
Isabelle_C: A Generic Front-End of
C11 Supported in Isabelle/PIDE

Frédéric Tuong* and Burkhart Wolff**  
(*) Trinity College Dublin, Ireland  

(**) LRI, Université Paris-Saclay, France

Isabelle Workshop @ IJCAR 2020, Paris, France

OVERVIEW

OVERVIEW

• Code-Verification - A Solved Problem ?

OVERVIEW

• Code-Verification - A Solved Problem ?

• Using Isabelle as Code-Verification Framework

OVERVIEW

• Code-Verification - A Solved Problem ?

• Using Isabelle as Code-Verification Framework

• the IDE (called PIDE)

• Generic Front-End - Generic Annotations …

• Re-using existing semantic Back-Ends

OVERVIEW

• Code-Verification - A Solved Problem ?

• Using Isabelle as Code-Verification Framework

• the IDE (called PIDE)

• Generic Front-End - Generic Annotations …

• Re-using existing semantic Back-Ends

• DEMO: Semantic Backends: CLean, AutoCorres

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• Annotating programming code with pre-post-conditions and invariants
is a popular Formal Method (for some, it is “the real thing”)

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• Annotating programming code with pre-post-conditions and invariants
is a popular Formal Method (for some, it is “the real thing”)

• Annotations were inserted in a verification condition generator
(VCG) executing a Dijkstra wp calculus

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• Annotating programming code with pre-post-conditions and invariants
is a popular Formal Method (for some, it is “the real thing”)

• Annotations were inserted in a verification condition generator
(VCG) executing a Dijkstra wp calculus

• Example in Frama-C

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• Annotating programming code with pre-post-conditions and invariants
is a popular Formal Method (for some, it is “the real thing”)

• Annotations were inserted in a verification condition generator
(VCG) executing a Dijkstra wp calculus

• Example in Frama-C

 /* @ requires n>= 0 && \valid(t+0..n-&)
 @ requires \forall integer k,l; 0 <= k <= l < n ==> t[k] <= t[l];
 @ ensures \result <==> (\exists integer k; 0 <= k < n && t[k] == x);
 @ assigns \nothing; */

 int linearsearch(int x, int t[], int n) {
 int i = 0;
 /*@ loop invariant 0 <= i <= n;
 @ loop invariant (\forall integer k; 0 <= k < i ==> t[k] < x);
 @ loop assigns i;
 @ loop variant n-i; */
 while (i < n) {
 if (t[i] < x) { i++; }
 else { return (t[i] == x); }
 }

 return 0;
 }

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• Annotating programming code with pre-post-conditions and invariants
is a popular Formal Method (for some, it is “the real thing”)

• Annotations were inserted in a verification condition generator
(VCG) executing a Dijkstra wp calculus

• Example in Frama-C

 /* @ requires n>= 0 && \valid(t+0..n-&)
 @ requires \forall integer k,l; 0 <= k <= l < n ==> t[k] <= t[l];
 @ ensures \result <==> (\exists integer k; 0 <= k < n && t[k] == x);
 @ assigns \nothing; */

 int linearsearch(int x, int t[], int n) {
 int i = 0;
 /*@ loop invariant 0 <= i <= n;
 @ loop invariant (\forall integer k; 0 <= k < i ==> t[k] < x);
 @ loop assigns i;
 @ loop variant n-i; */
 while (i < n) {
 if (t[i] < x) { i++; }
 else { return (t[i] == x); }
 }

 return 0;
 }

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• Annotating programming code with pre-post-conditions and invariants
is a popular Formal Method (for some, it is “the real thing”)

• Annotations were inserted in a verification condition generator
(VCG) executing a Dijkstra wp calculus

• Example in Frama-C

 /* @ requires n>= 0 && \valid(t+0..n-&)
 @ requires \forall integer k,l; 0 <= k <= l < n ==> t[k] <= t[l];
 @ ensures \result <==> (\exists integer k; 0 <= k < n && t[k] == x);
 @ assigns \nothing; */

 int linearsearch(int x, int t[], int n) {
 int i = 0;
 /*@ loop invariant 0 <= i <= n;
 @ loop invariant (\forall integer k; 0 <= k < i ==> t[k] < x);
 @ loop assigns i;
 @ loop variant n-i; */
 while (i < n) {
 if (t[i] < x) { i++; }
 else { return (t[i] == x); }
 }

 return 0;
 }

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• Annotating programming code with pre-post-conditions and invariants
is a popular Formal Method (for some, it is “the real thing”)

