
Isabelle/DOF
A Framework for Proving Ontology-

Relations and Runtime Testing
Ontology Instances

Idir Ait-Sadoune, Nicolas Meric and Burkhart Wolff  
 LMF, Université Paris-Saclay, France

GT Deduction 17.2.2022

Overview
• Why (Document) Ontologies

• Ontologies and  
Formal Theories

• DOF Design

• Isabelle/DOF Implementation

• Some Application Scenarios 
 
 
 

PUBLIC RELEASE:
http/10.5281/zenodo.3370483

Why Ontologies

Why Ontologies
• More powerful ITP systems 

⟹ growing body of formalised 
 mathematics and engineering

Why Ontologies
• More powerful ITP systems 

⟹ growing body of formalised 
 mathematics and engineering

• The Isabelle AFP as example

Why Ontologies
• More powerful ITP systems 

⟹ growing body of formalised 
 mathematics and engineering

• The Isabelle AFP as example

In 2022, the count stood at 661  
articles, 420 authors and 3.3 mio loc !

Why Ontologies
• More powerful ITP systems 

⟹ growing body of formalised 
 mathematics and engineering

• The Isabelle AFP as example

• Rising need for

In 2022, the count stood at 661  
articles, 420 authors and 3.3 mio loc !

Why Ontologies
• More powerful ITP systems 

⟹ growing body of formalised 
 mathematics and engineering

• The Isabelle AFP as example

• Rising need for

• structuring and consistency,

• advanced “semantic” search,

• tool-interaction.
In 2022, the count stood at 661  
articles, 420 authors and 3.3 mio loc !

Why Ontologies

Why Ontologies
• This requires more structured and typed meta-information 

for our application domain in theory developments

Why Ontologies
• This requires more structured and typed meta-information 

for our application domain in theory developments

• … and a better dependency-control of the different document elements,

Why Ontologies
• This requires more structured and typed meta-information 

for our application domain in theory developments

• … and a better dependency-control of the different document elements,

• types, terms, theorems

Why Ontologies
• This requires more structured and typed meta-information 

for our application domain in theory developments

• … and a better dependency-control of the different document elements,

• types, terms, theorems

• code (proof-terms, proof generating programs, SML, LaTeX etc, but also Scala and C!)

Why Ontologies
• This requires more structured and typed meta-information 

for our application domain in theory developments

• … and a better dependency-control of the different document elements,

• types, terms, theorems

• code (proof-terms, proof generating programs, SML, LaTeX etc, but also Scala and C!)

• text and diagrams (and perhaps animations, see Jupyter Notebooks https://jupyter.org/)

Why Ontologies
• This requires more structured and typed meta-information 

for our application domain in theory developments

• … and a better dependency-control of the different document elements,

• types, terms, theorems

• code (proof-terms, proof generating programs, SML, LaTeX etc, but also Scala and C!)

• text and diagrams (and perhaps animations, see Jupyter Notebooks https://jupyter.org/)

• … and the links between them, requiring notions of  
consistency and coherence for collaborative development

Why Ontologies
• This requires more structured and typed meta-information 

for our application domain in theory developments

• … and a better dependency-control of the different document elements,

• types, terms, theorems

• code (proof-terms, proof generating programs, SML, LaTeX etc, but also Scala and C!)

• text and diagrams (and perhaps animations, see Jupyter Notebooks https://jupyter.org/)

• … and the links between them, requiring notions of  
consistency and coherence for collaborative development

• The language in which such meta-information can be specified  
is called a document ontology (or vocabulary)

Linking the Formal and the Informal
- Existing Approaches -

• Code Antiquotations as in LISP, MetaML, SML, … 
 
 

• Document pragmas as in JavaDoc, Doxygen, et al 
 public class AddNum {

 /**
 * This method is used to add two integers. This is
 * a the simplest form of a class method, just to
 * show the usage of various javadoc Tags.
 * @param numA This is the first paramter to addNum method
 * @param numB This is the second parameter to addNum method
 * @return int This returns sum of numA and numB.
 */
 public int addNum(int numA, int numB) {
 return numA + numB;
 }

• Compilation process allows for document generation and some consistency checks  
 
⟹ batch mode consistency only.

