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Context (1) 
● The VeriSoft Xt Project

● started 2007, 24 mio € budget, 3 years,
ca. 100 men-year work.

● several larger verification sub-projects
● Avionics, Car-Electronics
● Pike-OS Kernel         (a real-time OS)
● Microsofts Hyper-V  (a virtualization OS)



  

Context (2)
● Microsofts Hyper-V  (a virtualization OS)



  

Context (3)
● What is the Hyper-V Hypervisor  ?

● an operating system
● manages processes (“guests”,“partitions”), 
● memory,
● events and IPC's
● (but no real devices, that 

is handled by the root partition)



  

Context (4)
● What is special with Hyper-V?  

● in contrast to a standard OS,
which emulates linear (“logical”) memory
for its processes, it emulates
physical memory 

i.e. an MMU

for its guests (using X86 – V Chipset)



  

Context (5)
● The Hyper-V Verification Project  

● Motivation:
Tremendously complex, difficult to test.

● Relatively small:
50000 line of code in ANSII C (X86 - V)
and Assembler

● There have been formal models of processors
and virtual machines for a while 
(INTEL's X86 (Forte), AMD's X86 (ACL 2)
 JVM (Isabelle/HOL), VAMP (Isabelle/HOL), ...) 



  

Context (6)
● The Hyper-V Verification Project  

● Target: Correctness Proof. Prove that

an emulated X86 processor 
(running one one core of X86-V)

behaves like

a standard X86 processor (modulo time).



  

Context (6)
● The Hyper-V Verification Project  

obviously, a lot of new 
verification technology 
is needed.



  

Motivation (1) 
● Automated Theorem Proving (ATP) has found its

“Killer-Application”:  Static Program-Analysis 
● SAL-Annotations in MS Vista and MS Word !
● Boogie: Data-Invariant Checking

● Interactive Theorem Proving (ITP): No Killer-App in
sight (people still hate to see proofs ... ), but

● Verifications of complex algorithms, or even 
mathematically challenging theorems,  is S-o-t-A.

● Lots of Technology exists to get calculi right and 
to get provers safely work together.



  

Motivation(2) 
● Boogie: 

... is a program-oriented specification method aiming at 
“deeper” algorithmic verification (as, e.g., SAL). 

... offers an extremely attractive
    “Analyze&Fix” cycle.

Still, failures of proof attempts can be difficult to 
understand: Is it the prover? The program? The spec?



  

Plan of the Talk 
● Scenario I: HOL-Boogie as Interactive Prover of

Boogie VC's, with an “Analyse&Fix” based on ITP.    (%70)

● Challenges and Answers for ITP in  a static  (%20)
program analysis application 

● Scenario II: HOL-Boogie in C Verification              (%10)



  

Scenario I 

● Workflow:

.b2iBoogie

.bpl

.bpl HOL-Boogie

.thy
prelude

Z3



  

Scenario I 
● The Problem: Dijkstra's Shortest Path Algorithm

Data:

    type Vertex;
    const Graph: [Vertex, Vertex] int;
    const AllVertices: [Vertex] bool;
    axiom (forall x: Vertex :: AllVertices[x]);  
    axiom (forall x: Vertex, y: Vertex:: x != y ==> 0 <Graph[x,y]);
    axiom (forall x: Vertex, y: Vertex:: x == y ==> Graph[x,y] == 0);
    const Infinity: int;
    axiom 0 < Infinity;
    var Shortest: [Vertex, Vertex] int;



  

Scenario I 
● The Problem: Dijkstra's Shortest Path Algorithm

Toplevel-Specification:

   procedure Dijkstra();
   modifies Shortest
   ensures (forall x:Vertex::AllVertices[x]==>Shortest[x,x] == 0);
   ensures (forall x: Vertex, y: Vertex, z: Vertex ::            
                AllVertices[x] && AllVertices[y] && AllVertices[z] ==>   
                   Shortest[x,z] <= Shortest[x,y] + Graph[y,z]);
   ensures (forall x: Vertex, z: Vertex :: 
                AllVertices[x] && AllVertices[z] ==>
                       Shortest[x,z] <= Graph[x,z]);
   
   . . .



  

Scenario I 
● The Problem: Dijkstra's Shortest Path Algorithm

Toplevel-Specification:

   procedure Dijkstra();
   modifies Shortest
   ensures (forall x:Vertex::AllVertices[x]==>Shortest[x,x] == 0);
   ensures (forall x: Vertex, y: Vertex, z: Vertex ::            
                AllVertices[x] && AllVertices[y] && AllVertices[z] ==>   
                   Shortest[x,z] <= Shortest[x,y] + Graph[y,z]);
   ensures (forall x: Vertex, z: Vertex :: 
                AllVertices[x] && AllVertices[z] ==>
                       Shortest[x,z] <= Graph[x,z]);
   
   . . .