• Annotations were inserted in a verification condition generator
(VCG) executing a Dijkstra wp calculus

• Example in Frama-C

 /* @ requires n>= 0 && \valid(t+0..n-&)
 @ requires \forall integer k,l; 0 <= k <= l < n ==> t[k] <= t[l];
 @ ensures \result <==> (\exists integer k; 0 <= k < n && t[k] == x);
 @ assigns \nothing; */

 int linearsearch(int x, int t[], int n) {
 int i = 0;
 /*@ loop invariant 0 <= i <= n;
 @ loop invariant (\forall integer k; 0 <= k < i ==> t[k] < x);
 @ loop assigns i;
 @ loop variant n-i; */
 while (i < n) {
 if (t[i] < x) { i++; }
 else { return (t[i] == x); }
 }

 return 0;
 }

CODE-VERIFICATION -
A SOLVED PROBLEM ?

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• Annotating programming code with pre-post-conditions and invariants
is a popular Formal Method (for some, it is “the real thing”)

• Annotations were inserted in a verification condition generator (VCG)
executing a Dijkstra wp calculus

• Example in VCC-3

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• Annotating programming code with pre-post-conditions and invariants
is a popular Formal Method (for some, it is “the real thing”)

• Annotations were inserted in a verification condition generator (VCG)
executing a Dijkstra wp calculus

• Example in VCC-3

 struct Handle {
 obj_t obj;
 invariant(obj->handles[this] && closed(obj))
 };

 struct Data {
 bool handles[Handle*];
 invariant(forall(Handle *h; closed(h) ==> handles[h] <==> h->obj == this)))
 invariant(old(closed(this)) && !closed(this) ==> !exists(Handle *h; handles[h]))
 invariant(is_thread(owner(this)) || old(handles) == handles ||
 inv2(owner(this)))
 };

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• Annotating programming code with pre-post-conditions and invariants
is a popular Formal Method (for some, it is “the real thing”)

• Annotations were inserted in a verification condition generator (VCG)
executing a Dijkstra wp calculus

• Example in VCC-3

 struct Handle {
 obj_t obj;
 invariant(obj->handles[this] && closed(obj))
 };

 struct Data {
 bool handles[Handle*];
 invariant(forall(Handle *h; closed(h) ==> handles[h] <==> h->obj == this)))
 invariant(old(closed(this)) && !closed(this) ==> !exists(Handle *h; handles[h]))
 invariant(is_thread(owner(this)) || old(handles) == handles ||
 inv2(owner(this)))
 };

CODE-VERIFICATION -
A SOLVED PROBLEM ?

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• When it comes to REAL programming languages,
VCG’s make assumptions over

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• When it comes to REAL programming languages,
VCG’s make assumptions over

• the language fragment

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• When it comes to REAL programming languages,
VCG’s make assumptions over

• the language fragment

• the treatment of language underspecification
(execution order, determinism, arithmetic, …)

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• When it comes to REAL programming languages,
VCG’s make assumptions over

• the language fragment

• the treatment of language underspecification
(execution order, determinism, arithmetic, …)

• the execution model
(sequential ? sequentially consistent? concurrent?)

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• When it comes to REAL programming languages,
VCG’s make assumptions over

• the language fragment

• the treatment of language underspecification
(execution order, determinism, arithmetic, …)

• the execution model
(sequential ? sequentially consistent? concurrent?)

• the data-types
(arithmetic ? union-types ? floats ? …)

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• When it comes to REAL programming languages,
VCG’s make assumptions over

• the language fragment

• the treatment of language underspecification
(execution order, determinism, arithmetic, …)

• the execution model
(sequential ? sequentially consistent? concurrent?)

• the data-types
(arithmetic ? union-types ? floats ? …)

• the memory and architecture model
(global ? local ? physical ? byte-level layout ? …)

CODE-VERIFICATION -
A SOLVED PROBLEM ?

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• … all these assumptions were kept

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• … all these assumptions were kept

• either implicit in the VCG algorithm

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• … all these assumptions were kept

• either implicit in the VCG algorithm

• or explicit in the “background theory” 
 
(VCC(1) : 300 axioms …)

CODE-VERIFICATION -
A SOLVED PROBLEM ?

CODE-VERIFICATION -
A SOLVED PROBLEM ?

