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Abstract

The design of theorem provers, especially in the LCF-prover family, has strongly prof-
ited from functional programming. This paper attempts to develop a metaphor suited
to visualize the LCF-style prover design, and a methodology for the implementation of
graphical user interfaces for these provers and encapsulations of formal methods. In this
problem domain, particular attention has to be paid to the need to construct a variety
of objects, keep track of their interdependencies and provide support for their reconstruc-
tion as a consequence of changes. We present a prototypical implementation of a generic
and open interface system architecture, and show how it can be instantiated to an inter-
face for Isabelle, called IsaWin, as well as to a tailored tool for transformational program
development, called TAS.

1 Introduction

The story of graphical user interfaces (GUI’s) for theorem provers and formal
method tools as a whole is not exactly a success story so far. There is widespread
scepticism (Merriam & Harrison, 1997) that GUI’s adopting techniques from the
field of human computer interaction (HCI) can increase productivity to a similar ex-
tent as they did, say, in the area of office applications. GUI’s for widely used tools
like PVS, FDR or Isabelle are still dominated by text-based subwindows barely
hiding the roots of the underlying tool. We believe this has predominantly historic
reasons.

The history of functional languages, in particular ML, has been deeply inter-
twined with the genesis of the LCF theorem prover family, for which it was origi-
nally developed as a meta language. The essential idea in LCF-style provers (like
HOL (Gordon & Melham, 1993) or Isabelle (Paulson, 1994)) is to encapsulate the
logical engine in an abstract datatype, the objects of which can only be constructed
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by operations implementing the rules of the underlying logic. This yields the basis
for an open system design allowing user-programmed extensions in a logically sound
way. The flexibility, generality and expressiveness of LCF-style provers makes them
symbolic programming environments, into which other languages can be logically
embedded, e.g. Haskell (Regensburger, 1994), Java (Nipkow & von Oheimb, 1998),
Z (Bowen & Gordon, 1994; Kolyang, Santen & Wolff, 1996b) or CSP (Tej & Wolff,
1997). Together with appropriate, customised proof support and a graphical user
interface which hides the details of the embedding, this leads to an implementation
technology for formal method tools which we call encapsulation.

Thus, while the LCF-design has its undoubted advantages, these systems have
inherited a very restricted model of user interaction based on a command line
interface, and not profited as much as possible from recent advances in interface
design (Shneiderman, 1998; Thimbleby, 1990; Dix et al., 1998). As Bornat and
Sufrin (1998) put it, this problem cannot be overcome by “bolting a bit of Tcl/Tk
onto a text-command-driven theorem prover in an afternoon’s work”.

Our contributions towards filling the gap between classical command-line inter-
action and more modern concepts of graphical user interaction are the following.
First, we develop a new metaphor for the visualization of LCF-style provers. The
metaphor serves as a vehicle to make the data structure of the prover accessible to
pervasive direct manipulation. Second, the metaphor develops an abstract notion of
user interaction, and is compatible with the need for their systematic replay. Replay-
ing proofs is a central issue in theorem proving. Third, the metaphor is implemented
in a generic system architecture, based on the structuring mechanisms of Standard
ML, using a functional encapsulation of Tcl/Tk and the theorem prover Isabelle.
Besides a graphical user interface for a theorem prover, this gives an encapsulation
technique for formal methods.

This paper is organized as follows: we will first discuss issues relating to the
conceptual design and the metaphor. We will then turn to the architecture of the
system, introducing a data model and a process model. This will be followed by a
section expanding on some aspects of the implementation, and a section introducing
a different instantiation of the generic system. We close with an evaluation of the
proposed work, and a comparison to related work.

2 Conceptual Design Issues

Direct manipulation, a term attributed to Shneiderman (1982), is a widely known
technique in HCI and graphical user interface design (Shneiderman, 1998; Thim-
bleby, 1990; Dix et al., 1998), characterized by continuous representation of the
objects and actions of interest with a meaningful visual metaphor and incremental,
reversible, syntax-free operations with rapid feedback on all actions. In this section,
we will introduce the notepad metaphor, serving as a vehicle to make the internal
objects of a theorem prover accessible for direct manipulation.
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2.1 The Notepad Metaphor

As a motivating example, consider the way we do everyday mathematics and cal-
culations: one typically uses a piece of paper or a blackboard to write down inter-
mediate results, calculations or lemmas, but overall in an unstructured way, adding
a column of numbers in one part of the pad, while doing a multiplication in the
lower corner and a difficult diagram-chase in the middle.

A simple instance of this is a small notepad on which we can write down num-
bers and arbitrary text. The operations would either be arithmetic (e.g. add two
numbers), or textual (write some new text). Technically, the notepad could be visu-
alized as a window in which the user can manipulate objects, represented as icons,
by drag&drop. The world of objects on our notepad is structured by an inherent
notion of typing (here, numbers and texts). This typing is crucial when considering
the operations, because an operation taking numbers as arguments is different from
an operation taking texts as arguments. The operations are applied by drag&drop,
so if we drop a number onto a number, we may want to add them up, whereas if we
drop a text onto a text, we may want to concatenate them. Figure 1 illustrates our
example: On the left, we can see objects representing numbers 2, 4 and 5, and two
pieces of text. If we move the number 2 on the number 4 (second from the left),
they are added up, and we obtain a new object: the number 6 appears (third from
the left).

Fig. 1. Introducing the notepad metaphor and manipulation by drag&drop.

