
DOI 10.1007/s00165-006-0012-5
BCS © 2007
Formal Aspects of Computing (2007) 19: 63–91

Formal Aspects
of Computing

Verifying a signature architecture:
a comparative case study
David Basin1, Hironobu Kuruma2, Kunihiko Miyazaki2, Kazuo Takaragi2, Burkhart Wolff3

1ETH Zürich, IFW C 49.1, 8092 Zürich, Switzerland
2Hitachi, Ltd., Systems Development Laboratory, Kawasaki, Japan
3ETH Zürich, IFW C 46.1, 8092 Zürich, Switzerland

Abstract. We report on a case study in applying different formal methods to model and verify an architecture for
administrating digital signatures. The architecture comprises several concurrently executing systems that authen-
ticate users and generate and store digital signatures by passing security relevant data through a tightly controlled
interface. The architecture is interesting from a formal-methods perspective as it involves complex operations on
data as well as process coordination and hence is a candidate for both data-oriented and process-oriented formal
methods.

We have built and verified two models of the signature architecture using two representative formal methods.
In the first, we specify a data model of the architecture in Z that we extend to a trace model and interactively
verify by theorem proving. In the second, we model the architecture as a system of communicating processes that
we verify by finite-state model checking. We provide a detailed comparison of these two different approaches
to formalization (infinite state with rich data types versus finite state) and verification (theorem proving versus
model checking). Contrary to common belief, our case study suggests that Z is well suited for temporal reasoning
about process models with complex operations on data. Moreover, our comparison highlights the advantages of
proving theorems about such models and provides evidence that, in the hands of an experienced user, theorem
proving may be neither substantially more time-consuming nor more complex than model checking.

Keywords: Formal methods; Comparison; Theorem proving; Model checking; Security; Case study

1. Introduction

While there is increasing consensus about the usefulness of formal methods for developing and verifying critical
systems, there are many options and schools of thought on how best to do this. Formal methods can be loosely
characterized along different dimensions in terms of what views of a system they emphasize, the proof techniques
used, etc. When most of the system’s complexity stems from the way that processes interact, and the data manip-
ulations are comparatively simple, then the use of a process-oriented modeling language, like a process algebra
or some kind of communicating automata, is typically favored and model checking is the preferred means of
verification. On the other hand, when system data is structured into rich data types (e.g., formalizing problem
domains, interface requirements, and the like) that are subject to complex manipulations, then data-oriented
modeling languages are considered superior and verification is carried out by theorem proving. But what about
systems whose design encompasses both complex data and nontrivial interaction and whose requirements speak
about both the operations on data and their temporal ordering? Here there is less consensus and the options

Correspondence and offprint requests to: David Basin, E-mail: basin@inf.ethz.ch

64 D. Basin et al.

available include using abstraction to simplify the data model to enable model checking, theorem proving, and
even combining formal methods.

In this paper, we look at an example of one such system: a security architecture used for a digital signature
application. The architecture is based on the secure operating system DARMA (Hitachi’s platform for Depend-
able Autonomous hard Realtime MAnagement) [ASS+99], which is used to control the interaction between
different subsystems, running on different operating platforms. In particular, DARMA is used to ensure data
integrity by separating user API functions, which run on a potentially open system (e.g., connected to the In-
ternet), from those that actually manipulate signature-relevant data, which run on a separate, protected system.
Any model of this architecture must formalize both the processes that run on the different platforms and the data
that they manipulate to produce signatures. Moreover, the modeling formalism must be capable of formalizing
data-integrity requirements, expressed as temporal properties about how the different data stores should change.

We present two models of the signature architecture: one based on a data model formalized using Z [Spi92],
and the other as a system of communicating processes formalized in PROMELA, the input language to the Spin
model checker [Hol04]. In both languages, we are faced with the question of how to model the two aspects–rich
data combined with process interaction–and verify the resulting models. In the Z model, we formalize a classical
data model that describes the architecture in terms of component states and state transitions. Afterwards, we
exploit the fact that Z is a very rich specification language, and we extend the data model to a simple process
model that describes the system’s semantics in terms of the set of its traces. This provides a basis for naturally
formalizing the system’s security requirements as trace requirements. The main challenge then is verification,
which requires interactively establishing invariants by induction over the set of system traces. In contrast, in our
PROMELA model we focus on processes and their interactions. To verify the resulting model automatically, we
simplify the data model such that the resulting system is finite state. The main challenges here are making this
simplification, formalizing the properties that the resulting model should fulfill, and managing the complexity of
model checking. Our case study provides concrete examples of these problems and how we have handled them.

Contributions Our main contribution is to provide a detailed comparison of these two different approaches to
formalization (infinite state with rich data types versus finite state and process-oriented) and verification (theorem
proving versus model checking). Our account is both quantitative and qualitative and sheds light on the relative
strengths and weaknesses of the two approaches. Perhaps surprisingly, our experience in this case study is that,
in the hands of an experienced user, theorem proving is neither substantially more time-consuming nor more
complex, and in some regards it is considerably simpler, than working with a process-oriented view alone using
a model checker. Moreover, we document a number of tradeoffs where the additional complexity is counter-
balanced by additional benefits, for example, a more general architecture, stronger theorems, and an increased
confidence in the system gained by formalizing and proving system invariants.

Our second contribution concerns the suitability of Z for formalizing process-oriented models and require-
ments. We show here how the use of a sufficiently expressive data-modeling language provides a foundation for
formalizing a trace-based model of process interaction. The ideas here are general and should carry over to other
ways of composing processes. It follows that there is no need to resort to different formal methods to formalize
and combine the different system views since this can all be done within Z itself. The practical benefit of this is
not only the simplicity of a single formal method, but also the direct use of general-purpose tools. An example
of this is the HOL-Z environment for the Isabelle theorem prover, whose use we describe in this paper.

Organization In Sect. 2, we provide an informal overview of both the signature architecture and its security
requirements. In Sects. 3 and 4, we describe how we used Isabelle/HOL-Z and Spin, respectively, to model and
verify the architecture. In Sect. 5, we compare approaches and in Sect. 6 we discuss related work and draw
conclusions.

Note that in the interest of brevity, only illustrative aspects of the models and proofs are presented. All
definitions and complete proof scripts for the two case studies are given in [BKTW04] and [Pro05].

2. The signature architecture

2.1. Overview

The signature architecture is based on two ideas. The first is that of a hysteresis signature [SM02], which is a
cryptographic approach designed to overcome the problem that, for some applications, digital signatures should

Verifying a signature architecture 65

Fig. 1. The signature architecture

Fig. 2. The access controller and session manger modules

be valid for very long time periods. Hysteresis signatures address this problem by chaining signatures together
so that the signature for each document signed depends on hash values computed from all previously signed
documents. These chained signatures constitute a signature log and to forge even one signature in the log an
attacker must forge (breaking the cryptographic functions behind) a chain of signatures.

The signature system reads the private keys of users from key stores, and reads and updates signature logs.
Hence, the system’s security relies on the confidentiality and integrity of this data. The second idea is to protect
these using a secure operating platform. For this purpose, Hitachi’s DARMA system [ASS+99] is used to separate
the user’s operating system (in practice, Windows) from a second operating system used to manage system data
(e.g., Linux). This compartmentalization plays a role analogous to network firewalls, but here the two systems
are protected by controlling how functions in one system can call functions in the other. In this way, one can
precisely limit how users access the functions and data for hysteresis signatures that reside in the Linux operating
system space.

Our model is based on a 13 page Hitachi document, which describes the signature architecture using diagrams
(like Figs. 1 and 2) and text, as well as discussions with Hitachi engineers.

2.2. Functional units and dataflow

The signature architecture is organized into five modules, whose high-level structure is depicted in Fig. 1. The
thick-lined boxes represent modules and the thin-lined boxes represent individual functions.

The first module contains three functions, which execute in the operating system space of the user. We call
this the “Windows-side module” to reflect the (likely) scenario that they are part of an API available to programs
running under the Windows operating system. These functions are essentially proxies. When called, they forward
their parameters over the DARMA module to the corresponding functions in the second, protected system,
which is here called the “Linux-side module”, again reflecting a likely implementation. There are two additional
(sub)modules, each also executing on the second system, which package data and functions for managing access
control and sessions.

66 D. Basin et al.

Fig. 3. Interface description for AuthenticateUserW

Fig. 4. Interface description for AuthenticateUserL

To create a hysteresis signature, a user takes the following steps on the Windows side:

1. The user application calls AuthenticateUserW to authenticate the user and generate a session identifier.
2. The application calls GenerateSignatureW to generate a hysteresis signature.
3. The application calls LogoutW to logout, ending the session.

As explained above, each of these functions uses DARMA to call the corresponding function on the Linux side
and DARMA serves to restrict access from the Windows side to only these three functions. The Linux functions
themselves may call any other Linux functions, including those of the Access Controller, which controls access to
data (private keys, signature logs, and access control lists). The Access Controller in turn uses functions provided
by the Session Manager, which manages session information (SessionID, etc.), as depicted in Fig. 2.

The Hitachi documentation provides an interface description for each of these functions. Two representative
examples are presented in Figs. 3 and 4. These are the descriptions of the functions AuthenticateUserW and
AuthenticateUserL. The former calls DARMA and returns a session identifier while the latter does the actual
work of checking the password and communicating with the access controller.

2.3. Properties

The Hitachi documentation also states three requirements that the signature architecture should fulfill. These
state that authenticated users are limited to generating one signature (with their private key) per authentication.

R1. The signature architecture must authenticate a user before the user generates a hysteresis signature.
R2. The signature architecture shall generate a hysteresis signature using the private key of an authenticated

user.
R3. The signature architecture must generate only one hysteresis signature per authentication.

We will subsequently see how to model these requirements as properties of traces in both Z and linear temporal
logic.

Verifying a signature architecture 67

3. Modeling and Verification with Isabelle/HOL-Z

3.1. HOL-Z

For our first model, we used Z as our modeling language and the HOL-Z environment for theorem proving. As
Z is well established and extensively documented, e.g., [Int, Spi92, WD96], we will assume that the reader has
basic familiarity with it. HOL-Z [BRW03] is an environment built upon the Isabelle/HOL system [NPW02]. The
HOL-Z environment provides a front end for creating “literate specifications”, where specifications are mixed
with informal explanations and are constructed as LATEX documents, typeset using standard Z macros and idi-
oms. These specifications are processed by HOL-Z and translated into a conservative shallow embedding of Z in
HOL. HOL-Z also provides tactic support tailored to reasoning about Z specifications and implements various
verification and refinement techniques.

3.2. The data model

Our formalization of the signature architecture’s state and operations is standard and closely follows Hitachi’s
informal specification. We formalize a state schema for each of the different system modules and an operation
schema for each function, based on their informal description.

State schemas. As examples, we present two state schemas: the session manager and DARMA. The session
manager maintains a session table (session table) and the set of active session identifiers (session IDs), i.e. those
session identifiers currently in use. A session tables associates user names and session identifiers with information
on access permissions for keys and the signature log. The access permissions prevent, for example, two signatures
from being generated within the same session.