Linking the Formal and the Informal
- Existing Approaches -

Linking the Formal and the Informal
- Existing Approaches -

• The Isabelle Approach to “Text-Antiquotations” (heavily used to assure
coherence and traceability in the technical documentations and papers)

Linking the Formal and the Informal
- Existing Approaches -

• The Isabelle Approach to “Text-Antiquotations” (heavily used to assure
coherence and traceability in the technical documentations and papers)

• Definitions and proofs can be mixed with text elements 
 

Linking the Formal and the Informal
- Existing Approaches -

• The Isabelle Approach to “Text-Antiquotations” (heavily used to assure
coherence and traceability in the technical documentations and papers)

• Definitions and proofs can be mixed with text elements 
 

Linking the Formal and the Informal
- Existing Approaches -

• The Isabelle Approach to “Text-Antiquotations” (heavily used to assure
coherence and traceability in the technical documentations and papers)

• Definitions and proofs can be mixed with text elements 
 

• Text Elements may contain Antiquotations to Formal Content 
in the Logical Context, which are checked and animated in the IDE: 
 
 

Linking the Formal and the Informal
- Existing Approaches -

• The Isabelle Approach to “Text-Antiquotations” (heavily used to assure
coherence and traceability in the technical documentations and papers)

• Definitions and proofs can be mixed with text elements 
 

• Text Elements may contain Antiquotations to Formal Content 
in the Logical Context, which are checked and animated in the IDE: 
 
 

Linking the Formal and the Informal
- Existing Approaches -

• The Isabelle Approach to “Text-Antiquotations” (heavily used to assure
coherence and traceability in the technical documentations and papers)

• Definitions and proofs can be mixed with text elements 
 

• Text Elements may contain Antiquotations to Formal Content 
in the Logical Context, which are checked and animated in the IDE: 
 
 

• The global doc-generation process yields a presentation in, e.g., .pdf :  

Linking the Formal and the Informal
- Existing Approaches -

• The Isabelle Approach to “Text-Antiquotations” (heavily used to assure
coherence and traceability in the technical documentations and papers)

• Definitions and proofs can be mixed with text elements 
 

• Text Elements may contain Antiquotations to Formal Content 
in the Logical Context, which are checked and animated in the IDE: 
 
 

• The global doc-generation process yields a presentation in, e.g., .pdf :  

Linking the Formal and the Informal
- Existing Approaches -

Linking the Formal and the Informal
- Existing Approaches -

• Similarly, Isabelle Code uses heavily “SML-Antiquotations”

Linking the Formal and the Informal
- Existing Approaches -

• Similarly, Isabelle Code uses heavily “SML-Antiquotations”

• SML System Code can be mixed with antiquotations producing 
SML level representation of types and terms: 
 
 
 
 
 
 
 

Linking the Formal and the Informal
- Existing Approaches -

• Similarly, Isabelle Code uses heavily “SML-Antiquotations”

• SML System Code can be mixed with antiquotations producing 
SML level representation of types and terms: 
 
 
 
 
 
 
 

Isabelle’s Document-Centric View
on Formal Development

Isabelle’s Document-Centric View
on Formal Development

• Primary document type: “XXX.thy”

Isabelle’s Document-Centric View
on Formal Development

• Primary document type: “XXX.thy”

• Acyclic Graph of units that consist of  
a sequence of document elements 
called “commands”

Isabelle’s Document-Centric View
on Formal Development

• Primary document type: “XXX.thy”

• Acyclic Graph of units that consist of  
a sequence of document elements 
called “commands”

• commands user-programmable in SML

Isabelle’s Document-Centric View
on Formal Development

• Primary document type: “XXX.thy”

