What is a Proof in Isabelle/HOL ?

Burkhart Wolff
LMF, Université Paris-Saclay

LMF Seminary @ ENS Uim, 24 Nov 2021

24/11/21

Abstract

| give a System-oriented talk for
mathematicians and computer-
scientist on system architecture, its
links to theoretical foundations and the
basic pragmatics of the Isabelle
interactive proof system.

What is a Proof in Isabelle ?

ENS Tutorial

Isabelle - The SYSTEM

o |sabelle is

e an extensible programming system (component framework)

e pbasedon a
parallel
functional
programming
language SML

e geared
towards
ITP, but
strong
ATP

support

Editor Front-End
(e.g., JEdit, VSCode, Eclipse)

o .

approx. display

-

'Editor Front-End ‘ |

evaluation
Isabelle

Isabelle

Part I : SML

[] Conceived in the early 80ies for Interactive Theorem Provers, the

!dl&.r.fmnt-lnd
(e.g., JEdit, VSCode, Eclipse)
E——
' 'Editor Front-End
T cvea rrren
< approx. display
PDF/LaTex ™
.- ..
 HTML =
edits markup
_ Haskell
BRCICEUIN S
 Scala -
evaluation >
Isabelle

Oless known that Haskell, but significantly simpler and easier to
learn+use

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Part I : SML

DEMO

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

24/11/21

Part II : Kernel

ldlt;r.innt-l nd
(e.g., JEdit, VSCode, Eclipse)

_‘
n
-

-, |

'Editor Front-End
-

approx. display

edits

markup

evaluation
_Isabelle

Metalogic "Pure” providing Proof-terms

What is a Proof in Isabelle ?

ENS Tutorial

1/4/21

The typed A-calculus

» Type Inferences:

N T

ci 20 (X ¢) . ' x;
YIFE:r=7 Y TFE &7
SITHFEE =71

YAz > 1}WTEE o7

B. Wolft - M1-PIA

Y. I, Eor=1

FZE,,;

A-Calculus

The typed A-calculus

Theoretical Properties (without proof)

* typed A-calculi come with three congruences:

* o congruence

(terms are congruent modulo renaming of bound variables)
» [congruence

(applications of abstractions to terms reduce to substitutions
e p congruence: unused bindings in abstractions cancel.

o for typed terms, the congruence t “4Bn t
is decidable (reduce to B-normalform, expand to

n-longform, rename vars via a in some canonical order)

1/4/21 B. Wolft - M1-PIA A-Calculus

The typed A-calculus

Theoretical Properties (without proof)

* Systems like Coq, Isabelle, HOL4 can use
(some form of) typed A-calculi as universal term-
representation with binding operators such as v, 3,
sums, integrals, ...

* The type inference problem is decidable, i.e. for
2,7t

there is an algorithm that finds solutions for ? and ?? if existing.

1/4/21 B. Wolff - M1-PIA A-Calculus

Pure in Typed A-calculus

* Isabelle Kernel provides a minimal logic:

2 Pure = { _ = _ b prop = prop = prop,

b O=>0l=> prop,

A = (o.=prop)=> prop}

where we will equivalently write
/\x.P for /_._(kx. P). (Quantifier notation)

1/4/21 B. Wolft - M1-PIA A-Calculus

Pure in Typed A-calculus

* By the way: HOL is encoded in Pure:

2HOL = 2Pure Y
{ Trueprop » bool = prop,

True » bool, False » bool,
A p bool=bool=bool, v_ +» bool=bool=bool,

— _p bool = bool = bool, = + bool = bool,

= poa=0= bool,

V_. ~ (o.=bool)= bool,

1 . ~ (a.=bool)= bool }

e ... + 8 axioms...

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Pure in Typed A-calculus

* Minimal logic (Pure) has the rules:

Proofs as)\-terms

p,q = h Hypothesis
| cra—7) Proof constant (reference to axiom / theorem)
| p-t)\ -elimination
| p-q —> -elimination
| Xz aT.p /\ -introduction
| Ah:@.p —> -introduction

Proof checking

Qc)=¢
Ih:t,I'Fh:t I'F ciaar i pla— T}
'Fp: AzuT.0 THET CxaThkp:o
'Fp-t: P{x— t} F'FXxarT.p: N1
I'Fp:rpop=— v I'kFq:op Ih:pbFp:iy I'F @ prop
I'Fp-q:Y I'FAh:p.p:p = Y

e ... and an axiomatisation of =.