SESSION TABLE ��
(USER ID \ {NO USER}) �→

(SESSION ID \ AUTH ERRORS) �→
[pkra : PRI KEY READ ACCESS;
slwa : SIG LOG WRITE ACCESS]

In this definition, USER ID, SESSION ID, PRI KEY READ ACCESS, and SIG LOG WRITE ACCESS
are the types of user identifiers, session identifiers, and the permissions to access the private keys and the signa-
ture log, respectively. NO USER and AUTH ERRORS are constants representing error elements. The state of
the session manager is formalized by the following Z schema:

SessionManager
session table : SESSION TABLE
session IDs : F SESSION ID

∀ x, y : dom(session table) •
(∃ s : SESSION ID • s ∈ dom(session table(x))

∧ s ∈ dom(session table(y))) ⇒ x � y
∀ x : dom(session table) •

∀ s : dom(session table(x)) • dom(session table(x)) � {s}

In general, a Z schema has a declarative part (above the line) and a predicate part (below the line). The declarative
part specifies the schema’s signature as a collection of typed fields, as in a record. The semantics of a Z schema is
the set of those records that fulfill the predicate part. In the above schema, the predicate part states that a session
identifier is associated with at most one user identifier and, conversely, that each user identifier is associated with
at most one session identifier. It follows that each authenticated user has exactly one unique session identifier.
The authenticated users are therefore characterized by the “active sessions”, i.e. by dom(session table).

The DARMA module serves as a communication medium. It can be understood as a record containing
shared variables into which both clients and the server “read” and “write” according to their needs. These shared
variables record which of the three Windows-side functions are called along with its arguments and the return
value from the Linux side. Part of this schema is given below, where we have elided declarations for the arguments
and return values for the signature generation and logout functions.

68 D. Basin et al.

DARMA
Command : COMMAND
User authentication uid : USER ID \ {NO USER}
User authentication pw : seq CHAR
Authentication : SESSION ID \ SESSION ERRORS

...

Operation schemas. Each of the module functions is associated with an operation schema. The association
is mostly straightforward. However, one aspect that does require explanation is how we model the input and
output to these functions. To do this, we explicitly identify the schema’s local input and output variables (respec-
tively postfixed by “?” and “!”, following the standard Z convention) with their DARMA counterparts and use
equality to mimic an assignment.1 We illustrate this below, for the module functions AuthenticateUserW and
AuthenticateUserL, which were described in Sect. 2.2.

The schema AuthenticateUserW models the identically named function, given in Fig. 3. This function is quite
simple and essentially acts as a proxy, forwarding values over DARMA. Hence the only thing to model is this
communication.

AuthenticateUserW
userid? : USER ID
password? : seq CHAR
session id ! : SESSION ID
DARMA

User authentication uid � userid?
User authentication pw � password?
Command � authenticate user
session id ! � Authentication

Here the variables User authenticate uid , User authenticate pw, Command , and Authentication are state variables
from the DARMA state schema, imported in the declarative part. The first two are assigned to the input values
userid? and password?, modeling user input. Command represents the name of the function called, named here
by the constant authenticate user. Finally the output of the schema, session id !, is assigned Authentication, rep-
resenting communication from DARMA (as we will see below, this represents the output of AuthenticateUserL).

The actual work in authenticating users and registering session information is carried out on the Linux side by
AuthenticateUserL. Our operation schema here formalizes the description given in Fig. 4. The operation depends
on the states of the components SessionManager, HysteresisSignature, and AccessController. This is formalized
by importing the corresponding schemas into the declarative part of the schema using Z’s � and � operators:
� expresses that the operation may change the component’s state, whereas � specifies that the state does not
change. The predicate part directly reflects the informal description: Step 1 is formalized by the test if the gener-
ation of a hash value is successful. Step 2 is modeled in the first else branch, which calls the auxiliary function
AuthenticateUser (e.g., with the hash value of the user’s password) and which returns either a new session identifier
or an error value. The remainder of the specification formalizes how to proceed, depending on whether the hash
calculation and authentication succeeded or failed. In the former case (Authentication
∈ AUTH ERRORS), the
session manager’s state is updated: the session table records, for this user identifier and session identifier, the right
to read the user’s private key and to update the signature log, and the set of session identifiers is updated with
the new session identifier. In the latter case (Authentication ∈ AUTH ERRORS), the session manager’s state is
unchanged. Note that the result of AuthenticateUserL is stored both in the output SessionID! and in the DARMA
variable Authentication.

1 Logically, the input and output variables are determined by the DARMA state and could be eliminated. However, not only do they clar-
ify the information flow, they also help to maintain the correspondence between our formal specification and Hitachi’s informal interface
descriptions (see Figs. 3 and 4) with their explicit inputs and outputs. Note too that, as is standard for Z, reference to input and output, as
well as other imperative notions like assignment, is just a conceptual convenience; the semantics of Z schemas is, of course, the standard
declarative one, given by sets of records.

Verifying a signature architecture 69

The auxiliary functions used in the above schema are defined using Z’s axiomatic definitions. For example,
hash is simply specified as a uninterpreted function over character sequences.

hash : seq CHAR → seq CHAR

For the proofs that the signature architecture satisfies its requirements, no further properties of hash are needed.
Note that this formalization models what is often called the “perfect cryptography assumption” in the security
protocol community. This assumption says, for example, that you can only decrypt an encrypted message if you
possess the appropriate decryption key, and you can only analyze the contents of a hashed message hash(A) if
you possess A itself. This is the case here as there is no function that can be applied to hash(A) to compute A, i.e.,
hash is one-way. Similarly, hashFailure is axiomatized as an uninterpreted predicate.2

hashFailure : P(seq CHAR)

In contrast, our definition of AuthenticateUser specifies its concrete behavior. This function checks the user
identifier and the hashed password against an access control list. In the case of a successful authentication, the
function RegistSessionInformation is used to generate a fresh session identifier; otherwise the return value is an
error element from AUTH ERRORS.

2 The Hitachi specification is based on a particular cryptographic API that allows hash functions to fail, e.g., if the pointer to the string to
be hashed is null. See also Figure 4.

70 D. Basin et al.

We will refrain from giving further details at this point, as the above should suffice to illustrate the main
modeling ideas.

3.3. The process model

In general, there are many possible ways of enriching a data model with process-oriented aspects, ranging from
the use of combined (data/process-oriented) formal methods, e.g., [Fis97, SD97], to working with a fixed notion
of abstract machine and execution semantics, e.g., [Abr96]. In our case, we proceed by formalizing the system
traces within Z.

Architecture as transition system. We use Z’s schema calculus to “wire together” the parts of our data model into
an architectural description by specifying how the Windows-side operations interact with the Linux-side oper-
ations over DARMA. First, we separately collect all the client-side and server-side operations. We use schema
disjunction here to model nondeterministic choice. The two resulting transition relations, ClientOperation and
ServerOperation, model a system where the Windows-side and Linux-side functions may be called in any order
and with any values, valid or invalid. Afterwards, we use schema conjunction to model the parallel composition
of the client-side operations with the server-side operations and we use existential quantification, again in Z’s
schema calculus, to hide the shared DARMA state.3 This models synchronous internal communication between
the sides. (Internal communication within each side is not modeled here.) The resulting architectural description
defines a global transition relation.

ClientOperation �� AuthenticateUserW ∨ GenerateSignatureW ∨ LogoutW

ServerOperation �� AuthenticateUserL ∨ GenerateSignatureL ∨ LogoutL ∨ NopOperationL

System �� ∃ DARMA • ClientOperation ∧ ServerOperation

Note that NopOperationL models a “no-op” operation on the Linux side by simply stuttering the Linux-side
state. It results when DARMA is called from the client side, but a client-side error occurs and the step is aborted.
Note that the transition relation System allows for two or more signature generation steps for the same session.
However, due to flags in the session table, an attempted second signature is specified to produce an internal error,
which results in a stuttering step (cf. Sect. 3.2).

Afterwards, we specify the global state of the system by composing the states of the system components
using schema conjunction. (Here HysteresisSignature formalizes the part of the Linux-side module’s state that
manages the signature logs, while the AccessController maintains a table with the private keys of users.) Similarly,
we specify the initial state, given schemas (not shown here) specifying the initial states of the different modules.

GlobalState �� SessionManager ∧ HysteresisSignature ∧ AccessController

Init �� SessionManagerInit ∧ HysteresisSignatureInit ∧ AccessControllerInit

3 Schema operations such as conjunction and disjunction combine the underlying signatures of their operands. In contrast, existential
quantification in Z’s schema calculus hides the signature of the quantified schema.

Verifying a signature architecture 71

System traces. The schema System formalizes a transition relation, whose state variables range over the in-
put/output variables of all operation schemas (e.g., variables like username? and SessionID! from Authenticate-
UserW). To reason about the system behavior, what we actually need is a transition relation expressed in terms
of just those variables in GlobalState (e.g., state variables such as session table and session IDs from the state
schema SessionManager). Hence, to proceed, we project the transition relation System to those state variables
in GlobalState by existentially quantifying over the remaining variables, like input and output variables. This
construction can be elegantly formalized using Z’s schema comprehension:

Next �� {System • (θGlobalState, θGlobalState′)} .

This builds the relation that consists of pairs (θGlobalState, θGlobalState′), whose components formalize the
variable tuples (so-called characteristic bindings in Z) in the pre-state and post-state.

The pair (Init, Next), together with the collection of global states, constitutes a Kripke structure and induces
a set of traces (or runs) in a canonical way. A trace is represented by a function that describes how the global
state of the system can evolve over time.

Traces �� {f : N → GlobalState | f (0) ∈ Init ∧ (∀ i : N • (f (i), f (i + 1)) ∈ Next)}
As is standard, in our formalization, a trace represents an infinite sequence of states. Note that any finite trace can
be extended to an infinite one simply by stuttering the last state. This is possible in our setting as some operations
do not change GlobalState in erroneous cases (for example, login for non-existing users).

3.4. Formalizing the security requirements

The architecture’s informal requirements, given in Sect. 2.3, are phrased in terms of temporal relationships between
system events. For example, (R1) states that “the signature architecture must authenticate a user before the user
generates a hysteresis signature.” This, and the other two requirements, can be formalized as a set of traces that
constitutes a safety property over a set of events and we can formalize the correctness of the architecture by
stating that each such property holds for every system trace.

To proceed this way, we must first formalize the relevant events. In model checking, it is common to associate
events with different states in a transition system, which correspond to execution events like calls to particular
functions. Unfortunately, this leaves open the question of where these events are actually generated. Moreover, it
is not well suited to a more abstract, declarative approach to modeling where, rather than program points, there
are only sequences of program states. Here we will take an alternate, less operational approach. We introduce
abstract event predicates that characterize the state changes associated with events, i.e., they specify the effect of
events rather than their cause. An event predicate, therefore, is a (possibly parameterized) relation over pairs of
states that characterizes when a relevant state change occurs.