This shows the first main principle of a functional GUI: objects represent values,
and hence the interaction of objects produces new objects, rather than changing
existing ones. Dropping an object onto another corresponds to function application.
These functions are called binary operations; passing several objects to a binary op-
eration is possible by grouping objects via multiple selections. Additionally, unary
operations may be defined for each object type, which take exactly one argument,
and are invoked via a pop-menu (see Fig. 1 on the right, where the standard oper-
ations Show, Rename and Delete can be seen.)

In practice, the simple typing discipline has proven insufficient — e.g. instead of
adding two numbers, we might as well want to subtract, multiply or divide them.
To this end, we introduce the concept of a mode that an object may have. In our
example, each object of type natural number has four modes: plus, minus, times
and divide. The function applied by drag&drop is determined by the mode of the
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object being dropped onto: dropping a number onto another number in times mode
multiplies the two numbers.

At first sight the modes seem to contradict our principle of a functional GUI,
since they allow a form of state. However, the modes only serve to disambiguate
or simplify user interaction. This context information may help the system to pro-
vide additional parameters that had to be provided explicitly otherwise; we do
not allow side effects when applying operations. As a general rule of interface de-
sign(Thimbleby, 1990), modes should not be hidden, so the icon of an object is
determined by both the mode and the type of the object. This way, the action
which will take place is always transparent to the user. In Fig. 1, the modes of the
numbers are shown by an additional sign on the upper right corner of the symbol.
The user can change the mode of an object by a pop-up menu (Fig. 1 on the right).

2.2 Undo, Persistence and Replay

According to the main principle of a functional GUI, function application can not
change the arguments of the function. This allows an easy implementation of undo:
we just delete the object created by applying the function. Moreover, the functional
approach makes it easy to reconstruct an object value. By recording the operations
which have been applied to construct an object, we can reconstruct the object value
later by replaying the operations. This is needed to implement a persistent state,
and to deal with external objects.

By persistent state, we mean that we want to be able to save the current state
at a given moment, exit the system, and later restart the system in the same state
where we left it. Under the assumption that only operations, but not objects, can
be saved externally, persistence is achieved by recording for every object how it
was constructed, and reconstructing the object by replaying the operations upon
restart.

As an example of external objects, suppose that the texts on our notepad are
given as post-it notes stuck to the pad. Their value is the text written on them. We
can concatenate two texts, but if we then write something different on one of the
notes, the value of the concatenation should change accordingly. In our example,
suppose the text objects (like Text1 and Text2 in Fig. 1) are read from external
files. By dragging Text1 on Text2, we create a new object, say Text3. If now Text1
is reloaded, the value of the object may change, and consequently the value of Text3
should change as well. We say Text3 is outdated, which is indicated by shading
the icon of Text3. An outdated object is updated again by replaying its history.
Updating can be invoked manually via the pop-up menu (as in Fig. 1), or auto-
matically. In many applications, however, automatic replay is inconvenient since it
may take a long time, and since it may fail, leading to errors which the user has
to correct interactively. This may distract the user from his current task, so we let
him postpone the updating until it is convenient.

Replay is very important in the theorem proving context, because most theorem
provers read declarations and definitions from external files, which are frequently
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modified by the user, and have to be reloaded. Yet, systematic replay is to our
knowledge never supported on the level of the GUI.

2.3 Construction Objects

For certain objects, manipulation without regard to their internal structure, and
hence their history, is insufficient. For instance, we want to admit editing of text ob-
jects in our simple example. The history of such editing operations will then consist
of a protocol of operations like delete "javelin" at position 3.12 or insert

"spear" at position 3.12. Navigating forward and backward in this history cor-
responds to undoing and replay.

These objects will be called construction objects. They can be opened by double-
clicking, which leads to the creation of two new windows, namely the construction
area and the history navigation window (see Fig.2). Both windows have a focus, i.e.
a mark on some position in the text, and some position in the history, respectively.
The history focus controls the content of the construction area.

Fig. 2. Construction area and history navigation window.

When closing a construction object, the current value of the construction object
is bound to the object that was opened (i.e. to the icon that was double-clicked).
The reason for this behaviour is that the notepad would hopelessly clutter up if a
new object was created for each step in the history. Objects depending on a closed
construction object are marked as outdated.

Note that the replay of the history may fail. For example, the semantics of the
delete "javelin" operation may be undefined if no "javelin" occurs in the text
as a consequence of an external change and a reload of the object.

There are more forms of interaction between the notepad window and the con-
struction area or the history window. Objects on the notepad may be dragged on
the focus set in the object value field, e.g. replacing the text selected in the focus.
Vice versa, the selected text of the focus may be extracted and form an object on
the notepad.

2.4 IsaWin — A Functional Graphical User Interface for Isabelle

We will now explain how theorem proving fits into the concepts described in the
previous sections by describing our GUI IsaWin for the theorem prover Isabelle
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(Paulson, 1994). Isabelle is just the example at hand; we expect no principal dif-
ficulties in developing analogous interfaces for other LCF-style prover based on
SML.

2.4.1 Accommodating Basic Theorem Proving into the Notepad

The object types of IsaWin are a subset of those provided by Isabelle, as shown
on the left of Fig. 3: in the first row two theorems and a theory, in the second
row, two different types of rule sets, called simplifier sets and classical rule sets in
Isabelle parlance, and an ongoing proof, or more precisely the proof script which
we will identify with a proof throughout this paper. Theorems have four modes:
they can be introduction rules (as in Fig. 3), elimination rules, destruction rules
and equations (which are not shown).