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• Most Existing Tools
(STEPS, STEP2, VCC 1 - 3, Daphne, SAL-Annotations, why, Frama-C, …)

follow this “axiomatic” approach

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• Most Existing Tools
(STEPS, STEP2, VCC 1 - 3, Daphne, SAL-Annotations, why, Frama-C, …)

follow this “axiomatic” approach

• Alternative: Using Logical Embeddings in an
Interactive Theorem Prover like Coq or Isabelle.

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• Most Existing Tools
(STEPS, STEP2, VCC 1 - 3, Daphne, SAL-Annotations, why, Frama-C, …)

follow this “axiomatic” approach

• Alternative: Using Logical Embeddings in an
Interactive Theorem Prover like Coq or Isabelle.

• Derived VCG,

• Derived, guaranteed consistent memory model

• Clear Management of the involved Logical Contexts

CODE-VERIFICATION -
A SOLVED PROBLEM ?

• Most Existing Tools
(STEPS, STEP2, VCC 1 - 3, Daphne, SAL-Annotations, why, Frama-C, …)

follow this “axiomatic” approach

• Alternative: Using Logical Embeddings in an
Interactive Theorem Prover like Coq or Isabelle.

• Derived VCG,

• Derived, guaranteed consistent memory model

• Clear Management of the involved Logical Contexts

• … but still no guarantee that the model meets reality ;-)

THE “ECLIPSE OF FORMAL METHODS TOOLS”

WHY ISABELLE AS PLATFORM

THE “ECLIPSE OF FORMAL METHODS TOOLS”

WHY ISABELLE AS PLATFORM

• Generic Front-End for C-Semantics in Isabelle/HOL

THE “ECLIPSE OF FORMAL METHODS TOOLS”

WHY ISABELLE AS PLATFORM

• Generic Front-End for C-Semantics in Isabelle/HOL

• Isabelle as a System Framework offers an IDE (PIDE)  
allowing programmable commands in a generic document model

THE “ECLIPSE OF FORMAL METHODS TOOLS”

WHY ISABELLE AS PLATFORM

• Generic Front-End for C-Semantics in Isabelle/HOL

• Isabelle as a System Framework offers an IDE (PIDE)  
allowing programmable commands in a generic document model

THE “ECLIPSE OF FORMAL METHODS TOOLS”

WHY ISABELLE AS PLATFORM

• Generic Front-End for C-Semantics in Isabelle/HOL

• Isabelle as a System Framework offers an IDE (PIDE)  
allowing programmable commands in a generic document model

THE “ECLIPSE OF FORMAL METHODS TOOLS”

WHY ISABELLE AS PLATFORM

• Generic Front-End for C-Semantics in Isabelle/HOL

• Isabelle as a System Framework offers an IDE (PIDE)  
allowing programmable commands in a generic document model

• Several formally proven consistent semantic “back-ends”  
can give different semantic interpretations for C-programs

THE “ECLIPSE OF FORMAL METHODS TOOLS”

WHY ISABELLE AS PLATFORM

• Generic Front-End for C-Semantics in Isabelle/HOL

• Isabelle as a System Framework offers an IDE (PIDE)  
allowing programmable commands in a generic document model

• Several formally proven consistent semantic “back-ends”  
can give different semantic interpretations for C-programs

• Semantic Annotations were interpreted “back-end-specific” 
with logical context, C-scope and C term-context

THE “ECLIPSE OF FORMAL METHODS TOOLS”

WHY ISABELLE AS PLATFORM

• Generic Front-End for C-Semantics in Isabelle/HOL

• Isabelle as a System Framework offers an IDE (PIDE)  
allowing programmable commands in a generic document model

• Several formally proven consistent semantic “back-ends”  
can give different semantic interpretations for C-programs

• Semantic Annotations were interpreted “back-end-specific” 
with logical context, C-scope and C term-context

• Generic Front-End can create different applications based on symbolic 
execution, test-generation and interactive and automated proofs

ISABELLE/C - A FRAMEWORK FOR C-TOOLS

OUR SOLUTION

ISABELLE/C - A FRAMEWORK FOR C-TOOLS

OUR SOLUTION

• A new set of commands, most notably the new C-command
inside PIDE:

ISABELLE/C - A FRAMEWORK FOR C-TOOLS

OUR SOLUTION

• A new set of commands, most notably the new C-command
inside PIDE:

ISABELLE/C - A FRAMEWORK FOR C-TOOLS

OUR SOLUTION

• A new set of commands, most notably the new C-command
inside PIDE:

• Fully
editable,
IDE
support

ISABELLE/C - A FRAMEWORK FOR C-TOOLS

OUR SOLUTION

• A new set of commands, most notably the new C-command
inside PIDE:

• Fully
editable,
IDE
support

• navigation

ISABELLE/C - A FRAMEWORK FOR C-TOOLS

OUR SOLUTION

• A new set of commands, most notably the new C-command
inside PIDE:

• Fully
editable,
IDE
support

• navigation

• C11 syntax

ISABELLE/C - A FRAMEWORK FOR C-TOOLS

OUR SOLUTION

• A new set of commands, most notably the new C-command
inside PIDE:

• Fully
editable,
IDE
support

• navigation

• C11 syntax

• Generic,
programmable
Annotations

 DEMO

 Isabelle/C and Isabelle/C/AutoCorres

BACKENDS

BACKENDS

• At present, the following Logical Embeddings are possible
targets for C11:

BACKENDS

• At present, the following Logical Embeddings are possible
targets for C11:

• SIMPL, IMP [N. Schirmer 2004, T. Nipkow 1999]

BACKENDS

• At present, the following Logical Embeddings are possible
targets for C11:

• SIMPL, IMP [N. Schirmer 2004, T. Nipkow 1999]

• IMP2 [P. Lammich 2019]

BACKENDS

• At present, the following Logical Embeddings are possible
targets for C11:

• SIMPL, IMP [N. Schirmer 2004, T. Nipkow 1999]

• IMP2 [P. Lammich 2019]

• ORCA [Y. Nemouchi @ al, 2018]

BACKENDS

• At present, the following Logical Embeddings are possible
targets for C11:

• SIMPL, IMP [N. Schirmer 2004, T. Nipkow 1999]

• IMP2 [P. Lammich 2019]

• ORCA [Y. Nemouchi @ al, 2018]

• CLEAN [Keller @ al, 2018], for White-Box Testing

BACKENDS

• At present, the following Logical Embeddings are possible
targets for C11:

• SIMPL, IMP [N. Schirmer 2004, T. Nipkow 1999]

• IMP2 [P. Lammich 2019]

• ORCA [Y. Nemouchi @ al, 2018]

• CLEAN [Keller @ al, 2018], for White-Box Testing

• AutoCorres [Klein @ al, 2014]

BACKENDS

• AutoCorres [Klein @ al, 2014]
realistic C model for OS code verification
used in seL4 project, decent automation support, but complex.

ISABELLE/C - A FRAMEWORK FOR C-TOOLS

OUR SOLUTION

• Construction by Compiler-Generators
(and not general-purpose, inner-syntax “Early-Parser” for λ-terms)

• Efficient parsing,
and Intellisense

• Generic Scope-
Analysis

• parses entire
seL4 sources
(26 kLoC in 1s)

• markup in 20 s

HOOKING UP BACKENDS

HOOKING UP BACKENDS

• Semantics of a Command:

HOOKING UP BACKENDS

• Semantics of a Command:

• Problems:

HOOKING UP BACKENDS

• Semantics of a Command:

• Problems:

• ambiguity

HOOKING UP BACKENDS

• Semantics of a Command:

• Problems:

• ambiguity
 for (int i = 0; i < n; i++) a+= a*i /*@ annotation */

HOOKING UP BACKENDS

• Semantics of a Command:

• Problems:

• ambiguity
 for (int i = 0; i < n; i++) a+= a*i /*@ annotation */

• format flexibility
 /*@ annotation_begin */ ... /*@ annotation_end *

HOOKING UP BACKENDS

• Semantics of a Command:

• Problems:

• ambiguity
 for (int i = 0; i < n; i++) a+= a*i /*@ annotation */

• format flexibility
 /*@ annotation_begin */ ... /*@ annotation_end *

• reference to the syntactic C Context
 /*@ assert ⟨a > i⟩ */

HOOKING UP BACKENDS

• Semantics of a Command:

• Problems:

• ambiguity
 for (int i = 0; i < n; i++) a+= a*i /*@ annotation */

• format flexibility
 /*@ annotation_begin */ ... /*@ annotation_end *

• reference to the syntactic C Context
 /*@ assert ⟨a > i⟩ */

• transformation of the logical context

HOOKING UP BACKENDS

• Semantics of a Command:

• Problems:

• ambiguity
 for (int i = 0; i < n; i++) a+= a*i /*@ annotation */

• format flexibility
 /*@ annotation_begin */ ... /*@ annotation_end *

• reference to the syntactic C Context
 /*@ assert ⟨a > i⟩ */

• transformation of the logical context

HOOKING UP BACKENDS

• Semantics of a Command:

• Problems:

• ambiguity
 for (int i = 0; i < n; i++) a+= a*i /*@ annotation */

• format flexibility
 /*@ annotation_begin */ ... /*@ annotation_end *

• reference to the syntactic C Context
 /*@ assert ⟨a > i⟩ */

• transformation of the logical context

• scheduling the
evaluation order

HOOKING UP BACKENDS

HOOKING UP BACKENDS

• General Mechanism to register a PIDE “command”:

 Outer_Syntax.command’: Kcmd -> (σ -> σ) parser -> σ -> σ

HOOKING UP BACKENDS

• General Mechanism to register a PIDE “command”:

 Outer_Syntax.command’: Kcmd -> (σ -> σ) parser -> σ -> σ

• Isabelle/Isar : “setup ‹ some sml › “

HOOKING UP BACKENDS

• General Mechanism to register a PIDE “command”:

 Outer_Syntax.command’: Kcmd -> (σ -> σ) parser -> σ -> σ

• Isabelle/Isar : “setup ‹ some sml › “

• Analogously, Isabelle/C provides an infrastructure to
define “Annotation Commands”

HOOKING UP BACKENDS

• General Mechanism to register a PIDE “command”:

 Outer_Syntax.command’: Kcmd -> (σ -> σ) parser -> σ -> σ

• Isabelle/Isar : “setup ‹ some sml › “

• Analogously, Isabelle/C provides an infrastructure to
define “Annotation Commands”

 C_Annotation.command : Kcmd -> (<n-expr> -> (σ -> σ)c_parser) -> unit
 C_Annotation.command': Kcmd -> (<n-expr> -> (σ -> σ)c_parser) -> σ -> σ

HOOKING UP BACKENDS

• General Mechanism to register a PIDE “command”:

 Outer_Syntax.command’: Kcmd -> (σ -> σ) parser -> σ -> σ

• Isabelle/Isar : “setup ‹ some sml › “

• Analogously, Isabelle/C provides an infrastructure to
define “Annotation Commands”

 C_Annotation.command : Kcmd -> (<n-expr> -> (σ -> σ)c_parser) -> unit
 C_Annotation.command': Kcmd -> (<n-expr> -> (σ -> σ)c_parser) -> σ -> σ

• … σ is the logical context of the Isabelle system

HOOKING UP BACKENDS

• General Mechanism to register a PIDE “command”:

 Outer_Syntax.command’: Kcmd -> (σ -> σ) parser -> σ -> σ

• Isabelle/Isar : “setup ‹ some sml › “

• Analogously, Isabelle/C provides an infrastructure to
define “Annotation Commands”

 C_Annotation.command : Kcmd -> (<n-expr> -> (σ -> σ)c_parser) -> unit
 C_Annotation.command': Kcmd -> (<n-expr> -> (σ -> σ)c_parser) -> σ -> σ

• … σ is the logical context of the Isabelle system

• … comprising in Isabelle/C an environment env and the stack of S-R- AST’s

Hooking up Backends

Hooking up Backends
• Navigation: 

 
 
 
 
 

Hooking up Backends
• Navigation: 

 
 
 
 
 

Hooking up Backends
• Navigation: 

 
 
 
 
 

• Scheduling:  
 
 

Hooking up Backends
• Navigation: 

 
 
 
 
 

• Scheduling:  
 
 

HOOKING UP BACKENDS

HOOKING UP BACKENDS

• Example Language Clean (called “C Lean”)

HOOKING UP BACKENDS

• Example Language Clean (called “C Lean”)

• Built upon a shallow embedding into State-Exception Monads

HOOKING UP BACKENDS

• Example Language Clean (called “C Lean”)

• Built upon a shallow embedding into State-Exception Monads

• Minimalistic language with

HOOKING UP BACKENDS

• Example Language Clean (called “C Lean”)