Let us now turn to (R1), our first requirement. (R1) can be formalized in terms of three event predicates: the
session table changes due to a user authenticating himself by logging in; the session table changes due to a user
logging out; and the signature log changes due to the generation of a hysteresis signature for some user. Below is
our axiomatic definition of these predicates.

In, Out, Sign : USER ID → (GlobalState ↔ GlobalState)

∀ uid : USER ID; s1, s2 : GlobalState •
(s1, s2) ∈ In(uid)

⇔ uid
∈ dom(s1.session table) ∧ uid ∈ dom(s2.session table) ∧
(s1, s2) ∈ Out(uid)

⇔ (uid ∈ dom(s1.session table) ∧ uid
∈ dom(s2.session table)) ∧
(s1, s2) ∈ Sign(uid)

⇔ ((uid ∈ dom(s1.signature log) ∧ uid ∈ dom(s2.signature log)
∧ (s1.signature log(uid)
� s2.signature log(uid)))

∨ ((uid
∈ dom(s1.signature log) ∧ uid ∈ dom(s2.signature log))))

We can now directly formalize (R1) in terms of the relative positions (reflecting the relative time) where these
predicates hold in the system traces. Our requirement states that at every point where a user changes the signature
log, there exists a previous time point where he has logged in, and moreover he has not logged out since then. In
other words, there must be a login for the user before the associated signature log entry is changed and his session

72 D. Basin et al.

Fig. 5. General refinement diagram

must still be valid.

� ∀ t : Traces; n : N; uid : USER ID •
(t(n), t(n + 1)) ∈ Sign(uid)

⇒ (∃ k : 0 . . (n − 1) • (t(k), t(k + 1)) ∈ In(uid)
∧ (∀ j : (k + 1) · · · (n − 1) • (t(j), t(j + 1))
∈ Out(uid)))

The other two requirements are formalized similarly.
We conclude with a remark on the close relationship between our use of the event predicates and refinement.

These predicates can be understood as operation schemas on a more abstract system description level, which are
refined by the concrete operations for logging in, logging out, and signing. For example, In can alternatively be
formulated by the following operation schema:

In2
�GlobalState
uid? : USERID

uid?
∈ dom(session table) ∧ uid? ∈ dom(session table′)

These abstract operation schemas can be related to the concrete operation schemas by a refinement relation.
Roughly speaking, and as depicted in Fig. 5, refinement relates abstract operations opa to concrete operations
opc by relating, under an abstraction relation R, the states of the abstract system σa with the states of the concrete
system σc. The technical details vary depending on which notion of refinement is chosen (e.g., forward and back-
ward simulation [WD96]), and each imposes its own additional conditions, for example, that the domains and
ranges of the operations are compatible via R, etc. In our setting, where event predicates are related to concrete
operations, it is not difficult to check (and we have done so using Isabelle/HOL) that there is a simple refinement
relation where R is just the bijection on states and proving refinement amounts to showing that the abstract and
concrete operations are related one-to-one. For example, the schema LogoutL implies Out and if two states in a
system transition Next fulfill Out, then LogoutL is the only possible operation.

3.5. Proofs

All three requirements were proved using the proof environment for HOL-Z. In our comparison in Sect. 5, we
provide statistics on our verification effort. Here we restrict ourselves to a few comments on its overall structure.

The verification required proving 173 theorems. Many of these were simple lemmas, for example, for
simplifying expressions, which were then incorporated into Isabelle’s automatic proof procedures. The bulk of the
preparatory work centered around formalizing and proving (1) properties of operation schemas, (2) architecture
decomposition theorems, and (3) global invariants.

With respect to (1), for each operation schema we stated and proved lemmas that characterize its precon-
ditions, postconditions, and invariants in terms of its inputs, outputs, pre-state, and post-state. The theorems
proved were of the form

OP(in, out, σ, σ ′) ⇒ COND(in, out, σ, σ ′) ⇒ �(σ, σ ′) ,

where OP is an operation schema, COND a side-condition and � is one of:

INV (σ, σ ′), expressed in terms of (state variables from) the pre-state σ and the post-state σ ′;
PRE(σ), expressing a condition on the pre-state σ ; or
POST (σ ′), expressing a condition on the post-state σ ′.

Verifying a signature architecture 73

An example of such a lemma is the invariant

� AuthenticateUserL ⇒ uid : dom(session table) ⇒ session table′(uid) � session table(uid) ,

stating that when a user identifier is in the session table, its entries remain unchanged after another user is authen-
ticated. Note that, as this example illustrates, HOL-Z is syntactically more liberal than Z. This invariant is a
HOL-Z formula, but strictly speaking not a Z formula, since it combines Z schema expressions and predicate
calculus expressions and it is not closed.

In general, the complexity of proving these lemmas ranged from easy (as in this case) to very high, both in
terms of the conceptual work required to understand why they hold and in terms of the proof effort required in
Isabelle.

With respect to (2), one of the main lemmas proved was an architecture decomposition theorem, which states
that the signature architecture can make progress in exactly four ways:

1. an AuthenticateUserW step occurs in parallel with an AuthenticateUserL step;
2. a GenerateSignatureW step starts and aborts due to an internal error while running in parallel with NopOperationL

(a stuttering step on the Linux side);
3. a GenerateSignatureW step occurs in parallel with a GenerateSignatureL step; or
4. a LogoutW step occurs in parallel with a LogoutL step.

By using the Z schema calculus, this theorem can be compactly expressed as:

� (∃ DARMA • AuthenticateUserW ∧ AuthenticateUserL) ∨
(∃ DARMA • GenerateSignatureW ∧ NopOperationL) ∨
(∃ DARMA • GenerateSignatureW ∧ GenerateSignatureL) ∨
(∃ DARMA • LogoutW ∧ LogoutL)

⇔ System .

This theorem explains in which ways synchronous communication over DARMA is possible. We use it in the
right-to-left direction as a kind of “elimination rule” that uses case analysis to decomposes assumptions about
steps in traces: if we have a trace t and a system transition (t(n), t(n + 1)), a property P(t(n), t(n + 1)) holds if it
holds for the four possible system transitions. Note that the complexity of the case split reflects the low complexity
of the coarse-grained communication within the architecture: the client and server side operations synchronize
in just four different ways. For a less tightly-coupled architecture, more cases would be needed, expressing all the
ways that operations could occur.

With respect to (3), we proved a large number of global invariants, which are formulas of the form ∀ t : traces •
INV (t(n), t(n + 1)). Examples of such invariants are that the signature log monotonically increases and that the
domain of the session table and signature log are always bounded by the domain of the table of private keys. These
lemmas, as well as the proofs of the three requirements, were proven by induction over the positions in a trace. In
the inductive case, the architecture decomposition theorem was applied to decompose the step into possible cases.
In each case, either other global invariants or relevant lemmas about properties of operation schemas were used
to reason about the consecutive states. Hence, induction and decomposition served as the primary mechanism to
reduce the reasoning about global invariants to standard reasoning about local preconditions, postconditions,
and invariants of operations. In our experience, and perhaps in contrast to common belief, the proofs of these
global invariants were not particularly difficult. The main proof effort was spent in establishing local invariants
like INV (σ, σ ′), that is, carrying out conventional reasoning about preconditions and postconditions. We shall
return to this observation and provide further perspective on it in Appendix B. An example of stating and proving
a global invariant is given in Appendix C.

4. Modeling and verification with spin

The security properties of the signature architecture define authorized sequences of actions, i.e., properties of
traces. This suggests building a process-oriented system model from the start that focuses on processes, relevant
aspects of their internal computation, and their communication. We describe such a model in this section and
verification by model checking.

74 D. Basin et al.

Fig. 6. Modules and Channels

4.1. Spin

There are a variety of formalisms and tools suitable for process modeling and verification. We have used Spin,
one of the most advanced publicly available model checkers, to formalize and check our second model.

Spin is a model checker that supports the design and verification of distributed systems and algorithms. Spin’s
modeling language, called PROMELA (PROcess MEtaLAnguage), provides a C-like notation for formalizing
processes, enriched with process-algebra-like primitives for expressing parallel composition and communication.
Properties may be expressed in future-time LTL and Spin implements algorithms for LTL model checking. Appen-
dix A provides a brief introduction to LTL; the PROMELA modeling constructs themselves will be introduced
as needed, on-the-fly. For a detailed description of Spin, the reader should consult [Hol04].

4.2. Abstraction

As previously noted, one of the main challenges in building a process model is to formalize the system at the
right level of abstraction. While this is true for modeling in general, it is particularly crucial when the objective is
to arrive at a finite-state system whose properties can be verified by model checking. In the case of the signature
architecture, the system’s behavior depends on the data administered, e.g., the values of keys, session identifiers,
hash values, and the like, which come from large or even infinite domains. To proceed, we must abstract these
data domains into small finite sets, and model functions over data as functions over the corresponding finite sets.

The approach we take is to limit the environment in which the system can be used. In our Z model, the global
transition relation System modeled interaction with an environment that could call any operation, in any order,
and with any value. Whether the transitions represented actions associated with legitimate users, or attackers,
was irrelevant, as was the number of such potential users. In our PROMELA model, we will restrict both the
number of users that can interact with the signature architecture and the values with which they can call system
functions.

In particular, we model the signature architecture as a system operating in an environment comprised of
honest users and an attacker. The honest users use the system as intended while the attacker uses the system
in perhaps unintended ways and, in particular, attempts to exploit and compromise the system. In both cases,
the values with which these principals call system functions are restricted to finite domains. We build the overall
system model from submodels that define processes for each of the different subsystems together with the pro-
cesses that model the normal users and the attacker. We then prove that the desired security properties hold of
the system, even in the presence of all the possible malicious actions that can be taken by the attacker. This is
analogous to the approach taken in verifying security protocols [Pau98, RSG+00, BMV05], where one explicitly
models an active attacker who controls the computer network and proves that protocols achieve their properties
despite the attacker’s interference.

4.3. Modeling communication

Let’s begin with communication. As suggested by Figs. 1 and 2, we can model the signature architecture in terms
of five communicating modules. In the PROMELA model, we explicitly model communication; this is in contrast
to our Z model (see Sect. 3.3), where communication is implicitly captured by the way that state transitions are
forced to synchronize with DARMA on certain values in the definition of the global transition relation System.

Verifying a signature architecture 75

So here we model each module as a PROMELA process, where each process communicates with other processes
over channels. A PROMELA channel is a buffer of some declared (finite) size that holds data of specified types.
For each function in a module, we define two channels: one for modeling function calls and the other for mod-
eling the return of computed values. This is depicted in Fig. 6, which names the channels used for passing data
between processes. All channels are declared to have size zero, which models synchronous communication under
PROMELA’s semantics: the process sending data on a channel and the process receiving data from the channel
must rendezvous, i.e., carry out their actions simultaneously.

As the figure shows, between Windows and DARMA we have just one calling channel wd and one returning
channel dw.4 This reflects that we have only one function in the Darma interface. This function is called by
marshaling (i.e., packaging) the function arguments together, including the name of the function to be called
on the Linux side. We model this by putting all these arguments on the channel. For example, the expression
wd!AuthUser,username,password (which occurs in our model of a normal user, given shortly), models that the func-
tion AuthenticateUserW calls Darma, instructing Darma to call AuthenticateUserL with the arguments username
and password.

