Background

2.1 A Guided Tour Through UML/OCL

The Unified Modeling Language (UML) comprises a variety of model types for describ-
ing static (e. g., class models, object models) and dynamic (e. g., state-machines, activity
graphs) system properties. One of the more prominent model types of the UML is the class
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Figure 1 A simple UML class model representing a conference system for organizing conference sessions:
persons can participate, in different roles, in a session.

model (visualized as class diagram) for modeling the underlying data model of a system in
an object-oriented manner. As a running example, we model a part of a conference man-
agement system. Such a system usually supports the conference organizing process, e. g.,
creating a conference Website, reviewing submissions, registering attendees, organizing the
different sessions and tracks, and indexing and producing the resulting proceedings. In this
example, we constrain ourselves to the process of organizing conference sessions; Figure 1
shows the class model. We model the hierarchy of roles of our system as a hierarchy of
classes (e. g., Hearer, Speaker, or Chair) using an inheritance relation (also called
generalization). In particular, inheritance establishes a subtyping relationship, i. e., every
Speaker (subclass) is also a Hearer (superclass).

A class does not only describe a set of instances (called objects), i. e., record-like data
consisting of attributes such as name of class Session, but also operations defined over
them. For example, for the class Session, representing a conference session, we model an
operation findRole(p:Person):Role that should return the role of a Person in the
context of a specific session; later, we will describe the behavior of this operation in more
detail using OCL. In the following, the term object describes a (run-time) instance of a class
or one of its subclasses.

Relations between classes (called associations in UML) can be represented in a class dia-
gram by connecting lines, e. g., Participant and Session or Person and Role. As-
sociations may be labelled by a particular constraint called multiplicity, e. g., 0..* or 0..1,
which means that in a relation between participants and sessions, each Participant ob-
ject is associated to at most one Session object, while each Session object may be
associated to arbitrarily many Participant objects. Furthermore, associations may be
labelled by projection functions like person and role; these implicit function defini-
tions allow for OCL-expressions like self.person, where self is a variable of the class
Role. The expression self.person denotes persons being related to the a specific object
self of type role. A particular feature of the UML are association classes (Participant
in our example) which represent a concrete tuple of the relation within a system state as
an object; i. e., associations classes allow also for defining attributes and operations for such
tuples. In a class diagram, association classes are represented by a dotted line connecting the
class with the association. Associations classes can take part in other associations. Moreover,
UML supports also n-ary associations (not shown in our example).
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We refine this data model using the Object Constraint Language (OCL) for specifying ad-
ditional invariants, preconditions and postconditions of operations. For example, we specify
that objects of the class Person are uniquely determined by the value of the name attribute
and that the attribute name is not equal to the empty string (’’):

context Person
inv: name 6 .= ’’ ∧ Person::allInstances()->isUnique(p:Person | p.name)

Moreover, we specify that every session has exactly one chair by the following invariant
(called onlyOneChair) of the class Session:

context Session
inv onlyOneChair:

self.participants->one( p:Participant | isTypeChair (p.role))

where isTypeChair (p.role) evaluates to true, if p.role is of dynamic type Chair. Besides
the usual static types (i. e., the types inferred by a static type inference), objects in UML and
other object-oriented languages have a second dynamic type concept. This is a consequence
of a family of casting functions (written o[C] for an object o into another class type C) that
allows for converting the static type of objects along the class hierarchy. The dynamic type
of an object can be understood as its “initial static type” and is unchanged by casts (see
Section 3 for details). We complete our example by describing the behavior of the operation
findRole as follows:

context Session::findRole(person:Person):Role
pre: person ∈ self.participates.person
post: result=self.participants->one(p:Participant |

p.person
.= person ).role

∧ self.participants
.= self.participants@pre

∧ self.name
.= self.name@pre

where in post-conditions, the operator @pre allows for accessing the previous state.
In UML, classes can contain attributes of the type of the defining class. Thus, UML can

represent (mutually) recursive datatypes. Moreover, OCL introduces also recursively speci-
fied operations.

A key idea of defining the semantics of UML and extensions like SecureUML [8] is to
translate the diagrammatic UML features into a combination of more elementary features
of UML and OCL expressions [13]. For example, associations are usually represented by
collection-valued class attributes together with OCL constraints expressing the multiplicity.
Thus, having a semantics for a subset of UML and OCL is tantamount for the foundation of
the entire method.

2.2 Formal and Technical Background of HOL in Isabelle

2.2.1 The Logical Framework Isabelle

Isabelle [23] is a logical framework providing a logical core language based on an intu-
itionistic fragment of higher-order logic (HOL). Isabelle is based on a typed version of the
λ -calculus: types τ are defined as τ ::= α | χ(τ, . . . ,τ), where the set of type variables α is
ranging over α,β , . . ., and where the set of type constructors χ contains the function space
_⇒ _. Further, we use infix notation; e. g., instead of _⇒ _(τ1,τ2) we write τ1⇒ τ2; mul-
tiple applications like τ1 ⇒ (. . .⇒ (τn ⇒ τn+1) . . .) are also written as [τ1, . . . ,τn]⇒ τn+1.
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The terms of Isabelle are λ -terms defined as Λ ::= C | V | λ V.Λ | ΛΛ , where C is the set
of constants, V is the set of variables like x, y, z. Abstractions and applications are written
λ x. e and e e′ or e(e′). A subset of λ -terms may be typed, i. e., terms may be associated to
types by an inductive type inference system similar to the programming language Haskell.
The built-in logical core language comprises a congruence _≡ _, a meta-implication _ =⇒ _
and a meta-quantifier

∧
x.Px. The meta-implication helps to represent logical rules: a Horn-

clause A1 =⇒ . . . =⇒ An =⇒ An+1, written JA1; . . . ;AnK =⇒ An+1, is viewed as a rule of the
form “from assumptions A1 to An, infer conclusion An+1”:

A1 . . . An

An+1

[A1]··
A2

.
A

(1)

The second rule to the right represents the natural deduction rule “if A2 can be inferred
from assumption A1, infer A” which is represented in Isabelle as a rule of the form (A1 =⇒
A2) =⇒ A.

The meta-quantifier helps to represent eigenvariables and turns out to be a flexible mech-
anism to represent Skolemization for quantifiers; dually, Isabelle’s term language comprises
meta-variables (denoted ?x,?y,?z, . . . ) that represent “terms to be substituted” during proof.
For example, universal quantifiers are captured by the rules:

∀x. P(x)
and

P(?x)

∧
x. P(x)

.
∀x. P(x)

(2)

The deduction engine of Isabelle is based on higher-order resolution; this means that the
meta-variables are substituted during the inferences as needed.

2.2.2 The Meta-language HOL

Classical higher-order logic (HOL) [11,4] is the instance of Isabelle which is mostly used
and developed. A few axioms describe the logical core system based on the logical type bool
with the logical connectives ¬_, _∧_, _∨_ and _→ _ which are constants of type bool⇒
bool or [bool,bool]⇒ bool. Quantifiers are represented by higher-order abstract syntax; this
means that ∀_. _ and ∃_. _ are usual constants of type (α⇒ bool)⇒ bool and that terms of
the form ∀(λ x. P x) are written ∀x. P. The Hilbert operator ε x. P returns an arbitrary x that
makes P x true. Further, there is the logical equality _ = _ of type [α,α]→ bool.

This core language can be extended to large libraries comprising Cartesian product types
_× _ with the usual projections fst and snd as well as type sums _ + _, with the injections
Inl and Inr. The set type α set can be introduced isomorphic to the function space α⇒ bool,
i. e., to characteristic functions, and a typed set theory is introduced with the usual operators,
e. g., _ ∈ _, _∪_, _∩_.