Fig. 3. The Objects of IsaWin: to the left, basic objects; to the right, tactical objects

The binary operations in this instance include the forward resolution of two
theorems: unifying the conclusion of one theorem with the hypothesis of another
one. This corresponds to dropping a theorem object onto another theorem. Note
that this may not succeed — the operation is partial. E.g. if the theorem add_0 :
0 + c = c is dropped onto the theorem sym : s = t⇒ t = s, a new theorem t = 0 + t

is produced by forward resolution; but vice versa the operation fails. Simplifier sets
are sets of rewriting rules. If a theorem is dropped on a simplifier set, a new simplifier
set is produced with the theorem included. Classical logics support another type
of rule sets. These classical rule sets come in two modes, safe and unsafe, since
theorems can be added to a classical rule set in two ways (this distinction makes a
difference for a decision procedure of Isabelle, the so-called classical reasoner). If a
theorem is dropped on a classical rule set, depending on the mode of the rule set,
it is either added as a safe rule or as an unsafe rule.

Reloading an external theory file results in outdating all dependent objects, like
included theories or theorems depending on them.

2.4.2 Accommodating Tactical Programming into the Notepad

Contrary to a common prejudice against GUI’s for theorem provers, it is quite
straightforward to embed basic tactic script construction into the notepad metaphor.
First, we provide object types corresponding to certain Isabelle types, tac op (for
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tactical operations), tactics and tacticals. Second, we provide objects of type tac op
corresponding to backward resolution or simplification, basic tactics like proof by
assumption as objects of type tactic, and the usual connectives REPEAT, THEN
and ORELSE on tactics as objects of type tactical. Third, we set up the binary
operations by embedding Isabelle’s tactical algebra into our world of object types,
objects and binary operations. We are now able to construct, for example, an ob-
ject corresponding to the Isabelle tactic REPEAT o ((rtac exI) ORELSE’ (rtac

allI)) which by repeated backward resolution with the quantifier introduction
theorems exI and allI will eliminate an arbitrary sequence of outermost quantifiers
on a subgoal. Fig. 3 shows the constructed tactic in the lower left corner, together
with tacticals ORELSE and REPEAT, the tactical operation RTAC and the tactic
Rtac exI.

2.4.3 Accommodating Backward Proof into Construction Objects.

In LCF-style provers, the main proof method is by backward proof: if we want to
prove a goal φ in this style, a proof state is initialized with the formula φ ⇒ φ.
With a theorem A ⇒ B ⇒ φ, the proof state can be refined to A ⇒ B ⇒ φ by
forward resolution. The premises left from the rightmost implication, here A and
B, are called subgoals. If, as a consequence of further proof steps, no subgoals are
left, the proof state can be converted into the theorem φ.

Fig. 4. IsaWin’s construction area

It is convenient to declare backward proofs as construction objects and the proof
steps performed by tactical operations as their history. When dragging objects
from the notepad window to the construction area, the GUI will perform tactical
operations, depending on the mode of the dragged object, the settings of the buttons
and the focus set by the user. If a theorem lemma1 has the mode introduction rule,
and the focus is set to the second subgoal, the drag&drop gesture will trigger the
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Isabelle operations by(rtac lemma1 2). Further, dragging a simplifier set down
into the construction area will cause Isabelle’s rewriting machine to execute the
rewrites in it. If there are no subgoals left to be proven, the construction area can
be closed to yield a theorem object on the notepad. Figure 4 shows the construction
area of the IsaWin interface. The most prominent part is the display of the subgoals,
and the main goal to be proven.

3 System Design Issues

As mentioned in the introduction, we want to provide a family of user interfaces
for different applications, let it be for different theorem provers or different tools
built on them. Hence, our system architecture has to be generic. It depends on an
abstract characterisation of the application; this parameter is discussed in Sect. 3.1
and leads to the data model described in Sect. 3.2. This view is complemented by the
process model in Sect. 3.3, where the communication of the different components
is presented.

3.1 An Abstract View of Functional User Interfaces

At an abstract level, we consider the theorem prover, or the encoded formal method,
to be an application which is a structure with the following characteristics:

• It has objects, each of which has type. The type determines the possible modes,
and both determine which operations are applicable to this object, and both
were indicated by the object’s icon.

• There are partial operations which can be applied to objects, namely unary
operations which take exactly one argument, and binary operations which take
two arguments. Unary operations are selected from the pop-up menu bound
to each object, whereas binary operations are triggered by drag&drop.

Thus, an application has a set S of types, a set Ω of operations which have
certain arity (i.e. an operation ω ∈ Ω takes exactly one or two arguments of specific
types), a set As of the possible values of objects of type s, and a way to apply
operations ω from Ω to elements of As. In other words, an application is given by
a signature Σ = (S,Ω), and a partial Σ-algebra A. This separation of the syntax of
the application (given by a signature) from its semantics (given by an algebra) is
essential in being able to handle replay, as we will see below.

The modes — and similarly, the settings in the construction area — only serve
to disambiguate which operation ω is going to be applied. Once the operation has
been selected, its evaluation is independent of modes, settings or any other user
input.

Technically, we can denote this characterisation by an SML signature APPL_SIG,
making the generic interface an SML functor which when instantiated with an
application yields a graphical user interface for that application; we will elaborate
on this in Sect. 4.2 below.
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3.2 The Data Model

The metaphor developed in the previous section was based on the representation
of values by icons on a notepad, and application of operations on these objects.
Representation on the notepad corresponds to naming an object— the object can
be referred to, and operations can be applied to it.