4.4. Modeling system users

We now explain our formalization of both normal system users and attackers. The description of the signature
architecture in Sect. 2 describes how the system is intended to be used by normal users. As we will see, it is a
simple matter to translate this description into a process that models such users.

The Hitachi documentation describes, in part, the powers and limitations of an attacker; in particular, an
attacker cannot access functions on the Linux side. This is a starting point for our formalization of an attacker
model, but it leaves many points open, for example, whether an attacker can operate within the Windows-side
system as a legitimate user with a valid password, or if he is an outsider, without these abilities. Moreover, it is
not specified what the attacker knows, can guess, or can feasibly compute.

One achieves the strongest security guarantees by proving the safety of a system in the face of the most general
and powerful attacker possible. Hence, we model an attacker who cannot only function as a legitimate user of
the system, but can also call functions in unintended ways, with arbitrary parameters. Moreover, he knows, or
can guess or compute, the names of other users, messages, and message hashes, and of course he knows his own
password. However, we assume he can neither guess the passwords nor the session identifiers of other users. If
either of these were possible, then forging signatures would be trivial. An attacker who can guess the password
of a user can authenticate himself to the system as that user and thereby generate signatures in the user’s name.
Moreover, the result of a successful authentication is a session identifier and an attacker who can guess these can
hijack sessions by guessing identifiers currently in use.

We summarize these assumptions as follows:

1. The attacker can call AuthenticateUserW, GenerateSignatureW, and LogoutW in any order.
2. The attacker is also a legitimate user with a user name and a password.
3. The attacker knows the names of all users and he can guess messages and message hashes.
4. The attacker can only give his (good) password or a bad guessed password.
5. The attacker cannot guess a good SessionID, i.e., one used by other users.
6. Generated SessionIDs are always good.

In our PROMELA model, we define sets of objects, namely finite intervals of natural numbers, for modeling
the different kinds of objects in the problem domain: names, messages, hash values, and passwords. The key
idea is to partition these sets into those things that are known by the attacker (or can be guessed or computed)
and those that are not. For example, there is a set of user names, formalized by the set of natural numbers
{MIN username, . . . , MAX username}. We model that the attacker knows, or can guess, any of these names by
allowing him to guess (by nondeterministically selecting) any number in this set. However, we partition the ranges
corresponding to passwords and session identifiers so that the attacker can only guess “bad” ones, which are ones
that are never assigned to normal users. In addition, the attacker also has a “good” password, which allows him

4 Note that we ignore channels for calling the Windows functions since the functions that actually call AuthenticateUserW, GenerateSig-
natureW, and LogoutW fall outside the scope of our model, that is, we do not consider either the calling context or how the results are
used.

76 D. Basin et al.

Fig. 7. Modeling passwords and session identifiers

to use the system as a normal user and generate a good session identifier. Figure 7 depicts this partitioning, with
the concrete values that we later use when model checking. For example, the good passwords are {1, 2}, where
2 represents the attacker’s password. He can only guess passwords in the range {2,3}, where 3 models a bad
password, i.e., one that does not belong to any normal user. As he cannot guess the password 1, he cannot use
the system (e.g., to generate a signature) as any user other than himself.

Given this abstraction, it is now a simple matter to model the actions of normal users and the attacker.

Normal users. Figure 8 shows our model5 of a normal user, which models the steps that such users take when
using the signature architecture.

In lines 4 and 5 we model the different possible choices for system users and their messages. The macro
setrandom(x,lower,upper) is defined as:

#define setrandom(var, lower, upper)
atomic{ var = (lower);

do
:: break
:: (var < (upper)) -> var = var + 1
:: (var == (upper)) -> break

od;
skip;

}

This routine executes as a single atomic step and uses nondeterministic choice within a loop to set x to a value,
lower ≤ x ≤ upper. Hence lines 4 and 5 set the username and password to those of a normal user, chosen
nondeterministically from the predefined ranges.

Afterwards, the user generates a hysteresis signature. The lines 8 and 9 model AuthenticateUserW , which
models the equivalent of the identically named Z schema, which was presented in Sect. 3.2. Specifically, line 8
models the user calling Darma on the wd channel, specifying the execution of the Linux-side user authentication
function, along with his username and password. Line 9 models the result returned on the dw channel: a session
identifier (whose value is greater than zero when authentication is successful).

On lines 11–12, a message from the space of possible messages is nondeterministically selected and its message
hash is computed. We model Hash simply as the identity function. Although this does not satisfy the functional
requirements of a cryptographic hash function, in particular, that it is a one-way function, it is adequate for
establishing the stipulated properties of our process model, which only rely on passwords and session identifiers
being unguessable. On line 14, the user calls Darma on the wd channel, instructing Darma to generate a signature
with the session identifier returned from the previous round of authentication and the message hash. The gener-

5 Model excerpts are taken verbatim from our PROMELA model, with the exception of pretty printing, line numbering, and minor simpli-
fications for expository purposes.

Verifying a signature architecture 77

Fig. 8. User model

Fig. 9. Attacker model

ated signature is returned on line 15. Note that the return value can also indicate an error, for example when the
session identifier is invalid.

Lines 17–18 model the user logging out, which invalidates his session identifier.

The attacker. Figure 9 shows the PROMELA process that formalizes our attacker model. Here we see that
the attacker can guess an arbitrary user name and message hash (lines 5–6). However, in accordance with the
guessing model depicted in Fig. 7, he can only guess one good password (Max Good Password), which allows
him to log in as a normal user, or bad passwords (line 7). Similarly, he can only guess bad session identifiers
(line 8).

78 D. Basin et al.

Fig. 10. AuthenticateUserL

Fig. 11. Initialization process

Afterwards, we use a loop with nondeterministic choice to model the attacker repeatedly calling Darma (on
the wd channel) with these guessed values, in any order he likes. Alternatively, as formalized by the last four
actions, he can guess new values at any point in time.

This example again illustrates the power of nondeterminism in a process-oriented modeling language. As with
the user model, we use it to leave open which values are taken on by variables. This models a system where these
variables can take on any value from the specified sets at system runtime. In addition, we use nondeterminism to
describe the different possible actions that can be carried out by a user, while allowing the actions to be ordered
in any way. This can be contrasted to our Z model which uses relations to formalize a nondeterministic transition
relation. In the case of model checking, this nondeterminism typically leads to verification problems with large
search spaces whereas in theorem proving it results in the need to perform case splits.

4.5. Modeling module functions

The majority of our PROMELA model describes the different functions contained in the system modules. As
the Windows-side functions (e.g., AuthenticateUserW) have been straightforwardly modeled as calls to DAR-
MA within the user processes, we are left with modeling the Linux-side functions. We model each of them in a
standard process-oriented way, by making the control flow of each function explicit, as well as the operations on
state variables, and the synchronization with other processes. Functions operating on state variables, which range
over finite domains, approximate their counterparts operating over infinite domains, as previously described.

As a representative function, we return to AuthenticateUserL, first described in Sect. 2.2 and specified in Z in
Sect. 3.2. Figure 10 shows the part of the PROMELA process that models this function (the module also contains
definitions for the other Linux-side functions). This directly models the three steps explained in Sect. 2.2: calculate
a hash value (lines 2–7), authenticate the user (lines 9–10), and return the session identifier (line 13).

4.6. Putting It all together

We build the overall model by composing in parallel the processes defined above. Namely, we compose the two
processes formalizing the Windows-side module (as used by normal users and by the attacker) and the processes
for the remaining modules. This is depicted in Fig. 11. Note that we associate an identifier lsm with the process

Verifying a signature architecture 79

executing the Linux-side module. This will be used during verification to refer to particular labels in an invocation
of the LinuxSideModule process, as described in the next section.

4.7. Model checking

We have used the Spin model checker to verify that our model satisfies the security properties listed in Sect. 2.3.
Prior to describing this verification, we first recount how Spin model checking works in general.

Spin can be used to establish that a formula φ of future-time linear temporal logic holds of a model M, i.e.,
M |� φ. The formula φ formalizes the desired, or “good”, system behavior and M is a Büchi automaton derived
from the PROMELA model. For model checking with Spin, one negates φ, thereby expressing “bad” system
behavior, which in our case is the set of traces that represents security violations. The resulting formula ¬ φ is
converted to a Büchi automaton A¬ φ , called a “never claim” in the parlance of Spin, that recognizes precisely this
set of bad behaviors. The Spin system then takes the automata M and A¬ φ as input and reduces model checking
to an automata-theoretic problem as described in [VW86] by constructing (on-the-fly) and searching the resulting
product automaton. If Spin finds a trace accepted by this automaton, then the trace is a counterexample to φ
that is accepted by M and it explains how the system allows the bad behavior. Alternatively, if Spin succeeds
in showing that no such traces exist (by exhaustively showing that there are no acceptance cycles in the product
automaton), then it has succeeded in showing M |� φ.

We now illustrate how Spin is used to verify the first requirement described in Sect. 2.3. This requirement
states that the signature architecture must authenticate a user before the user generates a signature. In our Z
specification, we formalized this using event predicates that characterized the effect of events. Our PROMELA
model is more operational and we can formalize predicates not only in terms of the global system state, but also in
terms of the state of the individual processes, e.g., their program counters. This results in direct, albeit lower-level
definitions of predicates like In, Out, and Sign, which we defined previously.

The following are our PROMELA definitions (written using C-preprocessor notation) of these three predi-
cates.

#define in(uname,sID) /* the user uname logs in with session identifier sID */
(LinuxSideModule[lsm]@DONE_AuthL && username_LINUX == uname && sessionID_LINUX == sID)

#define out(sID) /* the user with session identifier sID successfully logs out */
((LinuxSideModule[lsm]@DONE_LogoutL) && (result_LINUX > 0) && (sessionID_LINUX == (sID)))

#define sign(sID) /* the user with session identifier sId successfully generates signature */
((LinuxSideModule[lsm]@DONE_GensigL) && (signature_LINUX > 0) && (sessionID_LINUX == (sID)))

In these definitions, we reference labels (using @) in our PROMELA model to formalize that processes have
reached certain points in their execution, and we use predicates on variables to express conditions on the system
state. For example, consider the predicate in, which formalizes the state reached after a user executes the login
function. It consists of three conjuncts which formalize that the Linux-side module has: (1) reached the step
labeled Done AuthL, indicating that authentication has completed (see Fig. 10); (2) the user being authenticated
is uname; and (3) the session identifier returned is sID. Note that authentication can fail, in which case sID is
zero. The other predicates are formalized similarly.