The HOL type constructor τ⊥ assigns to each type τ a type lifted by ⊥. The function
x_y : α ⇒ α⊥ denotes the injection, the function p_q : α⊥ ⇒ α its inverse for defined values.
Partial functions α ⇀ β are just functions α⇒ β⊥ over which the usual concepts of domain
dom f and range ran f are defined. Moreover, on each type α⊥ a test for definedness is
available via defx≡ (x 6=⊥).
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3 A Formal Semantics of OCL in Isabelle/HOL

In this section, we formalize a core subset of UML and OCL. While this presentation of the
UML/OCL semantics is largely equivalent to the formal semantics presented in the official
OCL standard [24, Appendix A] (which is based on [28]), we use a level of abstraction here
that is in between the “paper-and-pencil” semantics presented in [24,29] and our machine-
checked version [9,6]. In particular, our presentation differs in the following details:

– while [24, Appendix A] uses several interpretation functions IJ_K mapping syntactic
expressions e of the language and contexts τ to values in some semantic domain D
and functions over them, we avoid IJ_K and state these values and functions directly.
Technically, we use an implementation technique called shallow embedding [5].

– Instead of one untyped semantic domain, we use a type-indexed family Dτ and thus use
a type discipline in our meta-language. These types τ are formal representations of OCL

types handled in [24, Appendix A] only partially.
Moreover, our formalization follows the formal semantics presented in the non-normative
part of the OCL standard [24, Appendix A] (which, in itself, is based on [29]). The (minor)
differences of HOL-OCL to the normative part of the OCL standard [24] are discussed in [6].

3.1 Validity and Evaluations

The topmost goal of the formal semantics is to define the validity statement:

(σ ,σ ′) � P , (3)

where σ is the pre-state and σ ′ the post-state of the underlying system and P is a Boolean
expression (a formula). The assertion language of P is composed of
1. operators on built-in data structures such as Boolean or set,
2. operators of the user-defined data-model such as accessors, type-casts and tests, and
3. user-defined, side-effect-free methods.

Informally, a formula P is valid if and only if its evaluation in the context (σ ,σ ′) yields true.
As all types in HOL-OCL are extended by the special element⊥ denoting undefinedness, we
define formally:

(σ ,σ ′) � P≡
(
P(σ ,σ ′) = xtruey

)
. (4)

Since all operators of the assertion language depend on the context (σ ,σ ′) and result in
values that can be⊥, all expressions can be viewed as evaluations from (σ ,σ ′) to a type τ⊥.
Consequently, all types of expressions have a form captured by the following type abbrevi-
ation

V(τ) := state×state→ τ⊥ , (5)

where state stands for the system state and state×state describes the pair of pre-state and
post-state and _ := _ denotes the type abbreviation.

3.2 Strict Operations

Following common terminology, an operation that returns ⊥ if one of its arguments is ⊥ is
called strict. The majority of the operations is strict, e. g., the Boolean negation is formally
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presented as:

IJ¬ XKτ =

{
xp¬IJXKτqy if JXKτ 6=⊥,

⊥ otherwise .
(6)

where τ = (σ ,σ ′) and IJ_K is just a notation marking the HOL-OCL constructs to be defined.
This notation motivated by the definitions in the OCL standard [25]. In our case, IJ_K is just
the identity, i. e., IJXK≡ X . Moreover, we use syntactic overloading: the ¬_ operator on the
right has type bool→ bool and refers to the logical negation of HOL, while the ¬ _ operator
on the left has type V(bool)→ V(bool) and refers to the HOL-OCL negation. The types are
different such that confusion is systematically avoided; however, we will use a special high-
lighting to improve the readability in this presentation. All these operators can be viewed as
transformers on evaluations.

The binary case of the integer addition is analogous:

IJX + Y K τ =

{
xpIJXK τq+pIJY K τqy if IJXK τ 6=⊥ and IJY K τ 6=⊥,

⊥ otherwise .
(7)

Here, the operator _+_ on the right refers to the integer HOL operation with type [int, int]→
int. The type of the corresponding strict HOL-OCL operator _ + _ is [V(int),V(int)]→V(int).

A slight variation of this definition scheme is used for the operators on collection types
such as HOL-OCL sets, sequences or bags:

IJX ∪ Y Kτ =

{
SxpIJXKτq∪pIJY Kτqy if IJXKτ 6=⊥ and IJY Kτ 6=⊥,
⊥ otherwise.

(8)

Here, S (“smash”) is a function that maps a lifted set xXy to⊥ if and only if⊥∈ X and to the
identity otherwise. Smashedness of collection types is the natural extension of the strictness
principle for data structures.

Intuitively, the type expression V(τ) is a representation of the type that corresponds to
the HOL-OCL type τ . Thus, we introduce the following type abbreviations:

Boolean := V(bool) , Set(α) := V(α set) , (9)

Integer := V(int) , and Sequence(α) := V(α list) . (10)

These abbreviations exemplify the fact that the mapping of an expression E of HOL-OCL

type T to a HOL expression E of HOL type T is injective and preserves well-typedness.

3.3 Boolean Operators

There is a small number of explicitly stated exceptions from the general rule that HOL-OCL

operators are strict: the strong equality, the definedness operator and the logical connectives.
As a prerequisite, we define the logical constants for truth, absurdity and undefinedness.

In the sequel, however, we omit the semantic bracket notation IJ_K since it is redundant in
our setting. Thus, instead of IJT Kτ = xtruey, we write these definitions as follows:

T ≡ λ τ. xtruey , F ≡ λ τ. xfalsey , and ⊥ ≡ λ τ.⊥ . (11)
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HOL-OCL has a strict equality _ .= _ which is defined similarly to the integer addition.
However, for specification purposes, we introduce also a strong equality _ , _ which is
defined as follows:

X , Y ≡ λ τ. (X τ = Y τ) , (12)

where the _ = _ operator on the right denotes the logical equality of HOL. The undefinedness
test is defined by ∂ X ≡ (X , ⊥ ). The strong equality can be used to state reduction rules
like: τ � (⊥ .= X) , ⊥ .

The OCL standard requires a Strong Kleene Logic. In particular, it defines:

X ∧ Y ≡ λ τ.


xpX τq∧pY τqy if X τ 6=⊥ and Y τ 6=⊥,

xfalsey if X τ = xfalsey or Y τ = xfalsey,
⊥ otherwise .

(13)

of type [Boolean,Boolean]→ Boolean. The other Boolean connectives are defined as fol-
lows:

X ∨ Y ≡ ¬ (¬ X ∧ ¬ Y ) X −→ Y ≡ ¬ X ∨ Y (14)

The logical quantifiers are viewed as special operations on the collection types Set(α) or
Sequence(α). Their definition in the OCL standard is very operational and restricted to the
finite case; instead, we define the universal quantification as generalization of the conjunc-
tion:

(
∀ x ∈ X . P(X)

)
≡ λ τ.
⊥ if X τ =⊥,

x∀x ∈ pX τq. pP(λ τ. x)τqy if ∀x ∈ pX τq. P(λ τ. x) τ 6=⊥,

xfalsey if ∃x ∈ pX τq. P(λ τ. x)τ = xfalsey,
⊥ otherwise;

(15)

and the existential quantification is defined as follows:

(
∃ x ∈ X . P(x)

)
≡
(
¬ ∀ x ∈ X . ¬ P(x)

)
. (16)

3.4 An Axiomatization of Object-oriented Data Structures

In the previous sections, we described various built-in operations on datatypes and the logic.
Now we turn to several families of operations that the user implicitly defines when stating
a class model, e. g., described as a UML class diagram, as logical context of a specification.
This is the part of the language where object-oriented features such as type casts, accessor
functions, and tests for dynamic types play a role, and this is the issue that makes HOL-OCL

remarkably different from specification formalisms such as VDM or Z.
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3.4.1 Class Models: The Syntax

In the following, we define the notion of a class model precisely. A class model is a tuple
CM = (C,A,M,_ < _) where:

– C, a set of class names containing at least the name of the common superclass, i. e.,
OclAny,

– A, a set of class attributes,
– a finite partial map M that assigns to each class identifier a finite partial map assigning

attributes to types: M ≡C ⇀ (A ⇀ T ),
– a partial irreflexive order _ < _ on class names called class hierarchy; in particular, we

assume X < OclAny for all X ∈ dom M.
For simplicity, we assume that attribute names are unique throughout this paper; this means
that the domains of two elements of the range of M are always pairwise disjoint. For ci < c j,
we will say that the class ci is a subclass of class c j; the restriction that any class is a subclass
of OclAny can be imposed without loss of generality. Furthermore, we assume a set of types
inductively defined as follows:

T := C | OclAny | Boolean | Integer | Real | String
| Sequence(T ) | Set(T ) | Bag(T ) | T -->T .