• Acyclic Graph of units that consist of  
a sequence of document elements 
called “commands”

• commands user-programmable in SML

• Support of Cascade Syntax: 
@{SML ‹ … @{type ‹ …. ›} … ›}

Isabelle’s Document-Centric View
on Formal Development

• Primary document type: “XXX.thy”

• Acyclic Graph of units that consist of  
a sequence of document elements 
called “commands”

• commands user-programmable in SML

• Support of Cascade Syntax: 
@{SML ‹ … @{type ‹ …. ›} … ›}

• Commands are semantically transformers 
of the logical context : Θ ⇒ Θ

Isabelle’s Document-Centric View
on Formal Development

• Primary document type: “XXX.thy”

• Acyclic Graph of units that consist of  
a sequence of document elements 
called “commands”

• commands user-programmable in SML

• Support of Cascade Syntax: 
@{SML ‹ … @{type ‹ …. ›} … ›}

• Commands are semantically transformers 
of the logical context : Θ ⇒ Θ

• anti-quotations are “semantic macros” and as such partial) functions:  
Θ ⇒ text, Θ ⇒ sml, Θ ⇒ term

Isabelle’s Document-Centric View
on Formal Development

• Primary document type: “XXX.thy”

• Acyclic Graph of units that consist of  
a sequence of document elements 
called “commands”

• commands user-programmable in SML

• Support of Cascade Syntax: 
@{SML ‹ … @{type ‹ …. ›} … ›}

• Commands are semantically transformers 
of the logical context : Θ ⇒ Θ

• anti-quotations are “semantic macros” and as such partial) functions:  
Θ ⇒ text, Θ ⇒ sml, Θ ⇒ term

• pervasive continuous build/check of Isabelle/PIDE supports anti-quotations.

Isabelle/DOF

Isabelle/DOF
• DOF : The Document Ontology Framework

Isabelle/DOF
• DOF : The Document Ontology Framework

• Prior Versions of Isabelle/DOF support semantic
annotations of text and code-contexts: 
 
 

Isabelle/DOF
• DOF : The Document Ontology Framework

• Prior Versions of Isabelle/DOF support semantic
annotations of text and code-contexts: 
 
  text*[label::classid, attr1 =E1 , ... attrn =En]⟨ some semi-formal text ⟩  

ML*[label::classid, attr1 =E1 , ... attrn =En] ⟨ some SML code ⟩

Isabelle/DOF
• DOF : The Document Ontology Framework

• Prior Versions of Isabelle/DOF support semantic
annotations of text and code-contexts: 
 
 

• Novelty in Isabelle/DOF: support of λ-term-contexts, e.g.:

text*[label::classid, attr1 =E1 , ... attrn =En]⟨ some semi-formal text ⟩  
ML*[label::classid, attr1 =E1 , ... attrn =En] ⟨ some SML code ⟩

Isabelle/DOF
• DOF : The Document Ontology Framework

• Prior Versions of Isabelle/DOF support semantic
annotations of text and code-contexts: 
 
 

• Novelty in Isabelle/DOF: support of λ-term-contexts, e.g.:

text*[label::classid, attr1 =E1 , ... attrn =En]⟨ some semi-formal text ⟩  
ML*[label::classid, attr1 =E1 , ... attrn =En] ⟨ some SML code ⟩

value*[label::classid, attr1 =E1 , ... attrn =En]⟨ some annotated λ-term ⟩

Isabelle/DOF Core : ODL

• The Ontology Definition Language (ODL):  
The Mechanism to define Ontologies

Isabelle/DOF Core : ODL

• The Ontology Definition Language (ODL):  
The Mechanism to define Ontologies

• Features:

Isabelle/DOF Core : ODL

• The Ontology Definition Language (ODL):  
The Mechanism to define Ontologies

• Features:

• classes (for the “concepts”)

Isabelle/DOF Core : ODL

• The Ontology Definition Language (ODL):  
The Mechanism to define Ontologies

• Features:

• classes (for the “concepts”)

Isabelle/DOF Core : ODL

• The Ontology Definition Language (ODL):  
The Mechanism to define Ontologies

• Features:

• classes (for the “concepts”)

Isabelle/DOF Core : ODL

• The Ontology Definition Language (ODL):  
The Mechanism to define Ontologies

• Features:

• classes (for the “concepts”)

• classes may have attributes 
with HOL type

Isabelle/DOF Core : ODL

• The Ontology Definition Language (ODL):  
The Mechanism to define Ontologies

• Features:

• classes (for the “concepts”)

• classes may have attributes 
with HOL type

Isabelle/DOF Core : ODL

• The Ontology Definition Language (ODL):  
The Mechanism to define Ontologies

• Features:

• classes (for the “concepts”)

• classes may have attributes 
with HOL type

Isabelle/DOF Core : ODL

• The Ontology Definition Language (ODL):  
The Mechanism to define Ontologies

• Features:

• classes (for the “concepts”)

• classes may have attributes 
with HOL type

• class declarations can be  
interleaved with arbitrary HOL  
declarations

Isabelle/DOF Core : ODL

• The Ontology Definition Language (ODL):  
The Mechanism to define Ontologies

• Features:

• classes (for the “concepts”)

• classes may have attributes 
with HOL type

• class declarations can be  
interleaved with arbitrary HOL  
declarations

Isabelle/DOF Core : ODL

• The Ontology Definition Language (ODL):  
The Mechanism to define Ontologies

• Features:

• classes (for the “concepts”)

• classes may have attributes 
with HOL type

• class declarations can be  
interleaved with arbitrary HOL  
declarations

• attributes of class-instances  
are mutable; (default) values  
can be denoted by HOL-terms

Isabelle/DOF Core : ODL

• The Ontology Definition Language (ODL):  
The Mechanism to define Ontologies

• Features:

• classes (for the “concepts”)

• classes may have attributes 
with HOL type

• class declarations can be  
interleaved with arbitrary HOL  
declarations

• attributes of class-instances  
are mutable; (default) values  
can be denoted by HOL-terms

• class declarations induce a HOL-type; this allows to establish “ontological links”

Isabelle/DOF Core : ODL

• The Ontology Definition Language (ODL):  
The Mechanism to define Ontologies

• Features:

• classes (for the “concepts”)

• classes may have attributes 
with HOL type

• class declarations can be  
interleaved with arbitrary HOL  
declarations

• attributes of class-instances  
are mutable; (default) values  
can be denoted by HOL-terms

• class declarations induce a HOL-type; this allows to establish “ontological links”

Isabelle/DOF Core : ODL

• The Ontology Definition Language (ODL):  
The Mechanism to define Ontologies

• Features:

• classes (for the “concepts”)

• classes may have attributes 
with HOL type

• class declarations can be  
interleaved with arbitrary HOL  
declarations

• attributes of class-instances  
are mutable; (default) values  
can be denoted by HOL-terms

• class declarations induce a HOL-type; this allows to establish “ontological links”

Isabelle/DOF Core : ODL

Isabelle/DOF Core : ODL

Isabelle/DOF Core : ODL
• The Ontology Definition Language (ODL):  

The Mechanism to define Ontologies

Isabelle/DOF Core : ODL
• The Ontology Definition Language (ODL):  

The Mechanism to define Ontologies

• Features:

Isabelle/DOF Core : ODL
• The Ontology Definition Language (ODL):  

The Mechanism to define Ontologies

• Features:

Isabelle/DOF Core : ODL
• The Ontology Definition Language (ODL):  

The Mechanism to define Ontologies

• Features:

• classes have single inheritance  
(is a - relation)

Isabelle/DOF Core : ODL
• The Ontology Definition Language (ODL):  

The Mechanism to define Ontologies

• Features:

• classes have single inheritance  
(is a - relation)

Isabelle/DOF Core : ODL
• The Ontology Definition Language (ODL):  