Now we can formalize (R1) using these predicates: each signature generated with a session identifier s must
be preceded by a login of a user u, who is assigned s and has not logged out in the meantime. We express this as

∀ s : session. (∃ u : user. (in(u, s)) before sign(s)) ∧ � (out(s) → ((∃ u : user. in(u, s)) before sign(s))) . (1)

The first conjunct states that whenever a signature is generated for a session with identifier s, it must be preceded
by some user u who logs in and is allocated s. The second states that, after each logout that terminates the session
s, then again any signature with s must be preceded by a login allocating s. Here user ranges of the set of all
user names and session over the set of valid session identifiers (i.e., those greater than zero), which result from
a successful login. This formula formalizes (R1) as any signature must be preceded by a successful login, and a
successful login must also occur after the last logout preceding a signature.

80 D. Basin et al.

Fig. 12. Büchi automaton generated for never claim for requirement 1

The above is not yet a formula of future-time LTL, to which Spin is limited. To begin with, “before” is not a
standard LTL operator (see Appendix A for a definition of LTL). However it can be expressed using the “weak
until” modality W , where A before B is defined as (¬ B) W A. Substituting this definition, Equation (1) becomes

∀ s : session. (¬ sign(s) W (∃ u : user. in(u, s))) ∧ � (out(s) → (¬ sign(s) W (∃ u : user. in(u, s)))) . (2)

Finally, we must eliminate the two quantifiers over sets. Since these sets are finite, we can replace the uni-
versally quantified formula by finitely many conjuncts and the existentially quantified formulas by finitely many
disjuncts. In particular, the formula ∀ s : session. P(s) is expanded to P(s1) ∧ P(s2) · · · ∧ P(sn), where s1, . . . , sn
are the finitely many model representatives of valid session identifiers and the dual replacement is made in the
existential case. So, for example, for a scenario with 3 sessions and 2 users, Eq. (2) becomes

¬ sign(s1) W (in(u1, s1) ∨ in(u2, s1)) ∧ � (out(s1) → (¬ sign(s1) W (in(u1, s1) ∨ in(u2, s1)))) ∧
¬ sign(s2) W (in(u1, s2) ∨ in(u2, s2)) ∧ � (out(s2) → (¬ sign(s2) W (in(u1, s2) ∨ in(u2, s2)))) ∧
¬ sign(s3) W (in(u1, s3) ∨ in(u2, s3)) ∧ � (out(s3) → (¬ sign(s3) W (in(u1, s3) ∨ in(u2, s3)))) .

(3)

The negation of this formula constitutes our never claim, which we automatically convert into a Büchi autom-
aton with 8 states. For this we use the tool LTL2BA [GO01]. Figure 12 shows the resulting automaton where, to
save space, we have abbreviate sign(s1) as sign1, in(u1, s2) as in12, etc. Although it would not be easy to specify an
automaton like this by hand, it is not too difficult to understand how it works. Roughly speaking, the automaton
consists of three parts–right, center, and left–which handle the cases of signatures produced with the first, second,
and third session identifier respectively. Consider, for example, the scenario where:

1. the system allows a user to log in with session identifier 1,
2. session 1 is terminated by a log out,
3. some number of steps follow without the session identifier 1 being reassigned by a log in, and
4. a signature is produced in a session with identifier 1.

This scenario, representing a violation of (R1), is accepted by this automaton. Step 1 corresponds to a transition
from the initial state to state 1 (a transition labeled 1 can always be taken, including during a login). Actions
taken by the system during this session correspond to the self-loop on state 1 (it is immaterial what these actions
are, e.g., perhaps a signature is generated or perhaps not). Step 2, the log out, corresponds to the transition from
state 1 to state 2. Step 3 corresponds to the self-loop on state 2. Finally step 4 corresponds to the transition from
state 2 to the final state 7, an accepting state.

Spin verifies that our model satisfies this property (i.e., no system trace satisfies the never claim) in 45 minutes
of computation time.6 In doing so, it builds a product automaton with over 17 million states and searches almost
60 million transitions. Note that while model checking itself is completely automatic, the model checker may fail
to terminate or may exhaust memory. This was often the case in our work and it required considerable interaction
to obtain a successful run. We will return to this point in the comparison.

6 All verification times measured in this paper are on a 4 Ghz Intel P4 workstation with 4 GByte RAM running Linux.

Verifying a signature architecture 81

Fig. 13. Statistics on the two verifications

The formalization and verification of the second requirement follows the same pattern. However, the third
requirement necessitated a different approach. This requirement involves counting: the signature architecture
must generate only one hysteresis signature per authentication. While it is straightforward to count up to some
finite bound in LTL, it requires using the next-time modality. This means that optimizations, like partial-order
reduction [Pel96], which play an important role in making model checking feasible, are no longer sound. As a
result, our attempts at model checking this way failed. We took an alternative approach and modified our model,
adding an array of counters, one for each session identifier, that tracks the number of signatures generated for
each session. We then added a monitor process that runs in parallel and checks that each counter in the array is
either set to zero or one. Afterwards we used Spin to automatically verify that this assertion holds for all reachable
system states.

5. Comparison

In this section, we compare the two different approaches we have taken to modeling and verification. While there
have been other general investigations of theorem proving versus model checking (see Sect. 6) and considerable
work on their integration, there appear to be few studies that examine their relationship concretely on an in-depth
case study. We take up this challenge here and make both quantitative and qualitative comparisons between our
two formalizations. The results, we believe, help shed light on the relative strengths and weaknesses of the different
approaches.

Note that any such comparison must be made and interpreted with care. The conclusions can differ consider-
ably depending, for example, on the expertise of those carrying out the verification, the specific formalisms and
tools used, what is actually measured, and the problem chosen for the comparison. [BK91] contains an in-depth
discussion of the difficulties involved here. To ensure an accurate quantitative comparison, we have kept statistics
on both verification efforts (the times spent are estimates) and also ensured that each verification was made on
an equal footing. Both verifications were carried out by a team consisting of an expert in the formal method
(namely, a researcher who both understands the theory behind the formal method and has practical experience
in its use) and an engineer with limited initial knowledge of the formal method.

Figure 13 summarizes the quantitative differences between the two approaches. We explain these figures below,
as well as qualitative differences not captured by these metrics.

5.1. Size

In HOL-Z, we built one system model, of 550 lines, against which we verified all three properties. In PROMELA,
we built an initial system model, which we adapted afterwards for each of the three properties. The 647 lines
of specification is the average size of the four models created. Despite the fact that the HOL-Z model differs
substantially from the PROMELA models, they are all of roughly similar size. This stems from the fact that the
HOL-Z model is more detailed than the PROMELA models in some respects and more abstract in others. For
example, HOL-Z state schemas are more detailed since they define not only data types, but also invariants. On the

82 D. Basin et al.

other hand, HOL-Z operation schemas are typically smaller as they abstractly specify the relationship between
states, rather than the sequence of operations used to change states.

For HOL-Z, property size measures the number of lines used to specify the properties and the event predicates
used in their definitions. For PROMELA, it is the number of lines used to specify the LTL formulas, the auxiliary
predicates, and the changes to the model needed to specify the requirements (including the introduction of a
monitor process for the third requirement). The LTL formulas for the first two requirements are quite compact,
at least before we expand the set quantifiers.7 This need not generally be the case: there are temporal requirements
whose LTL formalization are non-elementary larger than their formalization in higher-order logic.8 Finally note
that Spin works with the Büchi automata generated from the LTL formulas, and the automata can be exponen-
tially larger. While the automata are generated automatically and it is not actually necessary for users to ever
examine them (as we did in Sect. 4.7), we found that this was helpful in checking that our LTL formulas actually
captured the intended requirements.

5.2. Time

More time was spent in the theorem-proving approach than in the model-checking approach. The main difference
is due to the fact that model checking is automatic as opposed to interactive (the 19 days reflects the time spent
interacting with the theorem prover). Folk wisdom is that, because of automation, model checking is much less
time consuming than theorem proving. While this is indeed the case for the verification time itself, the overall
time reduction, about 27%, is not so significant.

However, the numbers point only indirectly to what is probably the most interesting difference: how the time
was spent. With Spin, once a model and a property are specified, the verification effort is focused on simplifying
the problem so that the model checker terminates. In our case, this involved tuning the sizes of the different
finite domains as well as introducing abstractions and other simplifications. For example, to reduce verification
times, we found it necessary to annotate our model with information (using PROMELA’s atomic statement) on
which sequences of steps can safely be executed atomically, i.e., without interleaving steps from other processes.
Moreover, as previously noted, although it is possible to model the requirement (R3) using a never claim, the
resulting verification consumed too much computer memory and thus required a different modeling approach.
The time spent on these activities (which also includes waiting for runs to fail) was substantial and is reflected
both in the increased time taken for system modeling and for property specification.

Note that these efforts are quite different from those required for verification in HOL-Z. Our HOL-Z veri-
fication was based on only one model, the general system model. We neither had to work out any abstractions
or restrictions in advance nor to make subsequent changes during verification. Hence the specification time was
shorter. In return, substantially more time was required for verification. Although some of this time was spent
pushing low-level proof details through the Isabelle system, as explained in Sect. 3.5, much of it concerned dis-
covering, formalizing, and proving auxiliary system invariants, which were required to prove the properties of
interest.

Although discovering and proving invariants is a more time-consuming activity than (PROMELA) model
simplification, it is also a more insightful one. Many of the invariants are interesting in their own right as they
lead to a better understanding of why the architecture actually works. Moreover, in our work, they also led to our
discovering problems in our original formalization of Hitachi’s requirements. For example, a direct formalization
of the first requirement (that signature generation requires a prior login) overlooks the fact that the login session
must still be valid, that is, there cannot be a logout between these events. We originally formalized and verified
this weaker statement [i.e., the statement that arises from omitting the last conjunct in the theorem statement in
Sect. 3.4 or equivalently the second conjunct in Eq. 1] in Spin. Only when working out the invariants in HOL-Z
did we realize that the stronger theorem was actually intended and held. Such specification errors can of course be
found by careful review, but our experience is that they are much more likely to be made during model checking
where users are only confronted with the direct consequences of what they specify.

7 We have counted their size after expansion, e.g., counting Equation 3 as 3 lines. Note then that the size of the LTL specification is a function
of the size of the finite domains involved and had we been able to model check larger models, our specifications would have also been larger.
This is a general problem with specification languages based on propositional logic.
8 The first-order theory of linear orders FO[<] with unary predicates, whose formulas can be linearly embedded in higher-order logic, has a
non-elementary worst-case complexity. In particular, there are families of formulas whose Büchi automata have non-elementary many states
with respect to the formula length.

Verifying a signature architecture 83

5.3. Expertise needed

In both case studies, expert input was needed, albeit to a different degree and in different places. In both ap-
proaches, it was possible for an engineer with limited initial knowledge of the formal method to build the first
model after receiving some training for the task. However, for the HOL-Z model, an expert review and restruc-
turing of the model was needed. Finding suitably abstract formulations in Z appears to require more expertise
than finding “natural” formulations in PROMELA, which was perceived as a kind of programming language.

