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(VCG) executing  a Dijkstra  wp calculus

• Example in Frama-C
      
 
           /* @ requires n>= 0 && \valid(t+0..n-&)
          @ requires \forall integer k,l; 0 <= k <= l < n ==> t[k] <= t[l];
          @ ensures \result <==> (\exists integer k; 0 <= k < n && t[k] == x);
          @ assigns \nothing;  */

       int linearsearch(int x, int t[], int n) {
           int i = 0;
           /*@ loop invariant 0 <= i <= n;
             @ loop invariant (\forall integer k; 0 <= k < i ==> t[k] < x);
             @ loop assigns i;
             @ loop variant n-i; */
           while (i < n) {
              if (t[i] < x) { i++; }
              else { return (t[i] == x); }
           }

           return 0;
        }
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          struct Handle { 
               obj_t obj; 
               invariant(obj->handles[this] && closed(obj)) 
          }; 

          struct Data { 
               bool handles[Handle*]; 
               invariant(forall(Handle *h; closed(h) ==> handles[h] <==> h->obj == this))) 
               invariant(old(closed(this)) && !closed(this) ==> !exists(Handle *h; handles[h])) 
               invariant(is_thread(owner(this)) || old(handles) == handles || 
                          inv2(owner(this)))
          }; 
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• When it comes to REAL programming languages, 
VCG’s make assumptions over 

• the language fragment 

• the treatment of language underspecification 
(execution order, determinism, arithmetic, … ) 

• the execution model  
(sequential ? sequentially consistent? concurrent? ) 

• the data-types  
(arithmetic ? union-types ? floats ? … ) 

• the memory and architecture model  
(global ? local ? physical ? byte-level layout ? … )
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• … all these assumptions were kept

• either implicit in the VCG algorithm

• or explicit in the “background theory” 
 
(VCC(1) : 300 axioms …)
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• Most Existing Tools  
(STEPS, STEP2, VCC 1 - 3, Daphne, SAL-Annotations, why, Frama-C, …) 

follow this “axiomatic” approach

• Alternative: Using Logical Embeddings in an  
Interactive Theorem Prover like Coq or Isabelle.

• Derived VCG,

• Derived, guaranteed consistent memory model

• Clear Management of the involved Logical Contexts

• … but still no guarantee that the model meets reality ;-)
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WHY ISABELLE AS PLATFORM

• Generic Front-End for C-Semantics in Isabelle/HOL

• Isabelle as a System Framework offers an IDE (PIDE)  
allowing programmable commands in a generic document model

• Several formally proven consistent semantic “back-ends”  
can give different  semantic interpretations for C-programs

• Semantic Annotations were interpreted “back-end-specific” 
with logical context, C-scope and C term-context 

• Generic Front-End can create different applications based on symbolic 
execution, test-generation and interactive and automated proofs
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OUR SOLUTION

• A new set of commands, most notably the new C-command  
inside PIDE:

• Fully  
editable, 
IDE 
support

• navigation

• C11 syntax

• Generic, 
programmable 
Annotations



                             

                              DEMO 

 
                       Isabelle/C     and     Isabelle/C/AutoCorres
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• At present, the following Logical Embeddings are possible  
targets for C11: 

• SIMPL, IMP [N. Schirmer 2004, T. Nipkow 1999] 

• IMP2 [P. Lammich 2019] 

• ORCA [Y. Nemouchi @ al, 2018] 

• CLEAN [Keller @ al, 2018], for White-Box Testing 

• AutoCorres [Klein @ al, 2014]



BACKENDS

• AutoCorres [Klein @ al, 2014] 
realistic C model for OS code verification 
used in seL4 project, decent automation support, but complex. 



ISABELLE/C - A FRAMEWORK FOR C-TOOLS

OUR SOLUTION

• Construction by Compiler-Generators 
(and not general-purpose, inner-syntax “Early-Parser” for λ-terms) 

• Efficient parsing, 
and Intellisense 

• Generic Scope- 
Analysis 

• parses entire 
seL4 sources 
(26 kLoC in 1s) 

• markup in 20 s 
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• Semantics of a Command:     

• Problems: 

• ambiguity 
                        for (int i = 0; i < n; i++) a+= a*i /*@ annotation */

• format flexibility 
            /*@ annotation_begin */ ... /*@ annotation_end * 

• reference to the syntactic C Context 
          /*@ assert ⟨a > i⟩ */  

• transformation of the logical context 

• scheduling the  
evaluation order
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• General Mechanism to register a PIDE “command”: 
               
      Outer_Syntax.command’: Kcmd -> (σ -> σ) parser -> σ -> σ 

• Isabelle/Isar :    “setup  ‹ some sml  › “

• Analogously, Isabelle/C provides an infrastructure to  
define “Annotation Commands”  
            

          C_Annotation.command : Kcmd -> (<n-expr> -> (σ -> σ)c_parser) -> unit  
          C_Annotation.command': Kcmd -> (<n-expr> -> (σ -> σ)c_parser) -> σ -> σ 

• …   σ is the logical context of the Isabelle system 

• … comprising in Isabelle/C an environment env and the stack of S-R- AST’s 
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• Example Language Clean (called “C Lean”) 

• Built upon a shallow embedding into State-Exception Monads 

• Minimalistic language with  

• skipC, sequence _;-_, ifC, whileC,  

• C-like control operators breakC, returnC  
based on implicit global control variables 

• local variables as stacks of global variables 

• (direct recursive) function calls
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• Example in  
Isabelle/C/Clean 
 
 
 
 
 
 
 

• C command generates for  
primeHOL, SQRT_UINT_MAX, 
primeC_pre, primeC_post, and primeC a monadic Clean presentation 

•                   definitions in the logical context σ
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CONCLUSION

• Isabelle/C : a generic Front-End for C providing  
general IDE support  

• Technology can construct other parsers (C18, Javascript, Rust,…) 

• Follows idea of “Isabelle as Eclipse” and Integrated Documents  

• Instantiatable with various semantic interpretations of C, 
and derived, conservative libraries in HOL 

• Platform for verification “back-ends” in Test and Proof 

• Strong mechanism for plugin-separation  
as well as plugin-collaboration



Abstract
We report on an integration of a novel C11 
Frontend into Isabelle/HOL enabling different 
semantic backends (AutoCorres, Securify, IMP2, 
Clean, . . . ). We discuss the challenges of a 
Generic Framework ranging from IDE to Proof-
Support, and show how a small semantic 
backend can be hooked into our Framework 
enabling both deductive program verification as 
well as program-based Test-Generation. 
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