The Mechanism to define Ontologies

• Features:

• classes have single inheritance  
(is a - relation)

Isabelle/DOF Core : ODL
• The Ontology Definition Language (ODL):  

The Mechanism to define Ontologies

• Features:

• classes have single inheritance  
(is a - relation)

• attribute overriding of attributes  
is possible

Isabelle/DOF Core : ODL
• The Ontology Definition Language (ODL):  

The Mechanism to define Ontologies

• Features:

• classes have single inheritance  
(is a - relation)

• attribute overriding of attributes  
is possible

• meta-level types of the ITP were  
included as abstract HOL types; 
their inhabitance is checked  
in the global context Θ

Isabelle/DOF Core : ODL
• The Ontology Definition Language (ODL):  

The Mechanism to define Ontologies

• Features:

• classes have single inheritance  
(is a - relation)

• attribute overriding of attributes  
is possible

• meta-level types of the ITP were  
included as abstract HOL types; 
their inhabitance is checked  
in the global context Θ

Isabelle/DOF Core : ODL
• The Ontology Definition Language (ODL):  

The Mechanism to define Ontologies

• Features:

• classes have single inheritance  
(is a - relation)

• attribute overriding of attributes  
is possible

• meta-level types of the ITP were  
included as abstract HOL types; 
their inhabitance is checked  
in the global context Θ

DOF Example Document

DOF Example Document
• Defining the  

Ontological  
Context 

DOF Example Document
• Defining the  

Ontological  
Context 

DOF Example Document
• Defining the  

Ontological  
Context 

• And there we go:

DOF Example Document
• Defining the  

Ontological  
Context 

• And there we go:

DOF Example Document
• Defining the  

Ontological  
Context 

• And there we go:

• … where title* and 
abstract* are macros 
for text*[a::title,…], 
etc…

DOF Example Document
• Defining the  

Ontological  
Context 

• And there we go:

• … where title* and 
abstract* are macros 
for text*[a::title,…], 
etc…

• … and the meta-data 
instances are a, abs,  
intro, T1, attached to  
these doc elements …

DOF Example Document
• Defining the  

Ontological  
Context 

• And there we go:

• … where title* and 
abstract* are macros 
for text*[a::title,…], 
etc…

• … and the meta-data 
instances are a, abs,  
intro, T1, attached to  
these doc elements …

Isabelle/DOF Core :
Class Invariants

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and commands like value*

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and commands like value*

• Eg.: Invariants for

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and commands like value*

• Eg.: Invariants for

<lab

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and commands like value*

• Eg.: Invariants for

• data-integrity  
constraints

<lab

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and commands like value*

• Eg.: Invariants for

• data-integrity  
constraints

<lab∀ σ ∈ result. evidence σ = proof ⟷ property σ ≠ []

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and commands like value*

• Eg.: Invariants for

• data-integrity  
constraints

<lab

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and commands like value*

• Eg.: Invariants for

• data-integrity  
constraints

<labinvariant <lab> : evidence σ = proof ⟷ property σ ≠ []

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and commands like value*

• Eg.: Invariants for

• data-integrity  
constraints

<labinvariant <lab> : evidence σ = proof ⟷ property σ ≠ []—> definition <lab>_inv :: ‘a result_scheme ⇒ bool” 
 where “ <lab>_inv σ ≡ evidence σ = proof ⟷ property σ ≠ []

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and commands like value*

• Eg.: Invariants for

• data-integrity  
constraints

<lab

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and commands like value*

• Eg.: Invariants for

• data-integrity  
constraints

• … using “built-in” 
term antiquotations 
for “term”, “typ”, “thm”

<lab

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and commands like value*

• Eg.: Invariants for

• data-integrity  
constraints

• … using “built-in” 
term antiquotations 
for “term”, “typ”, “thm”

<lab

invariant <lab> : evidence σ=proof ⟷ @{thm''safe''}∈set(property σ)

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and commands like value*

• Eg.: Invariants for

• data-integrity  
constraints

• … using “built-in” 
term antiquotations 
for “term”, “typ”, “thm”

<lab

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and commands like value*

• Eg.: Invariants for

• data-integrity  
constraints

• … using “built-in” 
term antiquotations 
for “term”, “typ”, “thm”

• may use DOF-generated term-antiquotations like @{result ‘’<some result instance>’’}  
or @{introduction ‘’intro’’} or @{instance-of ‘’result’’}, etc.