In contrast, in the Spin case study, most of the expert help required was in formulating properties. This turned
out to be surprisingly tricky. Temporal formulas like that of Equation (2) are difficult for novices to formalize, as
familiarity with LTL idioms (e.g., specification patterns as in [DAC99]) is helpful for translating statements about
the past to those about the future. Also problematic is validating that a given LTL formula actually captures the
intended requirements. We did not have these problems with the HOL-Z formalization as the use of the more
expressive logic of HOL-Z allowed us to directly quantify over time and make standard comparisons on time
points, which is simpler and more intuitive than the use of LTL.

Of course, capturing requirements in LTL does offer certain advantages over their formalization as predicates
over traces in HOL. The LTL specifications tend to be more concise than their HOL counterparts. Moreover, in
the case of first-order LTL, where verification is no longer decidable, the syntactic form of the temporal formulas
may suggest useful proof strategies and inference rules for theorem proving; [CS05, MP91] provide examples
of this. Hence an interesting possibility would be to find a middle ground, between these LTL and HOL. One
alternative here is to use a more expressive (but still elementary decidable) temporal logic like the real-time exten-
sion of LTL proposed in [AH94]. This logic provides constructs for binding variables to time points and making
explicit comparisons between time points; this fits well with the kinds of temporal constructs that we used when
specifying properties in HOL. Another alternative is to work with a suitable embedding of temporal operators
directly within higher-order logic. This allows us to move between these different specification paradigms during
specification and theorem proving as well as derive temporal idioms and formally reason about the relationship
between different formalizations of requirements. We sketch this option and provide examples in Appendix B.

Finally, the most substantial difference in terms of the expertise required concerned the verification itself.
Model checking is push button, but only in theory. In practice, some expert input was required in restructuring
and tuning the model so that Spin would terminate. In contrast, the HOL-Z study required considerable hands-
on work by the expert in order to complete some of the proofs. This is reflected by the 60% expert contribution
reported in Fig. 13.

5.4. What was formalized and proved

Finally, the numbers given do not reflect that there were substantial differences, as well as similarities, in what
was modeled and verified. Any model of the signature architecture worthy of the name must capture both data-
oriented and process-oriented aspects at some level of abstraction. The HOL-Z model does this by providing
a data-oriented interface model that specifies the different components of the system state and a relational for-
malization of the state-transition operations. The resulting model is extended to a simple process model with an
interleaving trace semantics. This is in contrast to the PROMELA model where the operational and commu-
nication behavior of the interface functions is spelled out concretely, albeit on simplified data domains. SPIN
constructs from this a transition system, which has again an interleaving trace semantics. So at first glance we
see both similarities (trace semantics) and differences (specification styles and what was actually modeled). We
consider below the main differences in more detail as well as their implications.

First, in HOL-Z, we were able to directly model the relevant data domains in their full generality, rather than
settling for some finite approximation. This means we did not need to bound, a priori, the size of domains like the
set of users, their passwords, session identifiers, and the like. This is in contrast to the PROMELA model, where
all data domains were simplified to small finite domains to support model checking, as explained in Sect. 4.4.
The ability to model and reason about infinite domains is a standard benefit of using a rich logic like HOL-Z.
Our HOL-Z model is both more general and the theorems proven are significantly stronger.

Second, the two models differ in the way that concurrency and communication are expressed. The PROMELA
language is based on the notion of processes which may run in parallel, and communicate either synchronously
or asynchronously over communication channels. So direct support for concurrency and communication are
built into the language. This is not the case for HOL-Z as the focus is on data modeling, not concurrent process
modeling, and hence both concurrency and communication must be explicitly modeled within the language. We

84 D. Basin et al.

introduced concurrency in our HOL-Z model only at the top level of the architecture in coarse-grained client
and server steps and we modeled communication by shared schema variables. As the communication model in
the architecture was fairly simple, this top-level synchronization was adequate.

One modeling consequence of this is that PROMELA’s bias towards process-oriented modeling led naturally
to a model where an attacker is explicitly formalized and whose interface calls are interleaved with those of honest
users. This formalization, which has its roots in protocol analysis, has the advantage of explicitly modeling the
powers of the attacker for disrupting the system. From the HOL-Z perspective, concurrency is expensive during
modeling and even more so during theorem proving. The architecture decomposition theorem is used to make
the possible combinations explicit and constructing the resulting proofs would become much more difficult if
fine-grained concurrency were allowed between the components (which is why model checking is the preferred
approach in such cases, when it is possible). The HOL-Z model shows another way to proceed: this model makes
no constraining assumptions on the clients at all–neither in the order of operations nor in the data sent along
DARMA (as long as its types are respected) –and therefore identifies the client with the attacker.

Finally, as noted above, although the two approaches specify the same interface functions, the HOL-Z speci-
fication is declarative, while the PROMELA specification is operational. The operational approach, by its very
nature, involves commitments to data types and concrete procedures for data manipulation. In contrast, HOL-Z
does not require such commitments and this leaves us considerably more flexibility in how the architecture can be
refined and for exploring changes. As an example, in the Hitachi architecture, a user may only log in once before
logging out again, i.e., a user may be associated with only one session. However, an alternative architecture is one
that supports multiple sessions per user. Modeling these kinds of changes in our architecture is trivial. Here, we
can specify this alternative simply by deleting the second constraint in the predicate part of the session manger
schema (Sect. 3.2), which requires that each user identifier is associated with at most one session identifier. In this
case, almost all of the system invariants proven go through, unchanged.

6. Related work and conclusions

It has become a tradition to call a questionable common belief a “myth” [Hal90, BH95]. Of course, it can be
questioned to what extent our case study represents a valid criticism of the myth of the substantially higher
effectiveness of model checking versus theorem proving. Understood as strong myth (“model checking is always
more effective than theorem proving”), our work constitutes a counterexample. Understood as a weak myth
(“model checking is usually substantially more effective than theorem proving”), only a large-scale study could
validate or refute it and such a study has not been undertaken yet. But even against the weak myth, our case
study suggests that one must carefully distinguish the relative strengths and weaknesses. Examples we have seen
that highlight the relative strengths of theorem proving include clearer and more general specifications, stronger
theorems, and increased confidence gained by formalizing and proving system invariants. With respect to the last
point, we note that the absence of counter-examples for a property says relatively little about the adequacy of its
formalization (see Sect. 5.2 for an example of this problem).

To the best of our knowledge, there have been no other comparisons between model checking and theorem
proving, with the exception of [Gup92], focusing on hardware verification and dating back nearly 15 years. Most
research involving the two paradigms has focused on their combination: how to best build model checkers and
other decision procedures into theorem-proving tools. The main applications are to decide subproblems that
fall into decidable subtheories, e.g., propositional logic and arithmetic [BF00, BM88, FORS, Nor, SJO+05], and
to use model checkers for problems that can be reduced to finite-state systems, e.g., using abstraction [MN95,
ORR+96, RSS95]. The two paradigms can be combined too in the sense that model checking (working with
finite abstractions) can be employed at an early stage to detect flaws, in order to gain confidence in a system’s
correctness, before turning to theorem proving, e.g., as suggested in [RSG+00].

In contrast, there have been many comparisons made between other formal methods and verification ap-
proaches. Examples include comparisons between different specification languages [ABL86], between different
theorem provers [BK91], and between different automated analysis techniques (including model checking, static
analysis, and testing) [ACD+99, Cor96, BDG+04]. The domain we have chosen, architecture modeling and ver-
ification, is one that has been extensively studied before using both data-oriented and process-oriented formal
methods, e.g. [AAG95, CAB+98, JS00, SG96, WVF97]. However, the focus of these other studies has been
different, namely showing the suitability of the different individual formal methods for the verification task.

Our work also sheds light on the suitability of using Z and the associated HOL-Z environment for formalizing
and verifying architectures that combine data-oriented and process-oriented aspects. It should be noted in this

Verifying a signature architecture 85

regard that our modeling and verification of the signature architecture is the largest case study made to date using
HOL-Z. Previous case studies also include a security architecture (for controlling access to a repository) [BW03],
but there the emphasis was on data refinement, rather than the verification of temporal properties of system runs.
The studies are complementary in that together they illustrate how HOL-Z can be used to formalize, verify, and
refine architectures at different levels of abstractions, covering both data-oriented and process-oriented aspects.

There are a number of avenues open for future work. To begin with, the theorems we proved by model check-
ing are weaker than those proved using HOL-Z. In some situations however it may be possible to verify the
correctness of the abstractions used, i.e., that the verification of the small finite model used entails the verification
of the corresponding infinite state system whose state variables range over infinite data domains. Techniques
based on data independence, such as those of [Low98, RB99], may help automate this task.

Another direction concerns the way we modeled cryptographic functions. In the HOL-Z model, cryptographic
functions for hashing and signing were simply treated as uninterpreted function symbols, specified just by their
type. This leaves open all possible implementations, faithful or not to the standard cryptographic requirements for
such functions. In the PROMELA model, we had to take the other extreme and commit to concrete computable
functions. Our formalization has the property that certain actions, like guessing values, are impossible as opposed
to being highly improbable, which is the case in actual cryptography. As the properties we examined were possi-
bilistic rather than probabilistic, this was not a problem. However, it would be interesting to investigate whether
cryptographically sound abstractions such as those of [Can01, BPW03, SBB+06] could be usefully employed in
this setting.

Finally, while we learned much ourselves from this comparative case study, and hope that others can also
profit from it, it is of course only one data point documenting the issues and tradeoffs involved. Our case study
combined both data-oriented and process-oriented aspects, but most of the complexity was in the data-modeling
side and, as noted in Sect. 5.4, the HOL-Z communication model was coarse grained. For this combination,
there were striking benefits from using the HOL-Z approach. But for a system with simpler operations and more
complex process interaction, the conclusions might be quite different. An example of this would be architectures
whose complexity is dominated by the communication protocols employed: here we would expect model check-
ing to have the upper-hand. Said another way, the tradeoffs are not absolute, but relative to the problem under
consideration. Additional comparative case studies could contribute to our understanding of this relationship
and to the development of refined guidelines for the use of different formal methods.

Acknowledgments

We thank Jean-Raymond Abrial, Achim Brucker, Christoph Sprenger, Felix Klaedtke, and Ernst-Rüdiger Olde-
rog for helpful discussions on the contents of this paper. We thank Shinji Itoh, who wrote Hitachi’s specification
document and answered our questions about it. Finally, Kunihiko Miyazaki thanks the Japanese National Insti-
tute of Information and Communications Technology (NICT) for partially supporting this work.

Appendix A: Linear temporal logic

Syntax. Let a set of assertions (also called state formulas) be given. A (full) LTL formula is built from assertions
using the Boolean connectives ¬ and ∧ and the temporal operators � (Next), � (Previous), U (Until), and S
(Since). Future-time LTL is the subset of full LTL where the only temporal operators are � and U . Note that
we will also employ additional propositional constants (T and F) and connectives (defined as standard) as well
as the following defined temporal operators:

� p � T U p (sometime, eventually)
� p � ¬ �¬ p (always, henceforth)
p W q � � p ∨ (p U q) (unless, weak until)

Semantics. Let a set of states σ be given. Semantically, each assertion defines a predicate over states of type
σ → bool. A model is an infinite trace t of type nat → σ . Given a model t, we define the satisfaction of a formula

86 D. Basin et al.

p at position j≥0, written as (t, j) |� p, by cases.