As an application is given by a signature Σ and a partial Σ-algebra A, the history
of an object is given by composition of operations, or in other words by a term t

from the term algebra TΣ(X), built over a set X of variables (where the rôle of the
variables is taken by the external identifiers). Then, given a mapping of the variables
to values in As (i.e. a way to evaluate external objects), every term evaluates to
an element of As (MacLane & Birkhoff, 1967). So in order to be able to replay the
construction of an object, every object is represented internally as a pair (a, t) with
a ∈ As, t ∈ TΣ(X)s, where a is the current optional value of the object (if it exists),
and t is the history.

Since objects can be referred to, a single object can be used more then once. The
data model has to take into account that kind of sharing, since otherwise replay
would become unnecessarily expensive. In proof scripts, this sharing is achieved
by binding the theorem to an identifier. In our data model, it is implemented by
representing all terms representing the history of the objects in a directed acyclic
term graph, representing the global data state of the system.

The vertices of the term graph correspond to the pairs (a, t); every vertex may
be associated to an icon on the notepad. The edges correspond to operations. If
the value a does not exist, the object is called outdated. Recall that outdating can
occur in two ways: an external object is changed (i.e. re-evaluated; for example, a
file is being reread into the system), or an operation is applied to a construction
object.

The notion of history used here is linear, like Archer, Conway and Schneider’s
script model (Archer et al., 1984). When we go back in the history, there is a
sequence of operations which can be applied by going forward again (the pending
operations). If, after going back, we apply a different operation, these pending
operations are lost and cannot be referred to anymore. This is a design decision
to make navigating the history easy. With the data model, it would be easy to
implement a history which is not a linear script, but a graph (like Vitter’s US&R
model (1984)), where applying new operations is possible while still pending ones
are kept in another branch of the history.

3.3 The Process Model

The components of the architecture comprise the notepad and the construction area
which have already been introduced above. Additionally, the application may pro-
vide communicating components such as a file selector, or a theorem chooser; these
typically serve to import external objects into the system. Construction area and
notepad are closely coupled, because they exchange values of objects under con-
struction. The notepad and all other components communicate with each other via
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Fig. 5. The Process View of the Architecture Scheme.

a clipboard, and with an external environment, exchanging external representations
of the history of objects.

Figure 5 shows the process view of the system. M1, . . . ,Mn and NM1, . . . ,NMn

are the application-specific modal and non-modal components. Whenever a modal
component is activated, communication with all other components is refused, while
non-modal components allow interleaved communication. Hence, activation of a
modal component transfers the control flow of the interface to this component, as
indicated by the dotted arrows. Except for the environment and the clipboard, every
component is associated to a widget or a window visualizing its process state in the
GUI (construction area and history navigation have one each for convenience). The
components may optionally communicate with the environment (hence the dashed
arrows).

Our design goal of pervasive direct manipulation is reflected by the communica-
tion vertices that connect all components with the clipboard. The arrow pointing
into the clipboard represent drag-events (parameterized with the object), while the
arrow pointing from the clipboard represent drop-events.

Our design goal of persistence is reflected by the arrows connecting the notepad
to the environment. Both of these components have an internal state which we have
to be able to save into the environment, and read back from there. The application-
specific selector components may have an internal state, and thus may need to
communicate with the environment as well.

In Fig. 5, more than one instantiation of the interface can be connected, by
sharing the same environment, and by connecting the clipboards. This requires
conversion functions between the objects of the different instantiations. This gives
us a way to build Formal Software Development Environments as a consequence of
the genericity of our architecture. A prototypical implementation of this scheme,
centred around tools for the specification language Z, is discussed in (Lüth et al.,
1998).
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4 Implementation

In this section, we will give an overview of the implementation, briefly touching on
all components of the system (Fig. 6) in turn. The system is implemented entirely
in Standard ML. The instances discussed throughout the paper are based on the
theorem prover Isabelle. Since Isabelle essentially consists of a collection of ML types
for objects such as theorems, proofs and rule sets, and ML functions to manipulate
these objects, organised into a collection of ML structures and functors, one can
conservatively extend Isabelle by writing ML functions, using the abstract datatypes
provided by Isabelle, without corrupting the logical core of Isabelle.

Standard ML

Application

GenGUI
Isabelle/HOL

sml_tkwish

Fig. 6. Module Architecture

To implement the graphical user interface, we have developed a functional encap-
sulation of the interface description and command language Tcl/Tk (Ousterhout,
1994) into Standard ML, called sml tk (Lüth et al., 1996). This package provides
abstract ML datatypes for the Tcl/Tk objects, thus allowing the programmer to use
the interface-building library Tk without having to program the control structures
of the application in the untyped, interpretative language Tcl. Further, the sml tk
toolkit library offers a collection of often-used, customisable standard components,
such as text-input windows or file choosers.

4.1 Direct Manipulation of Formulas and Annotation Issues

The problem of representing terms and formulas is ubiquitous in a GUI for a the-
orem prover. With few exceptions based on a dag-like representation (Kahl, 1998),
terms are represented essentially text-based, enriched by mathematical or some
graphical notation like square roots or sum signs. In a GUI, there is a potential
for novel user interaction such as query-by-pointing (clicking on a subterm in or-
der to get information like types) or prove-by-pointing (clicking on a subterm to
apply a tactic or rewrite) (Bertot & Théry, 1998). Finally, direct manipulation is
a straightforward idea enabling the user to drag&drop a subterm within a sum,
effecting appropriate applications of associativity and commutativity laws (going
back to the system Theorist ; see also (Bertot, 1997a)) which are, at least in Isabelle,
extremely tedious to communicate in command-line style.