• Built upon a shallow embedding into State-Exception Monads

• Minimalistic language with

• skipC, sequence _;-_, ifC, whileC,

HOOKING UP BACKENDS

• Example Language Clean (called “C Lean”)

• Built upon a shallow embedding into State-Exception Monads

• Minimalistic language with

• skipC, sequence _;-_, ifC, whileC,

• C-like control operators breakC, returnC
based on implicit global control variables

HOOKING UP BACKENDS

• Example Language Clean (called “C Lean”)

• Built upon a shallow embedding into State-Exception Monads

• Minimalistic language with

• skipC, sequence _;-_, ifC, whileC,

• C-like control operators breakC, returnC
based on implicit global control variables

• local variables as stacks of global variables

HOOKING UP BACKENDS

• Example Language Clean (called “C Lean”)

• Built upon a shallow embedding into State-Exception Monads

• Minimalistic language with

• skipC, sequence _;-_, ifC, whileC,

• C-like control operators breakC, returnC
based on implicit global control variables

• local variables as stacks of global variables

• (direct recursive) function calls

HOOKING UP BACKENDS

HOOKING UP BACKENDS

HOOKING UP BACKENDS

• Example in
Isabelle/C/Clean

HOOKING UP BACKENDS

• Example in
Isabelle/C/Clean

HOOKING UP BACKENDS

• Example in
Isabelle/C/Clean

• C command generates for
primeHOL, SQRT_UINT_MAX,
primeC_pre, primeC_post, and primeC a monadic Clean presentation

HOOKING UP BACKENDS

• Example in
Isabelle/C/Clean

• C command generates for
primeHOL, SQRT_UINT_MAX,
primeC_pre, primeC_post, and primeC a monadic Clean presentation

• definitions in the logical context σ

HOOKING UP BACKENDS

HOOKING UP BACKENDS

• Example in
Isabelle/C/Clean

HOOKING UP BACKENDS

• Example in
Isabelle/C/Clean

HOOKING UP BACKENDS

• Example in
Isabelle/C/Clean

HOOKING UP BACKENDS

• Example in
Isabelle/C/Clean

• Hoare-Triple over Monad:

HOOKING UP BACKENDS

• Example in
Isabelle/C/Clean

• Hoare-Triple over Monad:

HOOKING UP BACKENDS

HOOKING UP BACKENDS

• Example in Isabelle/C/AutoCorres

HOOKING UP BACKENDS

• Example in Isabelle/C/AutoCorres

 DEMO

 Isabelle/C and Isabelle/C/AutoCorres

CONCLUSION

• Isabelle/C : a generic Front-End for C providing
general IDE support

• Technology can construct other parsers (C18, Javascript, Rust,…)

• Follows idea of “Isabelle as Eclipse” and Integrated Documents

• Instantiatable with various semantic interpretations of C,
and derived, conservative libraries in HOL

• Platform for verification “back-ends” in Test and Proof

• Strong mechanism for plugin-separation
as well as plugin-collaboration

Abstract
We report on an integration of a novel C11
Frontend into Isabelle/HOL enabling different
semantic backends (AutoCorres, Securify, IMP2,
Clean, . . .). We discuss the challenges of a
Generic Framework ranging from IDE to Proof-
Support, and show how a small semantic
backend can be hooked into our Framework
enabling both deductive program verification as
well as program-based Test-Generation.

THE “ECLIPSE OF FORMAL METHODS TOOLS”

ISABELLE - THE SYSTEM

THE “ECLIPSE OF FORMAL METHODS TOOLS”

ISABELLE - THE SYSTEM

• Isabelle is

THE “ECLIPSE OF FORMAL METHODS TOOLS”

ISABELLE - THE SYSTEM

• Isabelle is

• an extensible programming system (component framework)

THE “ECLIPSE OF FORMAL METHODS TOOLS”

ISABELLE - THE SYSTEM

• Isabelle is

• an extensible programming system (component framework)

• based on a parallel functional programming language SML

THE “ECLIPSE OF FORMAL METHODS TOOLS”

ISABELLE - THE SYSTEM

• Isabelle is

• an extensible programming system (component framework)

• based on a parallel functional programming language SML

• geared
towards
ITP, but
strong
ATP
support

THE “ECLIPSE OF FORMAL METHODS TOOLS”

ISABELLE - THE SYSTEM

• Isabelle is

• an extensible programming system (component framework)

• based on a parallel functional programming language SML

• geared
towards
ITP, but
strong
ATP
support