  

Scenario I 
● The Problem: Dijkstra's Shortest Path Algorithm

Implementation:

   entryentry

InnerLoopHead

Loophead

Loopbody

Done

InnerLoopBody

DoneInner

    havoc Shortest;
    assume (forall x: Vertex, y: Vertex ::
           AllVertices[x] && AllVertices[y]    
            ==> x==y ==> Shortest[x,y] ==0);
    assume (forall x: Vertex, y: Vertex ::
            AllVertices[x] && AllVertices[y]   
            ==>x != y ==> Shortest[x,y] ==     
                                     Infinity);

    SourceNotVisited := AllVertices;



  

Scenario I 
● The Problem: Dijkstra's Shortest Path Algorithm

Implementation:

   entryentry

InnerLoopHead

Loophead

Loopbody

Done

InnerLoopBody

DoneInner

    
assert (forall x: Vertex ::  
     SourceNotVisited[x] ==> AllVertices[x]);

assert (forall x: Vertex :: AllVertices[x] ==>
                   Shortest[x,x] == 0);
assert (forall x: Vertex, y: Vertex, z: Vertex ::
     AllVertices[x] && AllVertices[y] ....  ==>
              SourceNotVisited[x] ||
              Shortest[x,z] <= 
              Shortest[x,y] + Graph[y,z]);
   ...



  

Scenario I 
● The Problem: Dijkstra's Shortest Path Algorithm

Implementation:

   entryentry

InnerLoopHead

Loophead

Loopbody

Done

InnerLoopBody

DoneInner

    

                  .  .  .



  

Scenario I 
● Verification with HOL-Boogie (Attempt I)

Generating .b2i-file:

/cygdrive/c/boogie/Binaries/Boogie /prover:isabelle Dijkstra.bpl 

and get it under /cygdrive/c/Dijkstra.1.b2i.

And then start Isabelle under ProofGeneral:

           DEMO
 



  

Scenario I 
● Verification with HOL-Boogie (Attempt I)

Attempt 1 stuck at:

[| ... ;
   ... ;
|]  ⇒     0 ≦ Shortest@3(x,y) + Graph(y,z)

The Problem occurs when establishing the entry-condition
from DoneInner to Loophead.

● Solution: Strengthen the Invariants to 0 ≦ Shortest(x,y) 

mailto:Shortest@3


  

Scenario I 
● The Problem: Dijkstra's Shortest Path Algorithm

Implementation:

   entryentry

InnerLoopHead

Loophead

Loopbody

Done

InnerLoopBody

DoneInner

    
assert (forall x: Vertex ::  
     SourceNotVisited[x] ==> AllVertices[x]);

assert (forall x: Vertex :: AllVertices[x] ==>
                   Shortest[x,x] == 0);
assert (forall x: Vertex, y: Vertex, z: Vertex ::
     AllVertices[x] && AllVertices[y] ....  ==>
              SourceNotVisited[x] ||
              Shortest[x,z] <= 
              Shortest[x,y] + Graph[y,z]);
   ...



  

Scenario I 
● The Problem: Dijkstra's Shortest Path Algorithm

Implementation:

   entryentry

InnerLoopHead

Loophead

Loopbody

Done

InnerLoopBody

DoneInner

    
assert (forall x: Vertex ::  
     SourceNotVisited[x] ==> AllVertices[x]);
assert (forall x: Vertex, y: Vertex::                      
    AllVertices[x] && AllVertices[y] ==>
                   0 <= Shortest[x,y]);
assert (forall x: Vertex :: AllVertices[x] ==>
                   Shortest[x,x] == 0);
assert (forall x: Vertex, y: Vertex, z: Vertex ::
     AllVertices[x] && AllVertices[y] ....  ==>
              SourceNotVisited[x] ||
              Shortest[x,z] <= 
              Shortest[x,y] + Graph[y,z]);
   ...



  

Scenario I 
● Results I:

● Attempt II (with strengthened Invariant) succeeds
● Proof takes 5 min. in interactive mode.
● Proof deliberately low-level; anyone with

medium expertise in ITP should be able to do this!
● Z3 does still not find the proof.
● Proof development took 1,5 working days
● An alternative “classic” ATP verification by improvement

of DijkstraN was abandoned by [Leino&al] after 1,5 days.