(17)

All classes, referenced by their names, induce an own type, the class type, that represents
the type of all objects of this class. Objects are typed pieces of data that contain values for
each attribute of the associated class.

3.4.2 Class Models: The Induced Signature

A class model induces several families of functions, which we will axiomatize in the follow-
ing. This representation is simplified compared to the technique used in HOL-OCL. HOL-OCL

constructs a model for this axiom system for a given class system by compiling it into a se-
quence of conservative definitions. The presented “axioms” are then derived from them. Due
to space limitations, we will not go into detail and refer the interested reader to [6,10] for
details.

The families of functions induced by a class model CM comprise:
1. for each C ∈ dom M, and each attribute a ∈ dom (M C) of type T , there is an attribute

accessor function _.a as well as an attribute accessor function _.a@pre of type C-->T ,
2. a C ∈ domM indexed family of overloaded type-casts: _[C] of type X -->C for all X < C

or C < X ,
3. a C ∈ dom M indexed family of tests for the dynamic type of an object: isTypeC _, and
4. a C ∈ dom M indexed family of tests for the dynamic kind of an object: isKindC _.

Ad item 1: Accessor functions always return typed objects, or values, and never “refer-
ences”; however, references are used internally in the semantic model of the object con-
struction. The accessor functions return the value of the attribute of a given object if the
attribute has type, e. g., Boolean, Integer, Real. If the attribute type has class type, the
attribute contains a reference which is referenced in the state or pre-state, yielding again an
object. Following the injectivity principle of the representation map, we give an accessor _.a
(or: _.a@pre , referencing in the pre-state) of HOL-OCL type C -->T the HOL type of an
evaluation transformer: V(C)→V(T ).

Ad item 2: Type-casts are the omnipresent glue in expressions of object-oriented lan-
guages. They are used to implement subtyping by interfacing objects up and down the class
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hierarchy to fit them in as argument of an operation. Both up and down casts have to be se-
mantically lossless; for example, it must be possible to cast an arbitrary object up to OclAny,
include it into a set of Set( OclAny), exclude it later and cast again to the identical object
(this is the way generic datatypes are implemented in, e. g., Java).

Ad item 3: Applying type-casts modifies the static type of an object, i. e., the type in-
ferred by static type inference. To enable down-casts appropriately, however, it must be
possible to reconstruct for an object which type it had “originally,” i. e., at creation time.
The test isTypeC obj holds if and only if the dynamic type of obj is C.

Ad item 4: A relaxation of the dynamic type test is the dynamic kind test which holds if
and only if the dynamic type of obj is C or a subtype of C.

3.4.3 Class Models: An Axiomatization

First of all, all functions of the induced signature are strict. This means that the following
scheme of rules hold:

⊥ .a = ⊥ ⊥ [C] = ⊥ isTypeC ⊥ = ⊥ isKindC ⊥ = ⊥ (18)

for all attributes a of a class model CM and all C ∈ dom M. These equalities are HOL equal-
ities and both left and right hand sides are evaluations, i. e., functions depending on the con-
text. By extensionality, these equalities express that both sides are congruent for all contexts
(see also discussion in Section 4).

Furthermore, the following rule schemes express that the dynamic type remains un-
changed while casting:

isTypeC obj[C’] = isTypeC obj isKindC obj[C’] = isKindC obj (19)

for all C,C′ ∈ dom M.
Moreover, we can “re-cast” an object safely, i. e., up and down casts are idempotent.

However, casting an object deeper in the subclass hierarchy than its dynamic type results in
undefinedness. Furthermore, casting is transitive:

τ � isTypeB obj

τ �
(
(obj[A])[B]

)
, obj

τ � isTypeA obj

τ � obj[B] , ⊥
(20)

τ � isTypeC obj

τ � (obj[B])[A] , obj[A]

τ � isTypeA obj

τ � isKindB obj
(21)

where we assume A,B,C ∈ dom M and C < B < A.
The reason why these rules look slightly more complicated than, e. g., the strictness rules

above, consists in the fact that these are conditional rules where all parts must refer to the
same context τ .

Accessor functions to attributes that are not defined in a class are syntactically illegal
and ruled out by the typing discipline.
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3.5 Class Invariants

A class invariant of class C is a formula invC(obj) that is satisfied by all objects in a state,
i. e., a partial map of object-identifiers to objects of type oid ⇀ OclAny. The traditional way
to define invariants is via an own, class-indexed family of operators:

C ::allInstances() (σ ,σ ′)≡ {obj[C] ∈ ranσ
′| isTypeC obj} (22)

and a conjunction of the formulae:

∀ x ∈ (C::allInstances() ) . invC(x) (23)

which constrains the set of possible states σ :: state to the valid states.
We use a special linked list as a simple example: we assume a class Node with an

Integer attribute i and one attribute next of type Node. We want to characterize the subset
of Node objects within a state where in each node the value of i is greater than 5 and where
each value of next is defined and again in this set. This is expressed by a subclass SNode
with the following class invariant:

context SNode
inv defined: self . i > 5 ∧ isKindSNode self .next

As a result, invSNode enjoys the recursive equation:

invSNode(obj :: SNode) = obj. i > 5 ∧ ∂ obj.next ∧ invSNode(obj.next) (24)

The definedness of the next attribute is a consequence of the fact that the invariant must
be valid, implying that isKindSNode self .next must be valid, implying that self .next must be
defined. We believe that this implicitness with respect to definedness is a good motivation for
using a three-valued logic. HOL-OCL offers specialized support for the derivation of these
equations which are crucial for many derivations (see [9] for details).

3.6 Operation Specifications

The semantics of an operation specification is a big-step transition-system semantics (similar
to Z) and not a small-step Hoare-style semantics; it is therefore constructed by the conjunc-
tion of the validity of preconditions and postcondition and not by their implication. This
means that an operation specification:

context C :: op(p1 : T1, . . . , pn : Tn) : Tn+1
pre: P
post: Q

is presented by a straightforward conversion into the definition:

opC self p1 · · · pn ≡ λ τ.

ε result. τ � P self p1 · · · pn∧ τ � Q self p1 · · · pn result (25)

This conversion makes the implicit input parameter self and output parameter result explicit.
Moreover, we allow the overriding of operations. This means that for each class Cm <

Cm−1, . . . , C2 <C1 in a class model, a new operation specification can be given that is defined
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on the corresponding subtypes of self . For a given class model, the combined specification
operation for a method invocation is defined as:

op self p1 . . . pn ≡ if isKindCm self then opCm
self p1 . . . pn

else if isKindCm-1 self then opCm−1
self p1 . . . pn

...

else if isKindC1 self then opC1
self p1 . . . pn

endif · · · endif endif

This order of resolving the invocation overloaded operations implements late-binding, a
resolution mechanism widely used in object-oriented programming languages such as Java
or C#.

3.7 Discussion: Simplifications Underlying this Presentation

The construction presented in this section is simplified in several aspects compared to the
construction used in the HOL-OCL [9] system. In particular:
1. The presented construction is based on a specific closed world assumption: it is im-

plicitly assumed that a class model consists only of its fixed number of classes (and
thus also on attributes, methods, . . . ). This is a consequence of the simplistic construc-
tion presented here: i. e., for each given class model, the corresponding set of axioms
is generated. If the class model is extended or modified, another set of axioms will be
generated. In practice, this means that all proofs built upon a class model must be re-
validated after an extension, which limits the usefulness of the technique. In HOL-OCL,
a more refined technique is therefore used which constructs a model entirely based on
conservative definitions which is in fact extensible, i. e., amenable to a form of modu-
lar verification. Since the details of the construction are quite involved, we constrained
ourselves to this axiomatic fragment.

