
What is a Proof in Isabelle/HOL ?

Burkhart Wolff  
LMF, Université Paris-Saclay

LMF Seminary @ ENS Ulm, 24 Nov 2021

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Abstract
I give a System-oriented talk for
mathematicians and computer-
scientist on system architecture, its
links to theoretical foundations and the
basic pragmatics of the Isabelle
interactive proof system.

Isabelle - The SYSTEM
• Isabelle is

• an extensible programming system (component framework)

• based on a  
parallel  
functional  
programming 
language SML

• geared  
towards 
ITP, but 
strong  
ATP 
support

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Part I : SML
Conceived in the early 80ies for Interactive Theorem Provers, the
“Standard Meta-Language” SML is remarkably well-designed and
modern

Hindley-Milner Polymorphism, pattern-matching, exceptions

powerful “functor” module system

modern compiling techniques
(Interpreter (“top-level”) + JIT’s, Parallelism)

…

less known than, say, OCaml and F#, but …

less known that Haskell, but significantly simpler and easier to
learn+use

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Part I : SML

 DEMO

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Part II : Kernel

The Isabelle Kernel:

Types: polymorphic types τ with Haskell-like type
classes: bool, int, α list, α::order list, … ∈ τ

Terms: T = C | V | (λx. T) | T T
for constant symbols C and variable symbols V

Curry-Style Type System
favoring automated type inference

Metalogic “Pure” providing Proof-terms

1/4/21 B. Wolff - M1-PIA λ-Calculus

• Type Inferences:

The typed λ-calculus

1/4/21 B. Wolff - M1-PIA λ-Calculus

The typed λ-calculus
Theoretical Properties (without proof)

• typed λ-calculi come with three congruences:

• α congruence
 (terms are congruent modulo renaming of bound variables)

• β congruence
 (applications of abstractions to terms reduce to substitutions

• η congruence: unused bindings in abstractions cancel.

• for typed terms, the congruence t ↔αβη t’
 is decidable (reduce to β-normalform, expand to
 η-longform, rename vars via α in some canonical order)

1/4/21 B. Wolff - M1-PIA λ-Calculus

The typed λ-calculus
Theoretical Properties (without proof)

• Systems like Coq, Isabelle, HOL4 can use
 (some form of) typed λ-calculi as universal term-
 representation with binding operators such as ∀, ∃,
 sums, integrals, …

• The type inference problem is decidable, i.e. for

 Σ, ? ⊢ t :: ??

 there is an algorithm that finds solutions for ? and ?? if existing.

1/4/21 B. Wolff - M1-PIA λ-Calculus

Pure in Typed λ-calculus

• Isabelle Kernel provides a minimal logic:

 ΣPure = { _ ⟹ _ ↦ prop ⇒ prop ⇒ prop,

 _ ≡ _ ↦ α⇒α⇒ prop,

 ⋀_._ ↦ (α⇒prop)⇒ prop}

where we will equivalently write
⋀x. P for ⋀_._(λx. P). (Quantifier notation)

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Pure in Typed λ-calculus
• By the way: HOL is encoded in Pure:
 ΣHOL = ΣPure ⊎
 { Trueprop ↦ bool ⇒ prop,

 True ↦ bool, False ↦ bool,
 ∧ ↦ bool⇒bool⇒bool, _∨_ ↦ bool⇒bool⇒bool,  

 _ ⟶ _ ↦ bool ⇒ bool ⇒ bool, ¬ _ ↦ bool ⇒ bool,

 _ = _ ↦ α⇒α⇒ bool,

 ∀_._ ↦ (α⇒bool)⇒ bool,

 ∃_._ ↦ (α⇒bool)⇒ bool }

• … + 8 axioms…

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Pure in Typed λ-calculus
• Minimal logic (Pure) has the rules:

• … and an axiomatisation of ≡.

Θ

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Pure in Typed λ-calculus
• Isabelle CAN produce proof terms, in default mode,
 however, the Pure logic inferences do not.

• Rather, the essence of core inferences is captured

 in an abstract data-type

 thm = “Γ ⊢Θ φ”

• … in order to save memory and time.

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Pure in Typed λ-calculus
• Simplified, Pure has the rules:

• … and an axiomatisation of ≡.