In a generic, language independent environment such as Isabelle, a prerequisite
of theses interactions is the generation of term annotations that allow the user to
set a focus in the sense of Sect. 2.3, or to point in the sense above. In this section,
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we describe the necessary concepts and their implementation within the Isabelle
syntax engine.

First, a mechanism to attach and manage one or more alternative external rep-
resentations of a syntax to a theory is needed. These paraphrasings allow one to
produce graphical output like ∀x.P instead of the conventional text output !x.P.
(This mechanism also allows the generation of other documentation formats like
LATEX).

Second, for a smooth transition from Isabelle’s text-based output to graphical
output, we implemented a markup-interpreter as a generic component of sml tk. It
provides a generic parser for an SGML-style notation <tag> ... </tag> that binds
attributes or ML functions to the subtext marked by the tags; e.g. the graphical
output above is obtained from the code <FONT SYMBOL>\"</FONT>x. P.

Third, the concept of annotations has to be added. Annotations are constant
symbols with an external representation that is invisible on the screen and whenever
possible transparent to the Isabelle printing macros and printing translations. They
are used to generate bindings to specific subtexts. For example, the focus mechanism
described above is implemented by surrounding every subterm t with an annotation
<SEL p>t</SEL> where p is a representation of the path to the subterm t. The
tag SEL is bound to a function which, given p, extracts the subterm t from the
proofstate. This annotation has to be transparent to the pretty-printing macros;
otherwise e.g. the rewriting from the internal representation x::y::[] to the external
representation [x,y] will fail. Based on these paths, it is a standard exercise in
tactical programming to provide the necessary operations for query-by-pointing
and prove-by-pointing.

Tags and annotations can be nested. For example, in (∀x. P (x))⇒ P (t), the text
x will be annotated as a part of the subterms x, P (x) and ∀x. P (x). In such a case,
the most specific annotation is selected first, with subsequent clicks cycling through
the less specific ones, so above, the first click on x will select the subterm x, the
second the subterm P (x), and the third the subterm ∀x. P (x).

In summary, a few technical extensions to Isabelle’s pretty-printing and parsing
machinery are sufficient to make Isabelle support graphical mathematical notation
and direct manipulation on terms. These extensions are fully compatible with Is-
abelle’s logical genericity, and fully backwards-compatible with existing syntactic
notations.

4.2 The Generic Graphical User Interface GenGUI

The module GenGUI uses the interface description facilities provided by sml tk to
provide a generic graphical user interface. It is independent of Isabelle, and given
as a functor

functor GenGUI(structure appl: APPL_SIG) : GEN_GUI = ...

which returns a graphical user interface for the application appl. The abstract
characterisation of an application has already been introduced in Sect. 3.1 above;
we will now give a sketch of the ML signature APPL_SIG describing them. The real
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signature of course is far more elaborate, containing in particular details about the
visual appearance (such as the size of the window, or the particulars of the icons
depicting the objects and their locations).

The ML signature can roughly be divided into four parts: typing of the objects,
operations and applying them, the construction area and external objects.

For the first part, every object has a type given by obj_type; its mode can be
changed within the modes of the object’s type, as given by modes. Objects of type
construction_obj are construction objects, which can be opened and manipulated
in the construction area:

signature APPL_SIG =

sig

type object (* The type of all objects *)

eqtype objtype (* The type of object types *)

eqtype mode (* The type of modes *)

val obj_type : object -> objtype

val modes : objtype-> mode list

val mode_name : mode-> string

val initial_mode : object-> mode

val construction_obj : objtype

For the second part, there is a type modelling the operations, and an operation
with which to apply it. Application is partial, and so the result of an application is
either a new object (variant OK), or failure (variant Error, the string argument is
an error message to be displayed):

datatype object_result = OK of object | Error of string

type opn

val apply : opn* object list-> object_result

val mon_ops : objtype-> ((object* (opn->unit)-> unit)* string) list

val bin_ops : (objtype* mode)* (objtype* mode)-> opn option

For every object type mon_ops gives the unary operations as a list of pairs of
functions and strings. The string is the name under which the operation will appear
in the pop-up menu; the function implements the operation. It gets passed the actual
object as its first argument, and a continuation which is used to apply operations.
The reason for passing a continuation is that a unary operation may require further
user interaction (e.g. when starting a proof in a theory, we first have to enter some
goal to be proven).

The binary operations are given by bin_ops and come into effect by drag&drop.
For every type and mode of a target object (the one being dropped onto) and type
and mode of objects being dropped, this function gives an option of an operation;
if this option is empty then no operation is available for this drag&drop situation.

The construction area shows the delicate interplay between the application and
GenGUI. Because the generic user interface implements the history and commands
such as undo, the application cannot provide these. But since the layout of the con-
struction area is given by the application, there needs to be a way to call functions
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which navigate the history, in order to bind them to graphical control elements. So
we model the construction area by a functor, which takes the history navigation
functions given by the signature HISTORY_SIG (omitted here), and implements the
following export signature:

functor ConArea (structure H : HISTORY_SIG):

sig val open_area : object*H.history->TkTypes.Widget list

val drop_ops : objtype*mode->object list->(opn->unit)->unit

end

The construction area provides the functions open_area which takes an object, and
its history, and returns a list of widgets making up the construction area. For every
type and mode of an object being dropped from the notepad into the construction
area, drop_obs gives the operation to be applied. Like mon_ops, its arguments are
the objects and a continuation to allow further user interaction.