<lab

Isabelle/DOF Core :
Class Invariants

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and some commands like value*

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and some commands like value*

• Invariants for

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and some commands like value*

• Invariants for

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and some commands like value*

• Invariants for

• “a result  
text element 
must provide 
evidence in  
form of a  
proven theo- 
rem …” 
 
 

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and some commands like value*

• Invariants for

• “a result  
text element 
must provide 
evidence in  
form of a  
proven theo- 
rem …” 
 
  ∀ σ ∈ conclusion. ∀ x ∈ Domain(establish σ).  

 ∃ y ∈ Range(establish σ). (x, y) ∈ establish σ

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and some commands like value*

• Invariants for

• “a result  
text element 
must provide 
evidence in  
form of a  
proven theo- 
rem …” 
 
  ∀ σ ∈ conclusion. ∀ x ∈ Domain(establish σ).  

 ∃ y ∈ Range(establish σ). (x, y) ∈ establish σ

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and some commands like value*

• Invariants for

• “a result  
text element 
must provide 
evidence in  
form of a  
proven theo- 
rem …” 
 
 

Isabelle/DOF Core :
Class Invariants

• ODL used already λ-(ground)-terms to denote values for attributes.

• New: ODL uses arbitrary λ-terms containing generated term-antiquo- 
tations in invariants, attribute definitions and some commands like value*

• Invariants for

• “a result  
text element 
must provide 
evidence in  
form of a  
proven theo- 
rem …” 
 
 

∀ σ ∈ conclusion. ∀ y ∈ @{instance_of ‘’claim’’}.  
 ∃ y ∈ Range(establish σ). (x,y) ∈ establish σ

Consequences

Consequences
• If an ODL ontology generates “intra-logical”

representations, what’s the benefit ?

Consequences
• If an ODL ontology generates “intra-logical”

representations, what’s the benefit ?

• We don’t have to learn a new (meta)-language

Consequences
• If an ODL ontology generates “intra-logical”

representations, what’s the benefit ?

• We don’t have to learn a new (meta)-language

• We can define new operations on them inside  
the logic and develop their theory …

Consequences
• If an ODL ontology generates “intra-logical”

representations, what’s the benefit ?

• We don’t have to learn a new (meta)-language

• We can define new operations on them inside  
the logic and develop their theory …

• … to develop a query language, for example: 

Consequences
• If an ODL ontology generates “intra-logical”

representations, what’s the benefit ?

• We don’t have to learn a new (meta)-language

• We can define new operations on them inside  
the logic and develop their theory …

• … to develop a query language, for example: 
value*⟨ filter (is_interesting) @{instances-of ‘’result’’} ⟩

Consequences
• If an ODL ontology generates “intra-logical”

representations, what’s the benefit ?

• We don’t have to learn a new (meta)-language

• We can define new operations on them inside  
the logic and develop their theory …

• … to develop a query language, for example: 

• We can relate ontologies and ontology instances  
by formal proof (‘’ontology alignment, ontology mapping’’)

value*⟨ filter (is_interesting) @{instances-of ‘’result’’} ⟩

Consequences: Example
Proof of an Ontology Mapping

Consequences: Example
Proof of an Ontology Mapping
• A “‘Generic’ Reference Ontology” vs. a “‘local’ Ontology” 

 
 
 
 
 
 
 
 
 

Consequences: Example
Proof of an Ontology Mapping
• A “‘Generic’ Reference Ontology” vs. a “‘local’ Ontology” 