(t, j) |� p ⇔ p(t(j)) (assertion)
(t, j) |� ¬ p ⇔ ¬ ((t, j) |� p) (negation)
(t, j) |� p ∧ q ⇔ (t, j) |� p ∧ (t, j) |� q (conjunction)
(t, j) |� �p ⇔ (t, j + 1) |� p (next)
(t, j) |� p U q ⇔ ∃ k ≥ j.(t, k) |� q ∧ (∀ i. j ≤ i < k ⇒ (t, i) |� p) (until)
(t, j) |� �p ⇔ j > 0 ∧ (t, j − 1) |� p (previous)
(t, j) |� p S q ⇔ ∃ k ≤ j.(t, k) |� q ∧ (∀ i. k ≤ i < j ⇒ (t, i) |� p) (since)

Given a Kripke structure K , we write K |� p iff (t, 0) |� p for all t of K .

Appendix B: HOL requirements in an LTL style

In Sect. 5.3 we observed that LTL has advantages over HOL in terms of conciseness and inference rules. We now
return to this point and show that it is possible to have the best of both logics via an embedding of LTL within
HOL. Note that all of the definitions and equivalence proofs given here have been checked in Isabelle/HOL.

Recall from Sect. 3.4 that event predicates constitute abstract actions. Given a Kripke structure K � (Init, Next),
we can transform it into a Kripke structure suitable for reasoning about actions, a so-called action Kripke structure,
by the bijection KA of type (P σ × (σ ↔ σ)) → (P(σ × σ) × ((σ × σ) ↔ (σ × σ))) defined by

KA(init, trans) ≡ ({(s, s′) | s ∈ init ∧ (s, s′) ∈ trans},
{((s, s′), (t, t′)) | s′ � t ∧ (s, s′) ∈ trans ∧ (t, t′) ∈ trans}) .

In contrast to K , the assertions of KA(Init, Next) are predicates over pairs of states, i.e., actions from our HOL-Z
model.

It is now a simple matter to translate the HOL formalizations of our three requirements into LTL, which we
illustrate here with (R1). One such formulation is

KA(Init, Trans) |� � (Sign(uid) −→ (¬ Out(uid) S In(uid))) , (4)

which says that “every time the user uid produces a signature, the user has previously logged in, and not logged
out since then”. It is not difficult to prove that this is equivalent to our HOL formulation given in Section 3.4.
Unfolding this definition yields

∀ t ∈ traces(KA(Init, Trans)).
∀ k.(t k, t(k + 1)) ∈ Sign(uid) −→

(∃ ka ∈ {0..k}.
(t ka, t(ka + 1)) ∈ In(uid) ∧
(∀ j ∈ {ka + 1..k}.(t j, t(j + 1))
∈ Out(uid))) .

Although this is not identical to our original formulation, it is equivalent given that the actions Sign, In and Out
are disjoint. Moreover, using standard equivalences (see [MP92]), it is possible to convert this formula into a
future-time LTL formula. In particular, using

� (P −→ (Q S R)) ⇔ ¬ P W R ∧ � (¬ Q −→ ¬ P W R))

we can rewrite and simplify (4) to

KA(Init, Trans) |� ¬ Sign(uid) W In(uid) ∧ � (Out(uid) −→ ¬ Sign(uid) W In(uid)) .

At this point, the connection to the LTL formalization of (R1) in the Spin case study (see Section 4.7, Equation
(2)) becomes apparent: both have the identical temporal structure. The only differences concern the way the par-
ticular HOL-Z actions (versus PROMELA assertions) and associated information (user identifiers and session
identifiers) are formalized.

The above shows one use of HOL specifications in a temporal style: we can relate higher-order logic speci-
fications to those in weaker logics like LTL. We conclude here by describing a second use: the LTL embedding
can serve as the basis for deriving useful proof rules. We given an example of this, which also sheds some light on
our observation in Sect. 3.5 that most of our effort in HOL-Z verification was devoted to local reasoning about
preconditions and postconditions of operations.

Verifying a signature architecture 87

Fig. 14. Rule SafeSince

An alternative, equivalent, formalization of (R1) is

KA(Init, Trans) |� � Sign(uid) −→ �(¬ Out(uid) S In(uid)) . (5)

Figure 14 presents a derived rule for reasoning about specifications of this form, motivated by the inference rule
SAFE of [MP91, page 9]. We have used this rule to reason about temporal formalizations of the three requirements
(R1) – (R3).9 In this rule, t ranges over traces and n ranges over natural numbers. Note that when interpreted
over the traces of an action Kripke structure, t n refers to a pair of states (t n, t(n + 1)).

When applied, the premises of the rule often suggest an appropriate invariant INV . For example, when applied
to verify (5), P is instantiated by Sign(uid), Q by ¬ Out(uid), and R by In(uid). From the structure of the premises
we can easily guess the invariant INV : the user uid should not be authenticated at the beginning of the state
transition. This invariant can be easily expressed in the terms of the system model: uid must not be in the domain
of the initial session table. Applying SafeSince with this instantiation reduces the overall burden to prove global
(R1) into the following proof obligations, all of which are local.

1. At the beginning, the generation of a signature is not possible and no user is authenticated (Init).
2. If a user is not authenticated and no login occurs, he remains unauthenticated (Inv).
3. If a logout occurs, i.e. ¬ ¬ Out(uid), the user should not be authenticated (InvEntry).
4. If a login occurs, the user should be authenticated (InvExit).
5. If the user is not authenticated, no generation of a signature is possible (InvConcl).

The proof of SafeSince itself is a routine induction over the position in a trace. In contrast, the proof of
(InvConcl) is two orders of magnitudes larger and substantially more complex. Discharging the other proof
obligations is easy since they only use abstract system operations themselves; thus, they profit from the abstrac-
tion of the underlying refinement.

Appendix C: A sample proof in HOL-Z

In this appendix, we present an example of theorem proving in HOL-Z. As HOL-Z expressions are represented
using Isabelle-specific concepts, we begin with a brief overview of Isabelle [NPW02].

C.1. Proofs in Isabelle

Isabelle is a logical framework, which means it provides a meta-logic for representing other logics, like HOL.
Isabelle’s meta-logic is based on intuitionistic implication �⇒ and higher-order quantification

∧
.

An Isabelle proof state is a formula in Isabelle’s metalogic that is logically valid, i.e., a theorem. To prove a
goal φ, one converts it into a proof state: the theorem φ �⇒ φ. Proof proceeds by iteratively transforming the
premise of this theorem using tactics, which are programs that implement proof-state transformations. A tactic
refines the premises of this topmost implication — called subgoals — into other formulas. Subgoals have the
general form

∧
x1 . . . xm. [A1; . . . ; An] �⇒ A .

9 In the case study we verified non-temporal, higher-order formalizations, as we reported on in Sect. 3.4. Afterwards completion of the
case study, in order to better understand the relationships between the two models, we carried out the temporal formalization in HOL and
experiments using derived (temporal) proof rules. The statistics reported on in Section 5 are for the original case study, and do not include
the post-hoc reformulation and experiments.

88 D. Basin et al.

This (meta-)formula states that A follows from the assumptions A1 through An, for arbitrary x1, . . . , xm. A tactic
may transform a subgoal into the formula True, at which point it is discharged by deleting it from the premises.
A proof state without subgoals is closed. In this case, the goal can be extracted as a theorem.

C.2. An example

We present here a concrete example of a HOL-Z proof of one of our 173 theorems. We prove a non-trivial system
invariant: the signature log grows monotonically during system execution (i.e., along each possible execution
trace). The signature log is modeled as a sequence and sequences are modeled in Z as functions from natural
numbers to values, and therefore as sets of pairs (of natural numbers and values). Hence this invariant can be
formalized using set inclusion, as follows.

∧
t ∈ Traces, i ∈ N .

�⇒ dom((t i).signature log) ⊆ dom(t(i + 1).signature log)

Let claim be the string representation in Isabelle of the above formula.
Our proof proceeds as follows. We first initialize the proof state with claim, the formula we wish to prove.

val prems = goalw Analysis.thy [] claim;

Next we apply three proof-state transformations. The main transformation is the application of the lemma
State_Transition_Cases, which represents the right-to-left application of the architecture decomposition theorem
discussed in Section 3.5. The other two commands perform elementary simplifications.

by (convert2hol_tac [SSet_def] 1);
be State_Transition_Cases 1;
by(ALLGOALS(Asm_simp_tac));

Applying these steps in Isabelle results in the proof state displayed in Fig. 15. Hence we have reduced showing
that our invariant holds for all possible transitions to showing that it holds in each of the four cases described by
the decomposition theorem, i.e., that it is preserved by each of the four ways that the system may evolve.

We proceed now to the first subgoal, which states that the invariant is preserved after the system takes a parallel
AuthenticateUser-step, both on the client and the server side. The key fact needed, which we establish separately as
a lemma (named AuthenticateUserL_inv_state_components), is that AuthenticateUserL does not change the access
controller’s state.

� AuthenticateUserL ⇒
(signature log′ � signature log ∧
access control list′ � access control list ∧
pri key list′ � pri key list)

It is worth noting that Z schema reference AuthenticateUserL is just a pretty-printed version of the (less pretty)
term:

AuthenticateUserL(Authentication, Command, Logout ID, Result, SessionID!, Signature,
Signature generation hmg, Signature generation sid, User authentication pw,
User authentication uid, access control list, access control list′, password?,
pri key list, pri key list′, session IDs, session IDs′, session table,
session table′, signature log, signature log′, username?).

Thus, in the HOL-representation, the implicit binding of the Z notation is made explicit, which allows for arbi-
trary renamings of state components throughout the proof as needed (renaming corresponds to α-conversion in
Isabelle). This expansion of schemas to predicates has occurred in Fig. 15.

We apply this lemma using a HOL-Z tactic zdtac, which “lifts” the lemma to the binding structure in the first
subgoal.

by(zdtac AuthenticateUserL_inv_state_components 1);

Verifying a signature architecture 89

Fig. 15. Proof state after architectural decomposition

Specifically, this tactic matches the assumption

AuthenticateUserL
(x, xa, xb, xc, SID O, xd, xe, xf , xg, y, acl, acl ′, pwd I , pkl,
pkl ′, sIDs, sIDs′, s tab, s tab′, sig log, sig log′, uname I)

against the premise of AuthenticateUserL_inv_state_components. Afterwards it replaces this assumption by the
instantiated conclusion of the lemma (performing renamings and adjusting bindings, as needed). Finally, the
tactic performs simplifications, which closes this subgoal as sig log � sig log′ is now given as an assumption.

Our next two steps are similar and handle the second and fourth cases.10

by(zdtac NopOperationL_inv_state_components 1);
by(zdtac LogoutL_inv_state_components 2);

These apply analogous lemmas to show that the state component signature log is not changed by a no-op oper-
ation or a logout on the server side.