The last part of the application deals with external objects. They are referred to
by an identifier of type external_id. Given such such a reference, we may obtain
an object from that by get_external_obj. The prime example here are file names;
get_external_obj loads the contents of the given file. The application may specify
dependencies between external objects (see below).

eqtype external_id

val ext_obj_depends_on : external_id* external_id-> bool

val get_external_obj : external_id-> object_result

end

The export interface shows a representation of the data model introduced in
Sect. 3.2. The type obj_label represents vertices of the term graph. objects is
a representation of the term graph as a list of pairs (l, e), where l is a label and
e an expression, consisting of applied operations, external objects or references to
previous labels.

signature GEN_GUI= sig

type obj_label

datatype obj_hist = External of external_id

| AppliedOp of opn* obj_hist list

| Result of obj_label

type objects = (obj_label* obj_hist) list

type notepad = (obj_label* TkTypes.Coord) list

type gui_state = objects* notepad

val change_external_obj : external_id-> unit

end

The notepad contains representations of vertices in the term graph on the screen,
given as pairs of obj_label and Coord; we only need the coordinates, since the rest
of the visual representation will be computed from other information (the type of
the object etc.). Then the state of the whole system is given by the term graph and
the notepad, and represented by an ML value of type gui_state. Hence we can
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use the ML parser to restart the interface in a given state, by generating a string
which when parsed and evaluated is a value of type gui_state corresponding to
the current state of the interface. Further, we do not use the whole of ML but
only a small subset describing variable declarations val x= e and expressions e
built by function application; a parser for this subset (or another language with
similar expressiveness) would not be hard to implement, allowing to parse and
evaluate expressions like above under the control of the interface. This can be used
to exchange single objects (e.g. proofs) between sessions, and to integrate a text-
based interface into the graphical interface.

Incidentally, the state is represented as a global reference; in Haskell it would be
implemented more elegantly as a monad. We do not show the functions used to
control the start and restart of the GenGUI, but importantly there is a function
change_external_id by which an external application can signal that the value
of an external object has changed. GenGUI then reevaluates the corresponding
external object, and all those external objects which depend on it (as specified by
ext_obj_depends_on), and moreover outdates all objects constructed from these
external objects.

Note how the functional nature of the interface is reflected in the typing: all op-
erations, given by mon_ops, bin_ops and drop_ops, can only produce new objects.
The application cannot delete objects.

As a final detail, the clipboard is implemented by sharing a common struc-
ture CLIPBOARD, which exports two functions, get: unit-> obj_hist and put:

obj_hist-> unit; if (and only if) put is called with the history of an object, the
next call to get will return this history.

5 A Different Instantiation of the Generic Architecture

In this section we will demonstrate how instantiations of our generic architecture
can be used to build a special purpose tool by encapsulating a formal method into
Isabelle. The tool will be the transformation system TAS, similar in spirit to window
inferencing (Grundy, 1991) as realized, for example, in the system TkWinHOL
(L̊angbacka et al., 1995), and related to systems such as Prospectra (Hoffmann &
Krieg-Brückner, 1993).

5.1 Concepts of TAS

In this section, we will briefly sketch the basic principles of modelling transforma-
tional program developments in an LCF-style prover, following the lines of Kolyang,
Santen and Wolff (1996a). A transformational development can be described as a
sequence of correctness-preserving refinement steps

SP1  . . . SPn

One can abstractly view the SPi as arbitrary formulae and  as a transitive,
reflexive and monotone refinement relation; this can be, for example, the implication
from right to left in the case of refinements based on standard model inclusion, or
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process refinement as in CSP. Every development step SPi  SPi+1 is given by
applying transformation rules, ranging from simple logical rules to complex ones
that convert a certain design pattern into an algorithmic scheme, such as Global
Search or Divide & Conquer (Smith & Lowry, 1990).

The basic idea of the Transformation Application System TAS is to separate the
logical core of a transformation from the pragmatics of its application, its tactical
sugar, driving the concrete application in a development context. A logical core
theorem has the following general form

∀P1, . . . , Pn . A⇒ I  O

where P1, . . . , Pn are the parameters of the rule, A the applicability condition, I
the input pattern and O the output pattern. By proving the logical core theorem, a
transformation is proven correct. When applying a transformation, the applicability
conditions result in proof obligations which are proven externally, by other interfaces
to Isabelle (like IsaWin) or by decision procedures or (e.g. model-checkers).

The Transformation Application System is designed to hide this implementation
in the prover from the user. Since the proof obligations can be deferred to a later
stage, the user of a transformation system can concentrate on the main design
decisions of transformational program development: which transformation to apply,
and how to instantiate its parameters.

5.2 TAS as an Instantiation of the Generic GUI

We will show how to set up TAS as an application in the sense of Sect. 3.1 above. We
have to define construction objects, object types, and operations. The construction
objects of TAS will be transformational program developments, corresponding to
Isabelle’s proof state, with a history of the transformation rules which have been
applied. The object types are transformational program developments, transfor-
mation rules with none, some or all of their parameters instantiated, parameter
instantiations, texts, and theories. Since in realistic transformation rules (such as
Global Search) parameter instantiations are lengthy, instantiations merit an addi-
tional dedicated object type to avoid retyping, and to allow copying them.