  

Challenges: ITP for PA
● Techniques specific to ITP in Program Analysis

● Tactics taking the structure of wp-generated
formulas into acount

● Positional and Structural Labelling Techniques
● Integration of SMT solvers
● Integration of techniques to

make prover instrumentations transparent
through different provers ...



  

Scenario I : Tactics
● Observation of wp-generated formulas:

Why? ... The “skeleton” is a deterministic proof.

Automated ProofsAlgorithm induced skeleton
Interfacing interactive proofs



  

Scenario I : Labelling
● Positional labels  “this assertion is from line 55 ...” 

  block_at Line_25_Col_3 True
   assert_at Line_55_Col_4 (...) 

(Technique described in Leino, Millstein, and Saxe: Generating 
error traces from verificationcondition counterexamples. SCP, 
55-1-3, 2005)

● Structural Labels “this assertion holds at entry of loop A”

...

(not much used so far, but better for repeated 

Analyse&Fix.)



  

Scenario I: Instrumentation 
● Any prover has a life of its own.

Rules must be massaged and instrumented to tell
an automated prover HOW a ruleset has to be used.

● Attributation of Signature elements:
axiom {prover:{isabelle:builtin”add_commute”}} ( ... )

● Prover instrumentation: 
axiom {prover:{isabelle:intro!}} ( ... )
axiom {:ignore "bvDefSem"} (forall x:int :: 
{ $sign_extend.1.32($_int.to.bv32(x)[1:0]) }
    -$_bv64.to.int(1bv64) <= x && x < $_bv64.to.int(1bv64)   
      ==> $sign_extend.1.32($_int.to.bv32(x)[1:0]) ==      

$_int.to.bv32(x));



  

Scenario II : Verifying C Programs

HOL-Boogie

.thy

VCC

Boogie

● Workflow: One further redirection step. And
 a complex memory/machine model.

.bpl

.bpl

axiomatization of the 
“c virtual machine” (cvm)

.b2i

C 
com
piler

Z3 Z3



  

Scenario II 
● Example:

longint i = 0;

void incr()
requires i < maxint
ensures  i <= maxint
{
   (i++);
} 



  

Scenario II 
● Example:

const i_ptr :: ptr

procedure incr();
modifies mem
requires ($clt.u8($ld.u2(mem,i_ptr), maxint))
ensures  ($cle.u8($ld.u2(mem,i_ptr), maxint) &&
          modifiesOnly(mkSet(i_ptr)))

implementation incr(){
assumes($clt.u8($ld.u2(mem, i_ptr), maxint))

mem := $st.i8(mem, $add.i8($ld.i8(mem, i_ptr),1))

assert($cle.u8($ld.u2(mem, i_ptr), maxint) &&         
       modifiesOnly(mkSet(i_ptr)))
}



  

Scenario II 
● VCC or Spec# require:

considerably large, 
axiomatic background theories on 
● memory models
● machine operations (X86 VT)
● specialized instrumentations on

the prover side for each memory/machine
model (actually, there is VCC1 and VCC2)



  

Scenario II 
● Task:

● HOL-Boogie as a generator of a consistent prelude, the 

“C-Virtual Machine”.

● Motivation: Providing a comprehensive Axiomatization

of logics and its environment (State, Bitvectors, CVM) 

● for checking the consistency

● for prover integration



  

Conclusion 
● ITP techniques can provide an effective means

to algorithmic verification in Boogie although 
the “Analyze&Fix”-cycle is substantially slower

● ITP techniques can provide explicit, comprehensive
and consistent preludes for complex logical contexts.
This helps to increase confidence into the approach.

● ITP's are still unavoidable in “real” Code-Analysis
if algorithms, recursive data-structures, or deep
arithmetic reasoning is involved.

              ⇛ Lots of Potential !!!



  

We proudly announce ... 
● Journal Paper on the nitty-gritty details: 

Sascha Böhme, Michal Moskal, Wolfram Schulte and 
Burkhart Wolff: HOL-Boogie - An Interactive Prover-
Backend for the Verified C Compiler. Accepted (with minor 
revisions) for the Journal of Automated Reasoning (JAR), 
Springer, 2009.

see: http://www.lri.fr/~wolff/publications_year.html

http://www.springerlink.com/content/100280/?p=c9fdb5a5078c4ace8d26805511ea13c2&pi=0


  

Scenario II 
● Let's do it: (it will take some time !!!)

             DEMO