2. Moreover, the HOL-OCL class model compiler also generates functions that allow to
construct a state; i. e., there is an infrastructure to create objects, update attributes in
them, and determine even their object-identifier or reference within a state.

These more powerful constructions are described elsewhere [6,10].

4 Proof Calculi for OCL

In this section, we present several deduction systems for HOL-OCL. In particular, we define
two equational calculi well-suited for interactive proofs and a tableaux calculus geared to-
wards automatic reasoning. All rules we present are derived within Isabelle from the seman-
tic definitions introduced in Section 3. Therefore, we can guarantee the logical soundness
of all these rules with respect to the core logic. These three calculi were used to instan-
tiate Isabelle’s (two-valued) generic proof-procedures yielding in decision procedures for
fragments of OCL.
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4.1 Validity and Universal Congruence

Since OCL is a three-valued logic, each OCL expression either evaluates to true (T ), false
(F ), or undefined (⊥ ). Thus, the following theorem holds:

(τ � A)∨ (τ � ¬ A)∨ (τ � ¬ (∂ A) . (26)

The natural question arises, under which conditions two formulae are equivalent for all
contexts τ , e. g., ∀τ. A τ = B τ . Since the logical equality of HOL enjoys extensionality and
since all OCL formulae are evaluations, we can express this simply by:

A = B . (27)

Equations on OCL formulae are called universal congruences; so far, we have seen equalities
of this form in Equation 18, in Equation 19 and all reduction rules for strict functions like
f ⊥ = ⊥ . Due to Equation 26, we can establish the following link between validity and
universal congruence:∧

τ. (τ � X) = (τ � Y )
∧

τ.
(
τ � ¬ (∂ X)

)
=
(
τ � ¬ (∂ Y )

)
.

X = Y
(28)

This rule is sound also the other way round (for trivial reasons). Note, furthermore, that the
underlying choice for “evaluation to truth and evaluation to undefined” is arbitrary; when-
ever evaluations of two formulae agree on two out of the three cases, they are universally
congruent.

4.2 The Universal Equational Calculus

The basis of Universal Equational Calculus (UEC), see Table 1, are Horn-clauses over uni-
versal congruences which can be applied in arbitrary OCL expressions. A proof of a formula
φ in UEC is simply its reduction to T , since the following theorem holds:

(τ � φ) = (τ � T ) = (xtruey= xtruey) = true . (33)

Based on the semantic definitions for the logical operators, it is not difficult to derive the
laws of the surprisingly rich algebraic structure of Strong Kleene Logic: both _ ∧ _ and _ ∨ _
enjoy associativity, commutativity and idempotency. The logical operators also satisfy both
distributivity and the de Morgan laws. It is essentially this richness and algebraic simplicity
that can be exploited for normal-form computations as well as “proofs-by-hand” such as the
example:

A1 ∧ ·· · ∧ Ak ∧ ∂ B ∧ Ak+1 ∧ ·· · ∧ An −→ ∂ B

= A1 ∧ ·· · ∧ An −→ (∂ B −→ ∂ B)

and since ∂ ∂ B = T , we can conclude

= A1 ∧ ·· · ∧ An −→ T

and thus, reduce our proof goal to:

= T .
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F ∧ X = F T ∨ X = T

T ∧ X = X F ∨ X = X

X ∧ X = X X ∨ X = X

X ∧ Y = Y ∧ X X ∨ Y = Y ∨ X

X ∧ (Y ∧ Z) = (X ∧ Y ) ∧ Z X ∨ (Y ∨ Z) = (X ∨ Y ) ∨ Z

¬ (¬ X) = X (X ∧ Y ) = ¬ (¬ X ∨ ¬ Y )

(X ∨ Y ) ∧ Z = (X ∧ Z) ∨ (Y ∧ Z) (X ∧ Y ) ∨ Z = (X ∨ Z) ∧ (Y ∨ Z)

¬ (X ∧ Y ) = ¬ X ∨ ¬ Y ¬ (X ∨ Y ) = ¬ X ∧ ¬ Y

(a) Lattice

∂ F = T ∂ T = T ∂ ⊥ = F

∂ ∂ X = T ∂ (¬ X) = ∂ X

∂ (X ∧ ∂ X) = T ∂ (¬ X ∧ ∂ X) = T

∂ (X , Y ) = T ∂ (X .= Y ) = ∂ X ∧ ∂ Y

∂ (ifX then Y else Z endif ) = ∂ X ∧ (X ∧ ∂ Y ∨ ¬X ∧ ∂ Z)

∂ (X ∧Y) = ( ∂ X ∧ ∂ Y) ∨ ¬X ∨ ¬Y

∂ (X ∨Y) = ( ∂ X ∧ ∂ Y) ∨X ∨Y

∂ (X −→Y) = ( ∂ X ∧ ∂ Y) ∨ ¬X ∨Y

(b) Strong definedness rules.

if ⊥ then Y else Z endif = ⊥
f ⊥ = ⊥ f ⊥ Y = ⊥ f X ⊥ = ⊥

∂ f X = ∂ X ∂ f X Y = ∂ X ∧ ∂ Y

(c) Strictness/Definedness Rules for total strict operations f .

if T then Y else Z endif = Y if F then Y else Z endif = Z

X −→ F = ¬ X X −→ T = T F −→ X = T T −→ X = X

X −→Y = ¬X ∨Y

X −→ (Y ∧Z) = (X −→Y) ∧ (X −→Z)

X −→ (Y ∨Z) = (X −→Y) ∨ (X −→Z)

(X ∧Y) −→Z = X −→ (Y −→Z)

(X ∨Y) −→Z = (X −→Z) ∧ (Y −→Z)

X −→ (Y −→Z) = Y −→ (X −→Z)

∂ X = T

(X −→ X) = T

(d) Logic

Table 1 The Universal Equational Calculus.
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τ � a , a
τ � a , b

τ � b , a

τ � a , b τ � b , c

τ � a , c

τ � a , b τ � P a cp(P)

τ � P b

Table 2 Quasi-Equational Theory.

cp(λ X . X) cp(λ X . c)

cpP

cp(λ X . f1(PX))

cpP cpP′

cp
(
λ X . f2(P X)(P′ X)

)
cp(P)

∧
x. cp(P′x)

cp(λ X . ∀ (P X) (λ x. (P′ x X)))

Where f1 and f2 are strict operators that are defined by one of the three definition schemes described in
Section 3.2, a logical connective, or a quantifier.

Table 3 The Core Context Passing Rules.

4.3 Reasoning over OCL-Equalities

The UEC introduced in Section 4.2 cannot be complete: some facts will only hold in some
contexts τ , not in all of them. Moreover, expressing foundational facts on the crucial strong
equality _ , _ is not possible within UEC, e. g., as equality on evaluations. Due to the han-
dling of contexts, the usual congruence properties of an equality can only be approximated
(see Table 2). This is backed up by the well-formedness predicate cp(P) (called P is context-
passing) which requires that the context τ is unchanged “on its way through P.” Formally,
we can define context passing cp(P):

cp(P)≡ ∃E. ∀X τ. P X τ = E(X τ) , (34)

i. e., each term P (a transformer on evaluations) containing a sub-term X (an evaluation)
must be replaceable by some E which just takes the value of X constructed by evaluating it
by τ .

At first sight, the handling of cp_ seems to be infeasible; however, it can be established
by a simple subcalculus that decides this property for all expressions P which are only λ -
abstractions of terms built uniquely by OCL operators (see Table 3).