The interesting step corresponds to the third subgoal, where the server generates a signature. Here we apply the
following lemma (called GenerateSignatureL_siglog_mono), which specializes the postcondition of GenerateSignatureL:
The operation may extend, but otherwise not alter, the signature log.

� GenerateSignatureL ⇒ dom(signature log) ⊆ dom(signature log′)

10 Note that the numbers associated with the subgoals are decremented each time a lower-numbered subgoal is proven. Hence, 1 here refers
to the second subgoal and (since it is applied after two subgoals have been discharged) 2 refers to the fourth.

90 D. Basin et al.

Applying this lemma

by(zdtac GenerateSignatureL_siglog_mono 1);

closes the proof state. The following Isabelle operation extracts our claim as a theorem from the proof state and
binds it to the name signature_log_mono, concluding our proof.

qed "signature_log_mono";

This example constitutes an instance of our general strategy for proving global invariants, presented in
Sect. 3.5. Here, induction was not needed as it suffices to reason about an arbitrary pair of states without recourse
to an induction hypothesis about previous pairs. The example shows how decomposition then suffices to reduce
the main theorem proving problem to establishing local invariants of the individual schemas, i.e., conventional
reasoning about preconditions and postconditions.

References

[AAG95] Abowd GD, Allen R, Garlan D (1995) Formalizing style to understand descriptions of software architecture. ACM Trans
Softw Eng Methodol (TOSEM) 4(4):319–364

[ABL86] Abrial J-R, Börger E, Langmaack H (1986) Formal methods for industrial applications: Specifying and programming the
steam boiler control, volume 1165 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg New York

[Abr96] Abrial J-R (1996) The B-book: assigning programs to meanings. Cambridge University Press, Cambridge
[ACD+99] Avrunin GS, Corbett JC, Dwyer MB, Pasareanu CS, Siegel SF (1999) Comparing finite-state verification techniques for con-

current software. Technical report, Amherst, MA, USA
[AH94] Alur R, Henzinger TA (1994) A really temporal logic. J ACM 41(1):181–203
[ASS+99] Arai T, Sekiguchi T, Satoh M, Inoue T, Nakamura T, Iwao H (1999) DARMA: Using different OSs concurrently based on

nano-kernel technology. In: Proceedings of 59th-Annual Convention of information processing society of Japan, vol 1, pages
139–140. Information Processing Society of Japan, 1999 (in Japanese)

[BDG+04] Brat G, Drusinsky D, Giannakopoulou D, Goldberg A, Havelund K, Lowry M, Pasareanu C, Venet A, Visser W,
Washington R (2004) Experimental evaluation of verification and validation tools on martian rover software. Formal Methods
Syst Des, 25(2–3):167–198

[BF00] Basin D, Friedrich S (2000) Combining WS1S and HOL. In Gabbay DM de Rijke M (eds) Frontiers of Combining Systems
2, vol 7 of Studies in Logic and Computation. Res Stud Press/Wiley, Baldock, Herts, UK, 39–56

[BH95] Bowen JP, Hinchey MG, (1995) Seven more myths of formal methods. IEEE Softw, 12(3):34–41
[BK91] Basin D, Kaufmann M, (1990) The Boyer-Moore Prover and Nuprl: an experimental comparison. In: Huet G, Plotkin G, (eds)

Logical Frameworks. Cambridge University Press, Cambridge, pp. 90–119
[BKTW04] Basin D, Kuruma H, Takaragi K, Wolff B (2004) Specifying and verifying hysteresis signature system with HOL-Z. Technical

Report 471, ETH Zürich. Available at the URL http://kisogawa.inf.ethz.ch/WebBIB/publications/papers/2005/HSD.pdf.
[BM88] Boyer RS, Moore JS (1988) Integrating decision procedures into heuristic theorem provers: a case study with linear arithmetic.

Mach Intell (11):83–124
[BMV05] Basin D, Mödersheim S, Viganò L (2005) OFMC: A symbolic model checker for security protocols. International Journal of

Information Security, 4(3):181–208 (Published online December 2004)
[BPW03] Backes M, Pfitzmann B, Waidner M (2003) A composable cryptographic library with nested operations. In CCS ’03: Proceedings

of the 10th ACM conference on computer and communications security ACM Press, New York 220–230
[BRW03] Brucker AD, Rittinger F, Wolff B (2003) HOL-Z 2.0: A proof environment for Z-specifications. J Univ Comput Sci 9(2):152–172
[BW03] Brucker AD, Wolff B (2003) A case study of a formalized security architecture. In: Electronic Notes in Theoretical Computer

Science, vol 80. Elsevier, Amsterdam
[CAB+98] Chan W, Anderson RJ, Beame P, Burns S, Modugno F, Notkin D, Reese JD (1998) Model checking large software specifications.

IEEE Trans Softw Eng 24(7):498–520
[Can01] Canetti R (2001) Universally composable security: a new paradigm for cryptographic protocols. In: FOCS ’01: proceedings of

the 42nd IEEE symposium on foundations of computer science. IEEE Computer Society p. 136
[Cor96] Corbett JC (1996) Evaluating deadlock detection methods for concurrent software. IEEE Trans Softw Eng 22(3):161–180
[CS05] Castellini C, Smaill A (2005) Proof planning for first-order temporal logic. In: Conference on automated deduction, vol 3632

of Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York 235–249
[DAC99] Dwyer MB, Avrunin GS, Corbett JC (1999) Patterns in property specifications for finite-state verification. In: ICSE ’99:

Proceedings of the 21st international conference on software engineering. IEEE Computer Society Press, pp. 411–420
[Fis97] Fischer C (1997) CSP-OZ: A combination of Object-Z and CSP. In Proceedings of FMOODS’97: formal methods for open

object-based distributed systems, vol 2, pages 423–438. Chapman & Hall
[FORS] Fillitre J-C, Owre S,Rue H, Shankar N (2001) Ics: Integrated canonizer and solver. CAV 2001, number 2102 in Lecture Notes

in Computer Science
[GO01] Gastin P, Oddoux D (2001) Fast LTL to Büchi automata translation. In: Berry G, Comon H, Finkel A (eds) Proceedings of

the 13th conference on computer aided verification (CAV’01), number 2102 in Lecture Notes in Computer Science. Springer,
Berlin Heidelberg New York pp. 53–65.

[Gup92] Gupta A (1992) Formal hardware verification methods: A survey. J Formal Methods Syst Des 1:151–238
[Hal90] Hall A (1990) Seven myths of formal methods. IEEE Softw 7(5):11–19
[Hol04] Holzmann GJ (2004) The SPIN model checker: primer and reference manual. Addison-Wesley, Boston

Verifying a signature architecture 91

[Int] International Standard ISO/IEC 13568:2002. Information technology — Z formal specification notation — syntax, type system
and semantics.

[JS00] Jackson D, Sullivan K (2000) COM revisited: tool-assisted modelling of an architectural framework. In: ACM SIGSOFT
Symposium on foundations of software engineering ACM Press, New York 149–158

[Low98] Lowe G (1998) Towards a completeness result for model checking of security protocols. In: PCSFW: Proceedings of the 11th
computer security foundations workshop, IEEE Computer Society Press pp. 96–105

[MN95] Müller O, Nipkow T (1995) Combining model checking and deduction for I/O-automata. In Brinksma et al Ed (eds) Tools and
algorithms for the construction and analysis of systems, 1st international workshop, TACAS’95, vol 1019 of Lecture Notes in
Computer Science, Springer, Berlin Heidelberg New York, pp 1–16

[MP91] Manna Z, Pnueli A (1991) Completing the temporal picture. Theore Comput Sci J 83(1):97—130
[MP92] Manna Z Pnueli A (1992) The temporal logic of reactive and concurrent systems:specification. Springer, Berlin Heidelberg

New York
[Nor] Norrish M (2003) Complete integer decision procedures as derived rules in HOL. In: Proceedings of TPHOLs’03, number

2758 in Lecture Notes in Computer Science, 71–86.
[NPW02] Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL — A proof assistant for higher-order logic, vol 2283 of Lecture Notes

in Computer Science. Springer, Berlin Heidelberg New York
[ORR+96] Owre S, Rajan S, Rushby JM, Shankar N, Srivas MK (1996) PVS: Combining specification, proof checking, and model check-

ing. In: Alur R, Henzinger TA (eds) Computer-aided verification, CAV ’96, number 1102 in Lecture Notes in Computer Science,
Berlin Heidelberg New York, pp 411–414

[Pau98] Paulson LC (1998) The inductive approach to verifying cryptographic protocols. J Comput Sec, 6:85–128
[Pel96] Peled D (1996) Combining partial order reductions with on-the-fly model checking. Formal Methods Sys Des 8:39–64
[Pro05] Promela proofs scripts for signature system case study. URL http://people.inf.ethz.ch/basin/spin-models.tar, 2005.
[RB99] Roscoe AW, Broadfoot PJ (1999) Proving security protocols with model checkers by data independence techniques. J Comput

Sec 7(1):147–190
[RSG+00] Ryan PYA, Schneider S, Goldsmith M, Lowe G, Roscoe AW (2000) The modelling and analysis of security protocols: the CSP

approach. Addison-Wesley Reading
[RSS95] Rajan S, Shankar N, Srivas MK (1995) An integration of model-checking with automated proof checking. In: Wolper (ed),

Computer-aided verification, CAV ’95, vol 939 of Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York,
pp 84–97

[SBB+06] Sprenger C, Backes M, Basin D, Pfitzmann B, Waidner M (2006) Cryptographically sound theorem proving. In: 19th IEEE
computer security foundations workshop, Venice, Italy IEEE Computer Society pp 153–166

[SD97] Smith G (1997) Derrick J (1997) Refinement and verification of concurrent systems specified in Object-Z and CSP. In: Pro-
ceedings of the international conference of formal engineering methods, IEEE Computer Society Press

[SG96] Shaw M, Garlan D (1996) Software architecture: perspectives on an emerging discipline. Prentice Hall, Englewood Cliffs
[SJO+05] Seger C-JH, Jones RB, O’Leary JW, Melham T, Aagaard MD, Barrett C, Syme D (2005) An industrially effective environment

for formal hardware verification. IEEE Trans Comput Aided Des Integrated Circuits Syst, 24(9):1381–1405
[SM02] Susaki S, Matsumoto T (2002) Alibi establishment for electronic signatures. Inf Process Soc Jpn 43(8):2381–2393
[Spi92] Spivey JM (1992) The Z Notation: a reference manual. 2nd edn. Prentice-Hall International, New Jersey
[VW86] Vardi MY Wolper P (1986) Automata-theoretic techniques for modal logics of programs. J Comput Syst Sci 32:183–221
[WD96] Woodcock J, Davies J (1996) Using Z. Prentice-Hall International, New Jersey
[WVF97] Wing J, Vaziri-Farahani M (1997) A case study in model checking software systems. Sci Comput Program 28:273–299

Received 16 November 2005
Revised 03 August 2006
Accepted 19 September 2006 by M. J. Butler
Published online 13 January 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