Fig. 7 shows a screen shot of TAS with some objects on the notepad, and a
transformational development currently open in the construction area. The oper-
ations include instantiating a transformation rule by dropping an instantiation on
a transformation rule, and applying a transformation rule by dragging it into the
construction area. Further, two transformation rules can be composed (using the
transitivity of  ) by dropping a transformation rule onto another one; if present,
the application conditions of both transformations were conjoined and the param-
eters universally quantified again.
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Fig. 7. The Graphical User Interface of TAS

6 Evaluation, Related Work and Conclusions

In this final section, we will discuss a metric evaluation of IsaWin, briefly review
related work and close with a summary of our results and an outlook on future
work.

6.1 Evaluation of IsaWin

Card, Moran, and Newell (1983) proposed the goals, operators, methods and se-
lection rules (GOMS) model and related it to the keystroke-level model (KLM).
They postulate that the users formulate goals (e.g. prove lemma) and subgoals (e.g.
push operator outermost) which they achieve by using methods (press key, move
mouse, recall theorem name, etc.). The selection rules are the control structures for
choosing among several methods available for accomplishing a goal — statistical
assumptions about the deviation of these choices form the basis for a translation
into the keystroke-level model. KLM attempts to predict performance times for
error-free expert performance of tasks by summing up the time for key-stroking,
pointing, drawing, thinking, and waiting for the system. Kieras and Polson (1985),
and Elkerton and Palmiter (1991) refined the approach.

The original model, but to a lesser extent also its successors, “concentrate on ex-
pert users and error-free performance, and place less emphasis on learning, problem
solving, error handling, subjective satisfaction and retention” (Shneiderman, 1998).
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Given these fundamental reservations, it is not clear that the GOMS model and its
variants apply to theorem proving. Of course, we can do a rough comparison on
the KLM-level of IsaWin and Isabelle’s command-line interface — for example, the
proof script in Fig. 4 is generated by 47 elementary user interactions like set focus
or drag object, substantially less than the interaction necessary to produce a proof
script of 233 characters — but one might argue that the fewer interactions required
by a GUI contrast to a larger number of more usual interactions (keystrokes) in
the command-line interface. And even if most Isabelle experts agree that the proof
script shown in Fig. 4 is typical, the question will remain how costly are untypical
situations, where the expert user can use the full flexibility of ML. Hence, these
metric data ignore factors like subjective satisfaction and usability.

However, we can identify two areas which IsaWin handles better than a command-
line interface: Firstly, proof-by-pointing and query-by-pointing, allowing by a single
mouse-click what in the command-line interface requires the tedious and extremely
error-prone construction of substitutions, and secondly, IsaWin’s replay, allowing a
much finer analysis of which proofs are affected by a change than the conventional
rerunning of scripts which fails at the first problem.

In summary, at present claims like “GUI’s improve productivity over command-
line interfaces in some formal method” can not be founded on taxonomic data,
although some first studies (Jackson, 1997) suggest this, at least for a particular
prover and GUI. It may actually be the case that a GUI precisely because it is easier
to use does not encourage purposeful planning to the extent which is necessary for
the successful use of a theorem prover (Merriam & Harrison, 1997). Then again, it
may be that a GUI makes the alternatives the user faces clearer and easier to invoke
(Bornat & Sufrin, 1998). The question remains open until more systematic studies
have been conducted; for IsaWin, the prototypical status of the implementation has
until now precluded such studies.

6.2 Related Work

6.2.1 Generic Architectures and Abstract GUI Descriptions

Design patterns have recently received a lot of attention in the field of object-
oriented programming (Gamma et al., 1990; Cooper, 1998). Also motivated by
reusability, some techniques (e.g. templates roughly corresponding to functors) are
similar to our generic system architecture. However, important aspects of these pat-
terns are described completely informally, resulting in a sometimes intransparent
mixture of meta-language, C++ code and pragmatics. In contrast, work on “archi-
tecture styles” (Abowd et al., 1993; Allen & Garlan, 1994) aims at a fully formal
description of generic architectures. However, for the moment, the emphasis of this
research lays on foundation, description and analysis and less on implementation.
Hence, we consider this work as complementary.

In the HCI literature, there is a large body of work applying formal methods,
for the modelling of GUI’s, based on temporal logic, Z or process algebras; see
(Dix et al., 1998) for a survey. Interface components can be described as processes
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exchanging events in a process algebra like CSP pp 320. A similar modelling in CSP
could be done for our generic system architecture; then even the dialogue behaviour
of the application can be described and specified formally.

6.2.2 GUI’s for Theorem Provers

GUI’s for computer algebra systems such as Maple, Mathematica or MuPad all
offer mathematical editing facilities and some of them even direct manipulation of
formulae (e.g. rewrite by drag&drop). Typically, this kind of direct manipulation is
only available without genericity. These systems are built for a fixed syntax (with
emphasis on arithmetics or differential equations), a fixed logic and on the basis of
a non-generic system architecture. This also holds for the special purpose theorem
prover CADiZ (Toyn, 1996).

In contrast, most recent theorem proving environments are generic, and some also
offer proof support for direct manipulation. Jape (Bornat & Sufrin, 1996) is generic
in the logic and offers an interface with different styles of proof layout, graphical
pretty-printing, and supports proof by direct manipulation, so-called “gestures”.
It is a lightweight prover, which has not been used yet to encapsulate a formal
method. Jape’s gestures are similar to CtCoq (Bertot & Bertot, 1996), where they
are called proof-by-pointing, but the basic idea remains the same. CtCoq is based on
a powerful prover, Coq, which unlike Isabelle is not generic, and moreover supports
graphical output which can be configured by the user at runtime, script-based
replay, and further direct manipulation like rewriting by drag&drop.