The importance of the strong equality becomes apparent with the following rules, which
establish a link to strict equality, validity, invalidity and undefinedness:

τ � a .= b
,

τ � a , b
(35)

τ � A = (τ � A , T ) , (36)

τ � ¬ A = (τ � A , F ) , and (37)
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(¬ τ � ∂ A) = τ � ¬ (∂ A) = (τ � A , ⊥ ) . (38)

The trichotomy rule Equation 26, the rules Equation 36, Equation 37, and Equation 38,
in connection with the substitutivity (see Table 2) allow for case-splits in arbitrary sub-
formulae.

4.4 A Tableaux Calculus on Judgements

The tableaux methodology is a popular approach to design and implement proof-procedures.
Originally, tableaux methods were geared towards first-order theorem proving, in particular
for non-clausal formulae accommodating equality. Nevertheless, renewed research activity
is being devoted to investigating tableaux systems for intuitionistic, modal, temporal and
many-valued logics, as well as for new families of logics, such as non-monotonic and sub-
structural logics. Many of these recent approaches are based on a special labeling technique
on the level of judgments, called labeled deduction [12,32]. Of course, labeling can also be
embedded into a higher-order, classical meta-logic. For example, the conjunction introduc-
tion and elimination rules can be presented in natural style supported by Isabelle:

τ � A τ � B
or

τ � (A ∧ B)
τ � A ∧ B

[
τ � A,τ � B

]
···
R

.
R

(39)

The operational effect of these rules in backward-style derivations is to split a validity judge-
ment into two or to replace a judgement with a conjunction in the assumption list by the two
simpler judgements. In effect, formulae are transformed into clauses consisting of atomic
validity judgments containing no further logical connectives.

Tableaux calculi for strong Kleene Logic based on labeled deduction have been exten-
sively studied [17,15,14]. We also derived a tableaux calculus for OCL [9], but the approach
turned out inefficient even for small formulae.

The problem becomes apparent when considering the rules in Table 1b on page 14:
establishing the definedness, which is an omnipresent side-condition to many rules, leads
to many redundant case-splits which again result in definedness-reasoning; by using clever
rules and forward inference techniques, this effect can only partly be compensated. Further-
more, the process of finding unifiers for quantifiers by a multitude of closing rules turned
out to be difficult to implement inside Isabelle.

4.5 A Conversion Calculus for OCL

Table 4 shows the conversion calculus which we derived as a practical automated reason-
ing procedure. This conversion calculus allows to convert the three-valued reasoning into
classical reasoning in HOL; the resulting expressions can then be handled by the standard
tableaux procedures of Isabelle. Thus, if we can establish effectively once and for all if all
related sub-expressions are defined, we can convert a formula into a classical logical expres-
sion containing only two-valued judgements.
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τ � ∂ A

(τ � ¬ A) = (¬τ � A)

τ � ∂ A τ � ∂ B

(τ � A ∧ B) = (τ � A∧ τ � B)

τ � ∂ A τ � ∂ B

(τ � A ∨ B) = (τ � A∨ τ � B)

τ � ∂ A τ � ∂ B

(τ � A −→ B) = (τ � A−→ τ � B)

τ � ∂ (S :: Set(β )) cpP

(τ � ∀ x ∈ S . P x) = (∀x. τ � x ∈ S−→ τ � P x)

τ � ∂ (S :: Set(β )) cpP

(τ � ∃ x ∈ S . P x) = (∃x. τ � x ∈ S∧ τ � P x)

Table 4 The Translation Rules.

4.6 A Note on Quantifiers

In the following, we discuss the extension of the propositional fragment by bounded quan-
tifiers introduced for collections. For brevity, we will concentrate on the quantifiers on sets,
i. e., Set(τ).

First, we present some universal equalities of the universal quantifiers, which also satisfy
the usual context passing rules in Table 3. With respect to strictness rules, the definitions of
the quantifiers follow the usual scheme:(

∀ x ∈ ⊥ . P x
)

= ⊥ , (41)(
∃ x ∈ ⊥ . P x

)
= ⊥ , (42)(

∀ x ∈ /0 . P x
)

= T , and (43)(
∃ x ∈ /0 . P x

)
= F . (44)

Second, for the defined cases, we have again conversion rules that allow for a semantic
mapping of the HOL-OCL quantifiers to their classical HOL counterparts (see Table 4).

Moreover, if x ∈ S is valid, we know that x must be defined. This is a characteristic
property of smashed sets that yields the following property:

τ � x ∈ S
.

τ � ∂ x
(45)

Thus, for smashed sets, bound variables are always defined.

4.7 Automated Deduction.

The question arises, how can these calculi be combined to proof procedures that decide cer-
tain fragments of the language, i. e., to what extent can automated proof support be provided
for HOL-OCL? This question is of vital importance for the practicability of a proof environ-
ment. We outline two procedures implemented in HOL-OCL here, one for the predicative
fragment, one for equational reasoning.
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4.7.1 A Practical Decision Procedure for the Predicative Fragment

As briefly discussed in Section 4.4, a direct implementation as a specialized tableaux calcu-
lus is difficult, and the theoretic results are discouraging. However, deciding that an expres-
sion is defined is in practice surprisingly well-behaved. This is a consequence of the fact that
the vast majority of operations in HOL-OCL are total and strict.

Moreover, in practical relevant situations (such as proving that some φ follows from the
class invariants), _ ∧ _ is the predominant logical connective; this fact can be exploited by
normal form computations using Equation 39.

The fact that definedness is often well-behaved, raises the question what balance be-
tween forward and backward reasoning avoids most redundancy. As forward-inference com-
ponent, we decided to case-split over the definedness of all free variables occurring in the
formula. In principle, this results in exponentially many sub-formulae (called splinters); due
to Equation 38, the substitutivity rule (see Table 2), and the collection of strictness rules
of Table 1c, they can be drastically simplified. In particular, this simplified formulae con-
tain only variables x for which the definedness is explicit: τ � ∂ x. Over the normalized
splinters, we apply the conversion rules Table 4; the decision of definedness of terms is
now just linear over the size of terms. Thus, we achieved a (usually small) number of con-
verted splinters which are ordinary classical first-order formulae to be handled by Isabelle’s
standard two-valued tableaux procedures.

The rules for cp are pre-computed for each HOL-OCL operator, such that deciding this
side-condition is linear in worst-case and logarithmic in the average case in the size of the
term. It only involves trivial matches.

4.7.2 Equational Reasoning for Strong Logical Equality

The universal congruence rules can be directly processed by the standard rewriting mech-
anism of Isabelle; the question is how to handle _ , _ effectively. Besides the obvious
approach (applying substitutivity in a specialized procedure, and repeating this for each
rewrite rule), we developed a more efficient technique. The key observation is that property
of being context-passing can be made explicit by the following rule:(

τ � P X
)

=
(
τ � (K(P(K(X τ))τ))

)
, (46)

where K is the K-combinator (λ x y. x) and where we require cp(P). Applying this rule ex-
haustively to an evaluation φ leads to the cp-normal-form, and obviously, the transformation
is reversible. Interestingly, rules like Equation 20 can be converted into:

isTypeB
(
K(obj τ)

)
τ = T τ

,(
K
(

(K(obj τ))[A] τ

)
[B]

)
τ = obj τ

(47)

i. e., into a conventional conditional equality. In our approach, rewrite rules as well as proof-
states are transformed into cp normal-form, then rewritten by standard simplification, and
converted back. Both transformations are linear in the size of the terms; the matching is
slowed down since the size of matches doubles. However, as a whole, these costs are ne-
glectable and the resulting simplification procedure is similarly powerful as the original
Isabelle simplifier.



19

5 Applications

In the previous sections, we described a formal, machine-checked semantics for OCL and
derived calculi suited for automated reasoning. In this section, we apply this theory: we
present concepts and implementation of a methodology on top of HOL-OCL, enforcing a
particular use of our language. At present, the following aspects of the methodology are
supported:
1. an analysis method enforcing a certain form of well-formedness considered pragmati-

cally useful, and
2. a formal refinement notion allowing to convert abstract class models into more concrete

ones.
Since our refinement notion is transitive, an original abstract design can be converted step-
wise into a version that can be converted to code automatically. We also present an imple-
mentation of these concepts in the Isabelle framework, allowing to insert “analytical com-
mands” in a proof-document resulting in proof-obligations to be discharged in the sequel;
the technology is further described in [33].