 
 
 
 
 
 
 
 
 

Consequences: Example
Proof of an Ontology Mapping
• A “‘Generic’ Reference Ontology” vs. a “‘local’ Ontology” 

 
 
 
 
 
 
 
 
 

Consequences: Example
Proof of an Ontology Mapping
• A “‘Generic’ Reference Ontology” vs. a “‘local’ Ontology” 

 
 
 
 
 
 
 
 
 

Consequences: Example
Proof of an Ontology Mapping
• A “‘Generic’ Reference Ontology” vs. a “‘local’ Ontology” 

 
 
 
 
 
 
 
 
 

Consequences: Example
Proof of an Ontology Mapping

Consequences: Example
Proof of an Ontology Mapping
• A “‘Generic’ Reference Ontology” vs. a “‘local’ Ontology” 

 
 
 
 
 
 
 
 
 
 

Consequences: Example
Proof of an Ontology Mapping
• A “‘Generic’ Reference Ontology” vs. a “‘local’ Ontology” 

 
 
 
 
 
 
 
 
 
 

“The mapping is correct (preserves the invariants)”

Consequences: Example
Proof of an Ontology Mapping
• A “‘Generic’ Reference Ontology” vs. a “‘local’ Ontology” 

 
 
 
 
 
 
 
 
 
 

“The mapping is correct (preserves the invariants)”

But what “are” ontology-generated
term antiquotations ???

But what “are” ontology-generated
term antiquotations ???

• First of all: how are they processed:

But what “are” ontology-generated
term antiquotations ???

• First of all: how are they processed:

• parsing

But what “are” ontology-generated
term antiquotations ???

• First of all: how are they processed:

• parsing

• type checking

But what “are” ontology-generated
term antiquotations ???

• First of all: how are they processed:

• parsing

• type checking

• validation (an argument is indeed a valid reference in the context)

But what “are” ontology-generated
term antiquotations ???

• First of all: how are they processed:

• parsing

• type checking

• validation (an argument is indeed a valid reference in the context)

• expansion (replacement of a reference against logical terms)

But what “are” ontology-generated
term antiquotations ???

• First of all: how are they processed:

• parsing

• type checking

• validation (an argument is indeed a valid reference in the context)

• expansion (replacement of a reference against logical terms)

• evaluation (to SML code, or by nbe) 
 

But what “are” ontology-generated
term antiquotations ???

But what “are” ontology-generated
term antiquotations ???

• Then “built-in” term-anti quotations can be:

But what “are” ontology-generated
term antiquotations ???

• Then “built-in” term-anti quotations can be:
• just uninterpreted constants (without expansion) 

 

But what “are” ontology-generated
term antiquotations ???

• Then “built-in” term-anti quotations can be:
• just uninterpreted constants (without expansion) 

 

sort “typ” 
consts typ_anno :: ‘’string ⇒ typ” (“@{typ _}” 100)

But what “are” ontology-generated
term antiquotations ???

• Then “built-in” term-anti quotations can be:
• just uninterpreted constants (without expansion) 

 

• a ‘’shallow’’ data-type representation (without expansion) 

sort “typ” 
consts typ_anno :: ‘’string ⇒ typ” (“@{typ _}” 100)

datatype “typ” = typ_anno ‘’string” (“@{typ _}” 100)

But what “are” ontology-generated
term antiquotations ???

• Then “built-in” term-anti quotations can be:
• just uninterpreted constants (without expansion) 

 

• a ‘’shallow’’ data-type representation (without expansion) 

• or a “deep” data-type representation into an Isabelle  
Meta-Model such as [Nipkow,Rosskopf 21] (with expansion) 
 

sort “typ” 
consts typ_anno :: ‘’string ⇒ typ” (“@{typ _}” 100)

datatype “typ” = typ_anno ‘’string” (“@{typ _}” 100)

But what “are” ontology-generated
term antiquotations ???