CtCoq is actually part of a larger initiative, in spirit similar to ours, to provide
generic interfaces for a family of provers (Bertot & Théry, 1998). The generic in-
terface is implemented using the Centaur system (Borras et al., 1988). In contrast
to our architecture, the system is distributed (prover and interface can run on dif-
ferent machines) and heterogeneous (prover and interface need not be implemented
in the same language). This work has been taken up by the Proof General project
at the University of Edinburgh (Bertot et al., 1997), in which a family of interfaces
for the three provers Coq, Lego and Isabelle has been implemented inside XEmacs.
In our view, despite practical advantages, this does not lead to a better system
architecture; and the close interaction between interface and prover possible be-
cause both are implemented in the same language leads to better support of direct
manipulation and, in particular, replay.

6.3 Results

In this paper, we have demonstrated how ideas of functional programming ap-
plied to user interface design gives rise to a new functional visualization metaphor,
the notepad. The metaphor serves as vehicle to make the data structures of these
provers accessible to pervasive direct manipulation.

The notepad allows for abstract manipulation of objects (consisting of construc-
tion history and an optional value) represented by icons. The functional paradigm
is a precondition for systematic replay, based on the recorded construction history
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Module Code size (lines of SML)

sml tk 9900
GenGUI 2600
IsaWin 4800
TASa 4500

a TAS and IsaWin share about 1400 lines of code.

Table 1. Size of Code

of every object. Objects come in two flavours: while standard objects only admit
coarse-grained user interaction via drag&drop on the notepad, construction objects
allow fine-grained user interaction in the construction area.

All these concepts are implemented in a generic system architecture, based on the
powerful modularization concepts of the typed functional language Standard ML.
We have presented two instantiations of this architecture, the interface IsaWin for
the theorem prover Isabelle, and the transformation system TAS. As a consequence,
we expect that our interface components can be reused for a certain range of similar
applications. In particular, this gives a blueprint for the construction of tools with
a graphical user interface for formal methods encoded into a theorem prover. We
have in turn instantiated TAS with CSP and Z, two prominent formal methods for
which encodings into Isabelle have been developed.

A fundamental design decision in the implementation was to use the Tk toolkit,
encapsulated into Standard ML by sml tk. The encapsulation sml tk helped us
to survive the evolution of Tk in the recent years while taking advantage of its
portability. As Table 1 shows, sml tk is the largest chunk of code. Building on that,
TAS and IsaWin can be kept fairly compact. To put these statistics into context,
pure Isabelle has about 17500 lines of ML code.

Despite the relatively low bandwidth between the SML process and the wish,
response times have proved satisfactory. The problems arising are minor technical-
ities: for example, sml tk builds widgets on the screen by generating and sending
Tcl code one line at a time. This results in the interface being incrementally built
on the screen, which looks unpleasant, in particular on slower machines. First ex-
periments with generating and sending the Tcl code in toto suggest this behaviour
can be remedied.

We also have not seen any evidence of Tcl/Tk performance problems, which may
be due to the fact that the Tcl code generated by sml tk is very schematic, with little
data handling and control flow. The memory requirements of the interface itself are
fairly modest (about 10 MB with the Standard ML of New Jersey compiler, on a
Sun UltraSPARC running Solaris 2.6), compared to Isabelle (at least 24 MB, rising
to e.g. 33 MB for the CSP encoding). The wish is even more modest, with around
800 KB process size.

In a restricted area of interaction with Isabelle, our instantiations seem to sub-
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stantially facilitate user interaction. This holds in particular for point-and-query,
point-and-prove interactions and for global replay activities.

6.4 Future Work

TAS and IsaWin are prototypical user interfaces that still need work in details. We
would like to allow cut-copy-paste manipulation of the history; in particular the
conversion of selected parts of the history to tactic objects would pave the way
for powerful techniques of interactive reuse. Further, goals and substitutions are
presently read as standard text and parsed via Isabelle’s parsing machinery. This
should be extended by a suitable mixture with structure-oriented editing facilities
as in CtCoq, or mouse-supported input as in Jape.

As text-based interfaces have their advantages as well, a significant potential
for increase in productivity is the integration of a command-line interface into our
GUI. Conceptually, the commands and operations which are evoked by the GUI
can be expressed in a simple functional language, e.g. a subset of ML (see Sect. 4.2).
Hence, a command-line interface offers just a different view of the same underlying
behaviour; we merely need to be able to parse and print commands in this language.
This can be fully integrated with the rest of the interface; e.g. one could edit and
reevaluate commands from the history, or one could provide a function’s arguments
by dragging their icons down from the notepad.

A far more involved subject is to scale up the systematic replay towards automatic
reuse of former proof attempts. The most evolved replay and reuse techniques we
are aware of are realized in the KIV-system (Reif et al., 1997). KIV also provides
direct manipulation on the history and moreover automatic support of reuse by
detecting unaffected subparts of the proof which can still be used after failed replay.
The authors claim that the productivity of this system is essentially due to its
reuse techniques (Reif & Stenzel, 1992). However, this feature is based on a very
specialized logic. Extending it for a generic theorem prover on the one hand and
embedding it into our generic notion of history will represent a substantial challenge,
but we believe that the deep incorporation of history both on the system level and
on the generic interface level provides a good starting point.
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