5.1 Proving Consistency

When capturing the requirements for a larger software system, the problem arises how to
detect potential inconsistencies, contradictions or redundancies in larger numbers of class in-
variants or method specifications. Thus, prior to any implementation or refinement attempt,
there is the need for a consistency analysis of the specification.

In the following, we concentrate on a specific kind of consistency that is required by
the data refinement methodology we present later. Our refinement methodology has both
syntactic (also called well-formedness requirements) and semantic requirements.

On the syntactical side, we require for public operations that the return value and their
arguments are either basic datatypes (e. g., Integer, String) or public classes. We call a
class public, if it contains a least one public attribute or operation; classes that do neither
contain attributes nor operations are public by default.

On the semantic side, we need constraints on states σ , not state transitions τ , for the
first time. Instead of using syntactic side-conditions (e. g., as in [24, Appendix A]) like “the
assertion does not contain the @pre -operator,” we use a slightly more general semantic
characterization which is amenable in calculi. As a prerequisite, we define two assertions φ ,
φ ′ pre-state equivalent in σ , written (σ |= φ)

pre
= (σ |= φ ′):

(σ |= φ)
pre
= (σ |= φ

′) ⇐⇒ ∀x,y.
(
(σ ,x) |= φ

)
=
(
(σ ,y) |= φ

′) , (48)

i. e., all post-states x and y are irrelevant. For example, this is the case for assertions φ ,φ ′

where all accessors occurring in them are accessing the pre-state (i. e., using _@pre ) and
where φ = φ ′. Analogously, we define the concept of post-state equivalence, written (σ |=
φ)

post
= (σ |= φ ′). Moreover, we introduce the notion pre-state validity:

(σ � pre φ) ⇐⇒ (σ � φ)
pre
= (σ � T ) (49)

and also analogously post-date validity: (σ � post φ).
Finally, we define a syntactic transformation _pre of assertions to support certain syn-

tactical conventions of OCL; φpre results from φ by substituting all accessor functions by
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their _@pre -counterparts. For @pre -free assertions (e. g., preconditions and invariants),
the following property can be proven automatically:

(σ � post φ) = (σ � pre φpre) . (50)

Recall that a state σ is a partial map from object-identifiers to objects; following the OCL

standard, we call states valid if and only if each object in its range satisfies the class invari-
ants. We write V for the set of valid states. The empty state λ oid. ⊥ is always in V .

Now we can describe the proof-obligations of a consistent class model conceptually. For
a consistent UML/OCL package we require:
1. there must exist a state satisfying the class invariants that contains an object for each

public class, i. e.,

∃σ ∈V,a1, . . . ,an. σ � post invC1(a1)∧ . . .∧σ � post invCn(an)

where C1, . . . ,Cn are the public classes of the class model and invC1 , . . . , invCn are the
corresponding class invariants.

2. For all operations, there must be a pre-state satisfying the class invariants and input
variables satisfying the precondition, i. e.,

∃σ ∈V, p1, . . . , pn. σ � pre (preop p1 . . . pn)pre

for all public operations op with arguments p1, . . . , pn of the class model.
3. For all operations, for each a pre-state satisfying the class invariants and all input vari-

ables satisfying the precondition, there must be a result and a post-state satisfying the
class invariants and the postcondition, i. e.,

∀σ ∈V, p1, . . . , pn. σ � pre (preop p1 . . . pn)pre

→∃σ ′ ∈V,result. (σ ,σ ′) |= postop p1 . . . pn result

for all public operations op with arguments p1, . . . , pn and with the return value result.
This notion is motivated by the following observations: if the condition described in item 1
is violated, there is always a method for which no argument can be passed that satisfies the
invariants; if the conditions of item 2 or item 3 are violated, there is either no legal input or
no function that maps it to output, i. e., the specification is not implementable. In all these
cases, this means that the operation specification just means the empty transition relation
which is semantically possible, but methodologically not desirable.

5.2 Proving Consistency of our Example

Recall our abstract model of a conference system presented in Section 2.1 (e. g., Figure 1)
and assume that this model is defined in a package called AbstractSimpleChair. We
start our consistency analysis by importing (and type-checking) the UML/OCL specification
in HOL-OCL:

import_model "SimpleChair.zargo" "AbstractSimpleChair.ocl" include_only "AbstractSimpleChair"

This results in an environment holding all definitions and various automatically derived
simplification rules of the data model defined in the AbstractSimpleChair package. In
particular, this includes the class invariants for the classes Person, Role, Participant
and Session as well as the specification of the operation findRole. We continue with
the analytical command:
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analyze_consistency [data_refinement] "AbstractSimpleChair"

which checks the syntactic requirements of our refinement methodology and, moreover,
results in the generation of five proof obligations according to the schema described in the
previous section. Each proof obligation is given an own name which can be used to process
it. For example, if we discharge the second obligation resulting from the statement above,
we can refer to it by:

po "AbstractSimpleChair.findRole_enabled"

The system reacts by changing to proof mode and displaying the assertions:

∃σ ∈V,self ,P,R. σ � pre ¬ (P ∈ self .participantspre) . (51)

In proof mode, this assertion can be refined through backward-reasoning by a sequence
of regular Isabelle proof commands or by specific HOL-OCL ones. The proof essentially
consists in providing a witness for σ in form of an object graph with one Person and
one Session object, where the participants list is just empty. Thus, the proof proceeds
by establishing that (σ ,x) |= self .participantspre , [] ; the HOL-OCL simplifier will then
complete the proof. After reaching the final proof state consisting of the formula true, one
can state:

discharged

whereby this proof obligation will be erased from the database of proof obligations and
added to the database of proven theorems.

5.3 Refining OCL Specifications

Data refinement is a well-known formal development technique; a standard-example for data
refinement is Spivey’s Birthday Book [31]. The key idea is to refine abstract, but easy-to-
understand system models to more concrete, complex ones that are closer to an (executable)
implementation. In prominent instances of the refinement method such as the B-Method,
the final concrete model is converted to code via a trusted code-generator. According to
a concrete formal refinement notion (such as forward simulation or backward simulation,
c.f. [35]), stating that one model is a refinement of another one can be verified by checking
syntactic constraints and by discharging (proving) automatically generated proof obliga-
tions.

Again, we will build our refinement method on the level of UML-packages: one contain-
ing the abstract model one containing the concrete model. We make the correspondence be-
tween abstract and concrete public classes and public operations on the basis of their name,
i. e., classes or operations with same name correspond. This syntactic constraint allows for
the direct substitutivity of the abstract package, i. e., in any place, where the specification
requires the abstract package, we can also use the concrete one. To make refinements on
packages semantically working, several side-conditions have to be imposed:

– the set of public classes of the abstract model must be included in the set of public
classes of the concrete model;

– the set of public operations in a concrete class must be a subset of the public operations
in the corresponding abstract class, and

– the types of the corresponding operations must match.



22

σa

σc

σ′
a

R

opa

=⇒

σa

σc σ′
c

σ′
a

R

opa

opc

(a) Proof Obligation I

σa

σc σ′
c

R

opc

=⇒

σa

σc σ′
c

σ′
a

R R

opa

opc

(b) Proof Obligation II

Figure 2 Proof obligations of a forward simulation refinement.

Refinement notions are typically based on putting the abstract states σa and concrete
states σc into relation. To do this, an abstraction relation R must be provided by the user.
An important special case is when R is in fact a function mapping concrete states to abstract
states; although the proof obligations can be simplified in the functional case, we present the
general case here. A forward simulation refinement S vR

FS T ≡ po1(S,R,T )∧ po2(S,R,T )
comes in two parts which turn into proof obligations when stated as proof goals. They are
best explained with a diagram, such as Figure 2. The first condition po1 means that whenever
an abstract operation S can make a transition, the corresponding concrete operation T can
make a transition too. The second condition po2 appears in Figure 2b. It states that whenever
the concrete operation can make a step to a new system state σ ′c, then the abstract operation
must be able to reach a state σ ′a that is in the abstraction relation to σ ′c.