24/11/21 What is a Proof in Isabelle ?

ENS Tutorial

Pure in Typed A-calculus

* Isabelle CAN produce proof terms, in default mode,
however, the Pure logic inferences do not.

* Rather, the essence of core inferences is captured

In an abstract data-type
thm =T Fo @”

® .. in order to save memory and time.

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Pure in Typed A-calculus

» Simplified, Pure has the rules:

Ae0O

] (axiom) TE A (assume)
'FBlz] z¢T | '+ Az. Blz] |
IF Az Blz] /i) OF Bla \eim)
I'-B I"FA=—B Iy2FA

(=-intro)

(=-elim)

'-AFA—=— B INul'y B

e ... and an axiomatisation of =.

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Part 1II : Kernel

DEMO

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

So: What is a proof in Isabelle ?

 First answer: a thm with or without a proof fterm.

* Remark in recent journal paper
“From LCF to Isabelle/HOL[NW21]:

We see incidentally two meanings of the word proof :

1. formal deductions of theorems from axioms using the inference rules
of a logical calculus;

2. executable code written using tactics or other primitives, expressing
the search for such deductions.

 Since the the first answer is nice, but remarkably

far from mathematics or Formal Methods engineering
we turn to the latter.

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Part III :
Tactic Procedures and Isar

e HOL in Pure

Editor Front-End
(e.g., JEdit, VSCode, Eclipse)

in Pure

'Editor Front-End
approx. display

-

Isabelle
A

e dna cida [|

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

,Pure”: A (Meta)-Language
for Deductive Systems

- Pure is a language fo write logical rules (a "meta-logic”)

- Higher-Order Logic (HOL) is our working logic.

- Equivalent notations for natural deduction rules
(Textbook and Isabelle/HOL:)

A ... Ay theorem
Anit assumes A,

and ...

A= (.. = A =A_).) and A

shows A
A - C A , A n+1
[[1, L n]] n+1’

1/4/21 B. Wolff - M1-PIA Deduction in HOL

,Pure”: A (Meta)-Language
for Deductive Systems

» Pure allows also to represent and reason over
more complex rules involving the concept
of "Discharge” of (hypothetical) assumptions:*

(P= Q) = R: [P]
theorem Q
assumes "P = Q” —
shows "R" Iat

1/4/21 * We follow the notation of van Dahlen’s Book: “Logic and Structure”. Available online.)L

,Pure”: A (Meta)-Language
for Deductive Systems

* Pure allows even more complex rules involving
"local fresh variables” in sub-proofs:

Ax.(Px = Qx) = R: [PL
theorem
fix x Q
assumes P x = Q x" —
n n R
shows R

1/4/21 B. Wolff - M1-PIA Deduction in HOL

Key Concepts: Rule-Instances

« A Rule-Instance is a rule where the free variables in
Its judgements were substituted

by a common substitution o:

A B - I<xr <Yy

conjl >
ANB J<zrANzx <y

where o Is {A» 3<x, B » x<y} and
equality on ferms IS <>

1/4/21 B. Wolff - M1-PIA Deduction in HOL

Key Concepts: Resolution

+ A Rule-Instance can be constructed by

unification up to <>, by a step called

resolution:
A B

(AA B)em

B<ahz<y)

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Key Concepts: Formal Proofs

2 A series of inference rule instances is usually
displayed as a Proof Tree (or : Derivation or: Formal Proof)

fla,b)=a f(a,b) =a [f(f(a,b),b)=c

sym subst

a= f(a,b) fla,b) =c

trans refl

subst

<4 The hypothetical facts at the leaves are called the assumptions of
the proof (here f(a,b) = a and f{f{a,b),b) = c).