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Part II : Kernel

 DEMO

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

So: What is a proof in Isabelle ?

• First answer: a thm with or without a proof term.

• Remark in recent journal paper
 “From LCF to Isabelle/HOL”[NW21]:

 We see incidentally two meanings of the word proof :

1. formal deductions of theorems from axioms using the inference rules  
of a logical calculus;

2. executable code written using tactics or other primitives, expressing  
the search for such deductions.  
 
 • Since the the first answer is nice, but remarkably

 far from mathematics or Formal Methods engineering
 we turn to the latter.

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Part III :
Tactic Procedures and Isar

• HOL in Pure

• Deduction Calculi in Pure

• Notation

• Basic Tactics and Isar “Methods”

• Advanced Isar Proof Structuring ….

1/4/21 B. Wolff - M1-PIA Deduction in HOL

„Pure“: A (Meta)-Language
for Deductive Systems

● Pure is a language to write logical rules (a “meta-logic”)

● Higher-Order Logic (HOL) is our working logic.

● Equivalent notations for natural deduction rules

(Textbook and Isabelle/HOL:)

 A1 ⟹ (… ⟹ (An ⟹ An+1)...),

 ⟦ A1; …; An ⟧ ⟹ An+1,

theorem
 assumes A1

 and …

 and An
 shows An+1

1/4/21 B. Wolff - M1-PIA Deduction in HOL

„Pure“: A (Meta)-Language
for Deductive Systems

● Pure allows also to represent and reason over
more complex rules involving the concept
of “Discharge” of (hypothetical) assumptions:*

 (P ⟹ Q) ⟹ R :

 theorem
 assumes "P ⟹ Q”
 shows "R"

* We follow the notation of van Dahlen’s Book: “Logic and Structure”. Available online.

1/4/21 B. Wolff - M1-PIA Deduction in HOL

„Pure“: A (Meta)-Language
for Deductive Systems

● Pure allows even more complex rules involving
“local fresh variables” in sub-proofs:

 ⋀x. (P x ⟹ Q x) ⟹ R :

 theorem
 fix x
 assumes “P x ⟹ Q x"
 shows "R"

x

1/4/21 B. Wolff - M1-PIA Deduction in HOL

Key Concepts: Rule-Instances
● A Rule-Instance is a rule where the free variables in

its judgements were substituted
by a common substitution σ:

where σ is {A ↦ 3<x, B ↦ x≤y} and
equality on terms is ↔αβη.

conjI
σ

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Key Concepts: Resolution
● A Rule-Instance can be constructed by

unification up to ↔αβη by a step called
resolution:

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Key Concepts: Formal Proofs
❑ A series of inference rule instances is usually

displayed as a Proof Tree (or : Derivation or: Formal Proof)

❑ The hypothetical facts at the leaves are called the assumptions of
the proof (here f(a,b) = a and f(f(a,b),b) = c).

sym subst

trans refl

subst

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Part II : Kernel

 DEMO

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Key Concepts: Discharge
❑ A key requisite of ND is the concept of discharge of

assumptions allowed by some rules (like impI)

❑ The set of assumptions is diminished by the discharged
hypothetical facts of the proof (remaining: f(f(a,b),b) = c).

trans

sym

refl

subst

subst
[][]

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Sequent-style vs. ND calculus
❑ Both styles are linked by two transformations

called “lifting over assumptions”:

X1..Xn ⟹ A1

X1..Xn ⟹ An+1

X1..Xn ⟹ An

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Key Concepts: Discharge
❑ We can now explain the discharge mechanism by meta-

implications carrying the local assumptions around:

❑ where Γ is just f(a,b) = c

trans

sym

refl

subst

subst

{} ⟹
Γ ⟹

Γ ⟹ Γ ⟹

Γ ⟹Γ ⟹

Γ ⟹
assumption

1/4/21 B. Wolff - M1-PIA Deduction in HOL

Proof Construction
❑ Proofs can be constructed in two ways

❑ Top down,
from assumptions
to conclusions
(Forward chaining)

❑ Bottom up,
decomposing conclusions
to necessary assumptions
(Backward Chaining)

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Forward Proofs

● Isabelle/Isar supports a proof “commands” for
step-wise forward proofs:

● General format:

lemmas <name> : <thm> [attribute]

1/2/21 B. Wolff - M1-PIA Automated Proofs

Forward Proofs
• Local forward proof constructions by attributes

– <thm>[THEN <thm>] (unifies conclusion vs. premise) 

– <thm>[OF <thm>] (unifies premise vs. conclusion) 

– <thm>[symmetric] (flips an equation) 

– <thm>[of (<term> | _)*] (instantiates variables) 

– <thm>[simp] (simplifies a thm) 

– <thm>[simp only: <thm>] (simplifies a thm)

B. Wolff - M2 - PIA 31

Apply-Style Proofs

● Isabelle supports a proof language for step-wise
backwards proofs: “apply style” proofs

● General format:

● Abbreviation:

 by(<method>) is apply(<method>) done

lemma <name> : “<formula>”
 apply(<method>)

 …
 apply(<method>)

 done

1/4/21

B. Wolff - M2 - PIA 32

Apply-Style Proofs

● core - methods at a glance

● Variants avec substitution

 assumption — discharge conclusion
 rule <thm> — introduction rules

erule <thm> — elimination rules
drule <thm> — destruction rule

1/4/21

 rule_tac <substitution> in <thm>
erule_tac <substitution> in <thm>
drule_tac <substitution> in <thm>

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Part III : Tactics

 DEMO

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Advanced Isar Features

❑ The Isar (Intelligible Structured Automated Reasoning)
is
a proof generation language which is

❑ block-structured

❑ provides an abstraction from a goal-state via

❑ reordering

❑ abstraction of assumptions and fixes, patterns, …

❑ named and un-named management of local

assumptions

❑ support of common proof formats such as

proof by contradiction, induction, cases
distinctions ,…

❑ document generation. Some samples:

A Structured „Classical“ Proof
● Example: (Nested) Proof by Contradiction

Nameless
selection from  
local context

A Structured „Classical“ Proof
● Example: A Calculational Proof

A Structured „Classical“ Proof
● Example: Induction, Calculation, Patterns …

towards a comprehensive human-readable proof
presentation format
 introducing  

abbreviations by
pattern-matching

proof-structuring  
method

local  
abbreviationintermediate  

goalcatching
induction hyp intermediate  
lemmapresenting  

main goal in  
terms of
abbrevs 

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Conclusion
❑ The Isabelle environment provides a modern

interactive proof assistant

❑ … in the LCF prover tradition, based on a

meta-logic and a kernel architecture

❑ … based on many very advanced technologies

from parallel SML over HO-Unification to PIDE

❑ … offers structured proofs and a proof archive

(google Isabelle AFP)

❑ … includes many leading edge AUTOMATED proof

techniques such as Paramodulation, Tableaux-
Proving, SMT-Solvers, Arithmetic decision procs …

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Thank You !

Seminary on Isabelle @ ENS Saclay: 
[1]Interactive Theorem Proving and Applications. 
 Material and Videos :  
 https://www.lri.fr/~wolff/teach-material/2020-2021/M2-CSMR/
index.html
[2] The Isabelle Club @ VALS / LMF 
 https://vals.lri.fr/isabelleclub/IsabelleClub/ 
 
We have funding for an Internship (Stage) up to 6 months  
for a serious Isabelle/HOL-CSP project in the domain of  
Autonomous Cars !!! Contact me !

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

PIDE is implemented in 50 kloc Scala 
and has connectors for Coq and Isabelle

ISABELLE/C - A FRAMEWORK FOR C-TOOLS

OUR SOLUTION

• A new set of commands, most notably the new C-command
inside PIDE:

• Fully
editable,
IDE
support

• navigation

• C11 syntax

• Generic,
programmable
Annotations

 DEMO

 Isabelle/C and Isabelle/C/AutoCorres

 DEMO

 Isabelle/C and Isabelle/C/AutoCorres

CONCLUSION

• Isabelle/C : a generic Front-End for C providing
general IDE support

• Follows idea of “Isabelle as Eclipse”,
enabling Integrated Documents with Ontology Support

• Instantiatable with various semantic interpretations of C,
and developed libraries in HOL

• Platform for verification “back-ends” in Test and Proof

• Strong mechanism for plugin-separation
as well as plugin-collaboration