To formalize these two conditions, two prerequisites are necessary that are related to the
three-valuedness of the language:

τ |=M S≡ (τ |= S∨ τ |= ¬ ∂ S) (52)

and

pre S≡ {σ ∈V | ∃σ ′ ∈V. (σ ,σ ′) |=M S} . (53)

The former definition relaxes our notion of validity to “evaluating to true or to exception,”
which makes the exception view of⊥ explicit. The second definition characterizes the set of
pre states in which an assertion S becomes valid. In these terms, the two proof obligations
for an operation declared public in the abstract model can be expressed formally as follows:

po1(S,R,T )≡ ∀σa ∈ pre(S),σc ∈V. (σa,σc) ∈ R→ σc ∈ pre(T ) (54)

and

po2(S,R,T )≡ ∀σa ∈ pre(S),σc ∈V. σc′ . (σa,σc) ∈ R∧ (σc,σ
′
c) |=M T

→∃σ ′a ∈V. (σa,σ
′
a) |=M S∧ (σa′ ,σc′) ∈ R .

(55)
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Role

Hearer

Speaker

CoCair

Chair

Person
name:String

Session
name:String
findRole(p:Person):Role

participants
{ordered}

0..*

sessions0..*

sessions
0..*

{ordered}
roles
0..*

Figure 3 The concrete SimpleChair model avoids the use of association classes and, as such, is easier to
implement in programming languages like Java.

However, these definitions leave open how to construct this global abstraction relation and
how arguments of the operations are handled.

As a means to solve both problems, we suggest that the user provides a family of local
abstraction relations RC indexed by the public classes of the abstract model. Thus, we can
relate input and result objects in the abstract state to corresponding objects in the concrete
state. The global abstraction relation R can be constructed automatically by requiring that all
abstract public objects can be associated “one-to-one” to concrete objects and that abstract
objects relate to concrete objects with respect to a local abstraction relation RC. There may be
public objects in the concrete model that do not correspond to public objects in the abstract
model.

5.4 A Brief Description of the Concrete SimpleChair Model

While the abstract version of the system is a “classical” data-model concentrating on data
entities and its relations, such a model is difficult to implement; partly because high-level
notations such as association classes are not supported directly by many tools, partly because
a conversion to sequence attributes containing direct links to associated objects is more
efficient, but more difficult since the state must be kept valid.

Figure 3 illustrates the class model of the concrete model that we define within the pack-
age ConcreteSimpleChair. The HOL-OCL specification differs mainly in the specifi-
cation of the findRole operation which now uses the features of sequences.

context Session::findRole(person:Person):Role
pre: person ∈ self.participants
post: result

.= roles.at(participants.indexOf(p))

In contrast to the abstract variant, this specification is efficiently executable. Moreover, an
additional invariant constraining the Session class describes that the sequences storing
the roles and participants are of equal length:

context Session
inv: ‖participants ‖ .= ‖roles ‖

The specification of the class Person remains unchanged:
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context Person
inv: name 6 .= ’’ ∧ Person::allInstances()->isUnique(p:Person | p.name)

5.5 Proving Data Refinements of the SimpleChair-Example

We load the concrete model, analogously to the abstract model, into its own theory:

import_model "SimpleChair.zargo" "ConcreteSimpleChair.ocl" include_only ["ConcreteSimpleChair"]

Now we can import both theories into a refinement theory and declare the abstraction rela-
tions. This task is supported by the statement

refine "AbstractSimpleChair" "ConcreteSimpleChair"

of the HOL-OCL refinement component. The execution of the statement performs the fol-
lowing activities:
1. checking the syntactic side-conditions mentioned in Section 5.3,
2. declaring the local abstraction relation for the public classes, e. g., Person, Role,

Session, of the abstract model,
3. constructing a predicate isPublica working for the objects of the data universe defined

in the package AbstractSimpleChair,
4. constructing a predicate isPublicc working for the objects of the data universe defined in

the package ConcreteSimpleChair,
5. defining the global abstraction relation R (using the up-to-now undefined class abstrac-

tions), and
6. generating the refinement proof-obligations for the public operation findRole.

The motivation for the declaration of local class abstractions, which leave the definition to
the user to a later stage, is a pragmatic one: giving the correct (HOL) type for an encoded
HOL-OCL expression is usually quite sophisticated and requires experimenting in finding
a suitable abstraction. For example, the definition that relates Person objects just relates
objects with same name attribute:

RPerson σa σc ob ja ob jc ≡ ∃s. (σa � AbstractSimpleChair.Person.name ob ja , s)

∧ (σc � ConcreteSimpleChair.Person.name ob jc , s) . (56)

Recall that the class invariant for Person requires that its objects are uniquely defined by
their name attribute.

We now turn to the question of how to combine the family of local abstraction relations
RC to a global abstraction relation on states R. The core piece is the already mentioned
requirement that there must be a one-to-one assignment between objects belonging to classes
declared public in the abstract package. Furthermore, all assigned objects must be in the
local abstraction relation, and the public visibilities must be preserved. Altogether, this is
expressed as follows:

R σ σ
′ ≡ ∃ f g. ∀x ∈ ran σ . isPublica σ(K x)→ f (g x) = x∧

∀y ∈ ran σ
′. isPublicc σ

′(K y)→ g( f y) = y∧
∀x ∈ ran σ . isPublica σ(K x)→ isPublicc σ

′(K(g x))∧
∀x ∈ ran σ . isPublica σ(K x)→ Rob j σ σ

′(K x)(K(g x)) (57)
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where K a = λ σ . a and isPublica and isPublicc are generated predicates that decide if an ob-
ject belongs to a public class in the abstract package. These predicates are just disjunctions
of all dynamic type tests. Similarly, Rob j is a generated predicate combining the local ab-
straction relations by casting them appropriately to the common superclass, i. e., OclAny,
and conjoining them disjointly. Finally, from the above refinement, two proof obligations
arise expressing the refinement condition for each operation. The proof in HOL-OCL for the
case of findRole proceeds as follows. We start by:

po "Refinement.findRole"

and get the display of:

∀σ ∈ pre S,σ ′ ∈ pre T. RSession σ σ ′ self self ′

∀σ ∈ pre S,σ ∈ pre T. RPerson σ σ ′ p p′

∀σ ∈ pre S,σ ∈ pre T. RRole σ σ ′ result result′
.

AbstractSimpleChair.Session.findRole self p result
vR

FS ConcreteSimpleChair.Session.findRole self ′ p′ result′

(58)

The three assumptions constrain the intended refinement relation to input and output param-
eters that are representable in the corresponding system state of the refining system. That
is, for a person p in an abstract state, we must be able to relate it to a p′-object in the con-
crete state. This complication is a tribute to object-orientation: we cannot require, in a world
of objects, that the arguments are simply equal as we could in a world of values. Rather,
we must translate objects of one state to objects in another state to express the relation of
object-graphs via its structure and not using the object-identifiers (references) that estab-
lishes it. Fortunately, since our example does not involve “deep” object graphs representing
input of an operation to be refined, the local abstraction relations boil down to forgetting
the object-id’s and turning the person-objects into values (strings for names). In the general
case, co-induction will be required. The rest of the 120 line proof is fairly straightforward
and involves mostly the proof that whenever the abstract precondition is satisfied, the corre-
sponding concrete precondition is also satisfied, as well as that the concrete postcondition is
translatable into the abstract postcondition. This proof is also closed with:

discharged

6 Conclusion

6.1 Achievements

We presented a formal, machine-checked semantics of HOL-OCL as a conservative embed-
ding into Isabelle/HOL. HOL-OCL strives for compliance with the UML/OCL standards, at
least as far as the logic, its conception as an assertion language over object graphs, and the
library types (except Set) are concerned. In some minor issues (as in the case of infinite
sets), HOL-OCL generalizes the UML/OCL standard or makes it more precise (as in the case
of smashed collections); in case of doubt, we opted for semantic definitions that resulted in
simpler deductions.