• Then “built-in” term-anti quotations can be:
• just uninterpreted constants (without expansion) 

 

• a ‘’shallow’’ data-type representation (without expansion) 

• or a “deep” data-type representation into an Isabelle  
Meta-Model such as [Nipkow,Rosskopf 21] (with expansion) 
 

sort “typ” 
consts typ_anno :: ‘’string ⇒ typ” (“@{typ _}” 100)

datatype “typ” = typ_anno ‘’string” (“@{typ _}” 100)

definition typ_anno :: “string ⇒ typ” where “typ_anno S ≡ undefined”  
datatype “typ” = is_Ty : Ty name “typ list” 
 | is-Tv : Tv variable sort 
datatype “term” = is_Ct : Ct name “typ” 
 | is_Fv: Fv variable “typ” 
 | is_Bv: Bv nat 
 | is_Abs : Abs “typ” “term” 
 | is_App : App “term” “term” {infixl “$” 100)

Conclusion

Conclusion
• DOF provides a framework  

Conclusion
• DOF provides a framework  

• for defining ontologies in the context of ITP systems

Conclusion
• DOF provides a framework  

• for defining ontologies in the context of ITP systems
• its typed ! It has a logical interpretation ! 

It is therefore an “in-between” between an ML and a logic.

Conclusion
• DOF provides a framework  

• for defining ontologies in the context of ITP systems
• its typed ! It has a logical interpretation ! 

It is therefore an “in-between” between an ML and a logic.
• provides a generated infrastructure for meta-data of  

types, terms, thm’s and text and code elements

Conclusion
• DOF provides a framework  

• for defining ontologies in the context of ITP systems
• its typed ! It has a logical interpretation ! 

It is therefore an “in-between” between an ML and a logic.
• provides a generated infrastructure for meta-data of  

types, terms, thm’s and text and code elements

• DOF provides a framework to enforce on-the-fly 
ontology-conform documentation checking

Conclusion
• DOF provides a framework  

• for defining ontologies in the context of ITP systems
• its typed ! It has a logical interpretation ! 

It is therefore an “in-between” between an ML and a logic.
• provides a generated infrastructure for meta-data of  

types, terms, thm’s and text and code elements

• DOF provides a framework to enforce on-the-fly 
ontology-conform documentation checking

• DOF provides infrastructure for proofs over the 
logical representation of ontologies and meta-data …

Conclusion
• DOF provides a framework  

• for defining ontologies in the context of ITP systems
• its typed ! It has a logical interpretation ! 

It is therefore an “in-between” between an ML and a logic.
• provides a generated infrastructure for meta-data of  

types, terms, thm’s and text and code elements

• DOF provides a framework to enforce on-the-fly 
ontology-conform documentation checking

• DOF provides infrastructure for proofs over the 
logical representation of ontologies and meta-data …

• Ontologies generating meta-data can be used  
for other forms of Tool Interaction via “deep  
interpretations” into a meta-model

Conclusion

Conclusion
• (P)IDE’s are more than just a technical asset

Conclusion
• (P)IDE’s are more than just a technical asset

• … it is a corner-stone for a revolution 

Conclusion
• (P)IDE’s are more than just a technical asset

• … it is a corner-stone for a revolution 

• 1970’ies TEXT

Conclusion
• (P)IDE’s are more than just a technical asset

• … it is a corner-stone for a revolution 

• 1970’ies TEXT

• 1990’ies HYPERTEXT

Conclusion
• (P)IDE’s are more than just a technical asset

• … it is a corner-stone for a revolution 

• 1970’ies TEXT

• 1990’ies HYPERTEXT

• 2010’ies REACTIVE DOCUMENTS

Conclusion
• (P)IDE’s are more than just a technical asset

• … it is a corner-stone for a revolution 

• 1970’ies TEXT

• 1990’ies HYPERTEXT

• 2010’ies REACTIVE DOCUMENTS

• 2020’ies SEMANTIC DOCUMENTS (???)