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Part 1II : Kernel

DEMO

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Key Concepts: Discharge

d A key requisite of ND is the concept of discharge of
assumptions allowed by some rules (like impI)

[f(aa b) — CL] [f(&a b) — CL] f(f(a’a b)v b) — C

sym subst
° T f(a, b) f(a, b) — trans refl
" a=c g(a) = g(o)
g(a) = g(c)

f(a,b) =a — g(a) = g(c)

d The set of assumptions is diminished by the discharged
hypothetical facts of the proof (remaining: f(f(a,b),b) = ¢).

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Sequent-style vs. ND calculus

2 Both styles are linked by two transformations
called “lifting over assumptions”:

Al ... A,

An—l—l
e

X1.Xh=—= Aj X1.Xp=—=— A,

X1..Xn= An+i

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Key Concepts: Discharge

2 We can now explain the discharge mechanism by meta-
implications carrying the local assumptions around:

F—fab=a"f@h=a ff@bb)=c
I =—=a = f(a7 b) [=>f(a, b) — C tranc refl
I‘=>a:c }UI;g(a):g(a)

subst

= g(a)=g(c)
} = f(a,b) =a — g(a) = g(c)

2 where I isjust f{a,b) = ¢

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Proof Construction

2 Proofs can be constructed in two ways

2 Top down,
from assumptions
to conclusions
(Forward chaining)

Fab)= | fab)=a f((a,b),bh)=c
a:f(a, f(afab, = C

2 Bottom up,
decomposing conclusions
to necessary assumptions ~ flab)=a fp)=a [f(fle,0),0)}c
(Backward Chaining) a = f(a,b) fla,b) =c

1/4/21 B. Wolff - M1-PIA Deduction in HOL

Forward Proofs

- Isabelle/Isar supports a proof “commands” for
step-wise forward proofs:

« General format:

lemmas <name> : <thm> [attribute]

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

1/2/21

Forward Proofs

Local forward proof constructions by attributes

<thm>[THEN <thm>] (unifies conclusion vs. premise)
<thm>[OF <thm>] (unifies premise vs. conclusion)
<thm>[symmetric] (flips an equation)

<thm>[of (<term>1_)*] (instantiates variables)

<thm>[simp]

(simplifies a thm)

<thm>[simp only: <thm>] (simplifies a thm)

B. Wolff - M1-PIA Automated Proofs

Apply-Style Proofs

+ Isabelle supports a proof language for step-wise

backwards proofs: “apply style” proofs

- General format:

lemma <name> : “<formula>"
apply(<method>)

apply(<method>)
done

* Abbreviation:

1/4/21

by(<method>) iS apply(<method>) done

B. Wolff - M2 - PIA

31

Apply-Style Proofs

» core - methods at a glance

assumption — discharge conclusion
rule <thm> — introduction rules
erule <thm> — elimination rules
drule <thm> — destruction rule

- Variants avec substitution

1/4/21

rule_tac <substitution> in <thm>
erule_tac <substitution> in <thm>
drule_tac <substitution> in <thm>

32

Part III : Tactics

DEMO

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

Advanced Isar Features

Q The Isar (Intelligible Structured Automated Reasoning)
IS
a proof generation language which is

2 block-structured
d provides an abstraction from a goal-state via
Q reordering
d abstraction of assumptions and fixes, patterns, ...

dJ named and un-named management of local
assumptions

d support of common proof formats such as
proof by contradiction, induction, cases
distinctions ,...

d document generation. Some samples:

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

A Structured ,Classical” Proof

- Example: (Nested) Proof by Contradiction

theorem "((A — B) — A) — A"
proof
assume "(A — B) — A"
show A
proof (rule classical)
assume " A"

have "A — B[] Nameless

proof

aSsume A selection from
with <= A> shgu B by tomtradictior———— |ocal context
‘:

with <(A — B) — A> show A ..
qed
qed

A Structured ,Classical” Proof

+ Example: A Calculational Proof

122|lemma (in group) group right inverse: "x * inverse x = 1"
%123 proof -
o124[jhave "x * inverse x = 1 * (x * inverse x)"
-125 by (simp only: group left one)
©126| also have "... = 1 * x * inverse Xx"
-127 by (simp only: group assoc)
©128| also have "... = inverse (inverse x) * inverse x * x * inverse Xx"
-129 by (simp only: group left inverse)
©130| also have "... = inverse (inverse x) * (inverse x * x) * inverse X"
-131 by (simp only: group assoc)
©132| also have "... = inverse (inverse x) * 1 * inverse x"
-133 by (simp only: group left inverse)
©134| also have "... = inverse (inverse x) * (1 * inverse x)"
-135 by (simp only: group assoc)
©136| also have "... = inverse (inverse x) * inverse x"
-137 by (simp only: group left one)
©138) also have "... = 1"
-139 by (simp only: group left inverse)
L140] finally show ?thesis .
-141|qed

A Structured ,Classical” Proof

+ Example: Induction, Calculation, Patterns ...
towards a comprehensive human-readable proof

presentation format

i+ 1) =n"Suc (Suc 0)" introdu_cing _
- aprpeliatioalipng
< patRifitehatching
local
let ?tw@="S (69 < : laliqn
have "¢ n + 2 *n + I} « mmgw%qg
al:Z zi:m . =H22+two" < C%ﬂ‘ﬂg :
also (a two™ I,"H@Bﬁ@ﬁ“ﬁ%
by simp— pré@éﬁﬂﬁm
finally show "?P (Suc n)['}] < main goal in
by simp
qed terms of

abbrevs

Conclusion

J The Isabelle environment provides a modern
interactive proof assistant

2 ... in the LCF prover tradition, based on a
meta-logic and a kernel architecture

2 ... based on many very advanced technologies
from parallel SML over HO-Unification to PIDE

Jd ... offers structured proofs and a proof archive
(google Isabelle AFP)

d ... includes many leading edge AUTOMATED proof
techniques such as Paramodulation, Tableaux-
Proving, SMT-Solvers, Arithmetic decision procs ..

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

24/11/21

Thank You !

Seminary on Isabelle @ ENS Saclay:

[1]interactive Theorem Proving and Applications.
Material and Videos :
https://www.lIri.fr/~wolff/teach-material/2020-2021/M2-CSMR/

index.html

[2] The Isabelle Club @ VALS / LMF
https://vals.lri.fr/isabelleclub/IsabelleClub/

We have funding for an Internship (Stage) up to 6 months

for a serious Isabelle/HOL-CSP project in the domain of
Autonomous Cars !!! Contact me!

What is a Proof in Isabelle ?

ENS Tutorial

24/11/21 What is a Proof in Isabelle ? ENS Tutorial

/'¥ context
definition

context
definition

context
definition

m context |

definition

PIDE is implemented in 50 kloc Scala
and has connectors for Coq and Isabelle

OUR SOLUTION

ISABELLE/C - A FRAMEWORK FOR C-TOOLS

* A new set of commands, most notably the new C-command
inside PIDE:

F U I Iy M C2.thy (~/codebox/isabelle_c/C11-FrontEnd/examples/)
199

edltable' 200jsection<Some realistic Selection sort with Input and Output>

|DE 201

©202|C<
support 203|#include <stdio.h>
204
205|int main()
> - 206|{
naV|gat|on 2071 int array[100], n, ¢, d, position, swap;
208
2000 printf("Enter number of elements\n");

C11 syntax 210, scanf("%d", &n);
211
2121 printf("Enter %d integers\n", [i);
Generic, 213 > 8

2144 for (c = 0; ¢ < n; c++) scanf(| :: int

programmable 215 E 'Lo;a'l_ V?ri:ble IPNC
Annotations 28] for (c = 0; c < (n - 1); cs) | —oonevamane

2171 |
218 position = c;

DEMO

Isabelle/C and Isabelle/C/AutoCorres

DEMO

Isabelle/C and Isabelle/C/AutoCorres

CONCLUSION

Isabelle/C : a generic Front-End for C providing
general IDE support

Follows idea of “Isabelle as Eclipse”,
enabling Integrated Documents with Ontology Support

Instantiatable with various semantic interpretations of C,
and developed libraries in HOL

Platform for verification “back-ends” in Test and Proof

Strong mechanism for plugin-separation
as well as plugin-collaboration