On the basis of this conservative embedding, we derived several calculi and proof tech-
niques for HOL-OCL. Since deriving means that we proved all rules within an interactive



26

theorem prover, we can guarantee both the consistency of the semantics as well as the sound-
ness of the calculi. We developed automatic proof support for the derived calculi which are
specialized to the language. In particular, the calculi led to rewriting and tableau-based deci-
sion procedures for certain fragments of HOL-OCL. The novel procedures have been applied
for library development as well as medium-sized case studies.

We demonstrated the potential for applications of such deduction-based tools for the
HOL-OCL system. We adopted classical analysis and data-refinement notion to three-valued,
object-oriented HOL-OCL and showed how this can be used to relate specifications to im-
plementations, even if based on different data universes. Thus, we provide a solid basis for
turning object-oriented modeling using UML/OCL into a true formal method; at least as far
as data-modeling aspects are concerned.

6.2 Related Work

We distinguish three areas of related work: general work on the UML/OCL and model-driven
engineering, work on development by refinement and work on verification of object-oriented
systems.

6.2.1 Model-driven Engineering

The term Model-driven Engineering (MDE) [18,30] refers to the systematic use of models as
primary engineering artifacts throughout the development life-cycle of software systems. In
the broadest sense, the term “model” is used for descriptions in a machine-supported format,
while the term “systematic” refers to machine-supported transformations between models
or from models to code. As a software development paradigm, MDE attracted interest in
academia and industry.

HOL-OCL is in fact embedded in an MDE framework [7]. It consists of a repository,
which is a database managing different versions of “models,” an infrastructure to build
model-transformations that has been used for the transformations of our running example
in Section 5, and an experimental generic code-generator. Other model transformations de-
scribed in [8] were used to transform security models described in SecureUML, a UML ex-
tension, together with a standard class model into a standard (secured) model. This transfor-
mation produces different proof-obligations; With the help of our framework, the combined
model can be transformed to code, while the proof obligations making these transformations
“correct” can be proven by HOL-OCL.

6.2.2 Refinement-oriented Development Methods

As a formal development method, the HOL-OCL approach is most closely related to the B-
Method [1] and its most recent incarnation: Event-B [2]. The B-Method has been applied to
substantial case studies of safety-critical systems.

In contrast to this tradition, HOL-OCL establishes a development method for object-
oriented specifications and programs. Besides subtyping and inheritance, this means that
formulae are assertions over a graph of objects linked via object identifiers. This introduces
the technical complication that equality on values must be replaced by other user-defined
equivalence relations, be it by using object-identifiers or recursive predicates representing
bi-simulations.
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6.2.3 Object-oriented Code-oriented Analysis Methods

Formal analysis of object-oriented systems has mostly been done in the context of code-
verification. Systems like Boogie for Spec# [20], Krakatoa [22] or ESC/Java [21] for Java/-
Java Modeling Language (JML) are using programming language code annotated by asser-
tions. This is converted via a wp-calculus into proof-obligations which are handled by auto-
mated or interactive provers. While technically sometimes very advanced, the foundation of
these tools is quite problematic: The generators usually supporting a large language are not
verified, and it is not clear if the generated conditions are sound and complete with respect
to the underling operational semantics. This turns out to be a particular problem if complex
memory models are involved; The second author witnessed several stunning inconsistencies
in these models for Boogie; for other systems, similar problems have been reported.

In contrast to these approaches, HOL-OCL generates a conservative model for objects
and states (see [9,10]). Furthermore, HOL-OCL is geared towards top-down development
via refinement, therefore complementary to these approaches. A first step towards code-
verification via HOL-OCL is described in [10], where a Hoare-calculus for a small imperative
language is derived.

A substantial body of literature on code-verification on object-oriented languages is
based on deep embeddings in logical frameworks like Isabelle/HOL. Examples are embed-
dings of Java-Fragments [26], among them NanoJava [27], which focuses on meta-theoretic
proofs like completeness. It served as a formal reference semantics in several other projects;
however, complex side-condition hamper the efficiency of the reasoning considerably. While
the approach is compatible to open world assumptions in principle, it is not easily amenable
for modular verification.

Another code-based analysis tool is the KeY tool [3], which has a UML front-end and
which is integrated into a state-of-the-art modeling tool; it is based on a two-valued version
of dynamic first-order logic combined with a fragment of Java. KeY offers a rather powerful,
specialized proof-procedure for large fragments of the language. In contrast to our conserva-
tive development, the library is just axiomatized. Methodologically, the approach is geared
towards code-verification.

6.3 Future Work

6.3.1 Improving Technical Support

While our existing proof procedures for OCL are quite satisfactory, the overall efficiency
needs to be increased and the a larger fragments of the language (including automated pro-
cedures for arithmetic, for example) should be covered. More configurations of our code-
generator [7] are desirable for a wider range of examples.

6.3.2 Integration of Top-down and Bottom-up-Techniques

This paper explores the potential of HOL-OCL as a top-down development framework. It is
our vision to integrate model MDE, development by refinement, code-verification and code-
testing in one framework and thus to provide a combined semantical foundation as well as
practical means for analysis of specifications.
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6.3.3 Refinement

It is straightforward to integrate other refinement concepts into HOL-OCL, e. g., backward
simulation SvR

BS T [35].
Finally, it is highly desirable to link method specifications to implementations in con-

crete code of a programming language like Java. Conceptually, this is a combination of the
big-step OCL semantics with a Hoare Logic relating intermediate steps (cf. [34]). In [10],
we present an implementation of this method within HOL-OCL; for space reasons, we have
to refer the reader interested in formal proofs of this approach to the HOL-OCL distribution.

Acknowledgements We thank Lukas Brügger and Simon Meier for valuable discussions on the subject of
this paper. Simon Meier implemented the described rewrite procedure.
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A The Syntax of OCL

The OCL 2.0 standard uses a concrete syntax for OCL that is inspired by object-oriented programming lan-
guages. Whereas this textual notation is likely to be accepted easily by software developers, it looks unfamiliar
and way too verbose for people with a formal methods background, in particular for proof engineers. Thus
we developed a concise, more “mathematical” notation for OCL as an alternative, and used only the latter
throughout the paper. Technically, both notations can be used in HOL-OCL.

Table 5 gives a brief overview over the translation table between both notations; the reader interested in
a complete comparison may consult [6,9].

Table 5: Different concrete syntax variants for OCL

OCL (standard) mathematical HOL-OCL

O
c
l
A
n
y

x = y x .= y
x <> y x 6 .= y
o.oclIsUndefined() 6∂ o
o.oclAsType(t) o[t]
o.oclIsType(t) isTypet o
o.oclIsKindOf(t) isKindt o
t::allInstances() t ::allInstances()

O
c
l
V
o
i
d OclUndefined ⊥

o.oclIsUndefined() 6∂ o
o.oclIsDefined() ∂ o

I
n
t
e
g
e
r

x - y x − y
x + y x + y
x * y x · y
x / y x / y
-x − x

B
o
o
l
e
a
n

true T

false F

x or y x ∨ y
x and y x ∧ y
not x ¬ x
x implies y x −→ y
if c then x else y endif if c then x else y endif

C
o
l
l
e
c
t
i
o
n

X->size() ‖X ‖
X->includes(y) y ∈ X
X->count(y) X->count (y )
X->includesAll(Y) X ⊆ Y
X->isEmpty() /0 .= X

X->exists(e:T|P(e)) ∃ e ∈ X . P(e)
X->forAll(e:T|P(e)) ∀ e ∈ X . P(e)

S
e
t

Set{} /0
X->union(Y) X ∪ Y
X->intersection(Y) X ∩ Y
X->complement(Y) X −1
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