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Why Ontologies
• More powerful ITP systems 

⟹ growing body of formalised 
      mathematics and engineering

• The Isabelle AFP as example

• Rising need for 

• structuring and consistency,

• advanced “semantic” search, 

• tool-interaction.
In 2022, the count stood at 661  
articles, 420 authors and 3.3 mio loc !
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for our application domain in theory developments

• … and a better dependency-control of the different document elements, 

• types, terms, theorems

• code (proof-terms, proof generating programs, SML, LaTeX etc, but also Scala and C! )

• text and diagrams (and perhaps animations, see Jupyter Notebooks https://jupyter.org/ )

• … and the links between them, requiring notions of  
consistency and coherence for collaborative development

• The language in which such meta-information can be specified  
is called a document ontology (or vocabulary)



Linking the Formal and the Informal 
- Existing Approaches -

• Code Antiquotations as in LISP, MetaML, SML, … 
 
 

• Document pragmas as in JavaDoc, Doxygen, et al 
            public class AddNum {

               /**
                * This method is used to add two integers. This is
                * a the simplest form of a class method, just to
                * show the usage of various javadoc Tags.
                * @param numA This is the first paramter to addNum method
                * @param numB  This is the second parameter to addNum method
                * @return int This returns sum of numA and numB.
                */
                public int addNum(int numA, int numB) {
                  return numA + numB;
                }

• Compilation process allows for document generation and some consistency checks    
 
⟹ batch mode consistency only. 
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Isabelle’s Document-Centric View  
on Formal Development

• Primary document type: “XXX.thy”

• Acyclic Graph of units that consist of  
a sequence of document elements 
called “commands” 

• commands user-programmable in SML

• Support of Cascade Syntax: 
@{SML ‹ … @{type ‹  ….  ›} … ›}

• Commands are semantically transformers 
of the logical context : Θ ⇒ Θ

• anti-quotations are “semantic macros” and as such partial) functions:  
Θ ⇒ text, Θ ⇒ sml,  Θ ⇒ term  

• pervasive continuous build/check of Isabelle/PIDE supports anti-quotations.
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• Prior Versions of Isabelle/DOF support semantic 
annotations of text and code-contexts: 
 
 

• Novelty in Isabelle/DOF: support of λ-term-contexts, e.g.:

text*[label::classid, attr1 =E1 , ... attrn =En ]⟨ some semi-formal text ⟩     
ML*[label::classid, attr1 =E1 , ... attrn =En ] ⟨ some SML code ⟩

value*[label::classid, attr1 =E1 , ... attrn =En ]⟨ some annotated λ-term ⟩
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tations in invariants, attribute definitions and some commands like value*

• Invariants for

• “a result  
text element 
must provide 
evidence in  
form of a  
proven theo- 
rem …” 
 
 

∀ σ ∈ conclusion. ∀ y ∈ @{instance_of ‘’claim’’}.  
                              ∃ y ∈ Range(establish σ). (x,y) ∈ establish σ
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Consequences
• If an ODL ontology generates “intra-logical” 

representations, what’s the benefit ?

• We don’t have to learn a new (meta)-language

• We can define new operations on them inside  
the  logic and develop their theory … 

• … to develop a query language, for example: 

• We can relate ontologies and ontology instances   
by formal proof (‘’ontology alignment, ontology mapping’’)

value*⟨ filter (is_interesting) @{instances-of ‘’result’’} ⟩
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But what “are” ontology-generated  
term antiquotations  ???

• First of all: how are they processed:

• parsing

• type checking

• validation (an argument is indeed a valid reference in the context)

• expansion (replacement of a reference against logical terms)

• evaluation (to SML code, or by nbe) 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But what “are” ontology-generated  
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• Then “built-in” term-anti quotations can be:
• just uninterpreted constants (without expansion) 

 
  

• a ‘’shallow’’ data-type representation (without expansion) 
 

• or a “deep” data-type representation into an Isabelle  
Meta-Model such as [Nipkow,Rosskopf 21] (with expansion) 
 

sort “typ” 
consts typ_anno :: ‘’string ⇒ typ”    (“@{typ _}” 100)

datatype “typ” = typ_anno ‘’string” (“@{typ _}” 100)

definition  typ_anno :: “string ⇒ typ” where  “typ_anno S ≡ undefined”  
datatype “typ”   =  is_Ty : Ty name “typ list” 
                            |  is-Tv : Tv variable sort 
datatype “term” = is_Ct : Ct name “typ” 
                            |  is_Fv: Fv variable “typ” 
                            | is_Bv: Bv nat 
                            | is_Abs : Abs “typ” “term” 
                            | is_App : App “term” “term” {infixl “$” 100)
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Conclusion
• DOF provides a framework  

• for defining ontologies in the context of ITP systems
• its typed ! It has a logical interpretation ! 

It is therefore an “in-between” between an ML and a logic.
• provides a generated infrastructure for meta-data of  

types, terms, thm’s and text and code elements

• DOF provides a framework to enforce on-the-fly 
ontology-conform documentation checking

• DOF provides infrastructure for proofs over the 
logical representation of ontologies and meta-data …

• Ontologies generating meta-data can be used  
for other forms of Tool Interaction via “deep  
interpretations” into a meta-model
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Conclusion
• (P)IDE’s are more than just a technical asset

• … it is a corner-stone for a revolution 

• 1970’ies          TEXT

• 1990’ies          HYPERTEXT

• 2010’ies          REACTIVE DOCUMENTS

• 2020’ies          SEMANTIC DOCUMENTS (???)


