O
@ universite
PARIS-SACLAY

Isabelle/DOF

A Framework for Proving Ontology-
Relations and Runtime Testing
Ontology Instances

|dir Ait-Sadoune, Nicolas Meric and Burkhart \Wolff
LMF, Université Paris-Saclay, France

GT Deduction 17.2.2022



Overview

Why (Document) Ontologies

Ontologies and
Formal Theories

DOF Design
Isabelle/DOF Implementation

Some Application Scenarios

August 18,2019 (Sotvars | Opan Access |

|Isabelle/DOF

Brucker, Achim D.; Wolff, Burkhart

Isabelle/DOF is a Document Ontology Framework (DOF), on top of Isabelle/HOL, allowing to annotate text elements in
formal developments with structured, typed meta-information which can be defined by developers according to their

purposes (e.g., semantic queries, tool interaction, or document generation).

Files (3.2 MB)
Name Size
Isabelle_DOF-1.0.0_lsabelle2019.tar.xz 3.2 MB
md5:c714698b973b7b212655705e9a976516 @
Isabelle_DOF-1.0.0_lsabelle2019.tar.xz.asc 833 Bytes
md5S.cf2ba2d2a7c0ed98ee7c1c2e711¢7366 @

>
C”.u’.uwso
Show only: Literature (0) = Dataset (0)  Software (0) = Unknown (0)

~) Citations to this version

No citations.

PUBLIC RELEASE:
http/10.5281/zenodo.3370483

& Download

& Download



Why Ontologies

B size of the AFP in # of articles

700

—

1

.

O

O

0

0

e 8 § &8 §&§ g8 °



Why Ontologies

B size of the AFP in # of articles

* More powerful ITP systems 700
= growing body of formalised

mathematics and engineering

500

600

400

300

200




Why Ontologies

B size of the AFP in # of articles

* More powerful ITP systems 700
= growing body of formalised

mathematics and engineering

500

600

* The Isabelle AFP as example 400

300

200




Why Ontologies

B size of the AFP in # of articles

* More powerful ITP systems 700
= growing body of formalised

mathematics and engineering

500

600

* The Isabelle AFP as example 400

300

200

In 2022, the count stood at 661
articles, 420 authors and 3.3 mio loc !



Why Ontologies

B sizc of the AFP in # of articles

* More powerful ITP systems 700
= growing body of formalised

mathematics and engineering

500

600

* The Isabelle AFP as example 400

300

* Rising need for

200

In 2022, the count stood at 661
articles, 420 authors and 3.3 mio loc !



Why Ontologies

B sizc of the AFP in # of articles

* More powerful ITP systems 700
= growing body of formalised

mathematics and engineering

600

500

* The Isabelle AFP as example 400

300

* Rising need for

e structuring and consistency,

e advanced “semantic” search,

e tool-interaction.
In 2022, the count stood at 661

articles, 420 authors and 3.3 mio loc !
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Why Ontologies

* This requires more structured and typed meta-information
for our application domain in theory developments

e ... and a better dependency-control of the different document elements,
* types, terms, theorems
e code (proof-terms, proof generating programs, SML, LaTeX etc, but also Scala and C!)
e text and diagrams (and perhaps animations, see Jupyter Notebooks https://jupyter.org/)

e ... and the links between them, requiring notions of
consistency and coherence for collaborative development

* The language in which such meta-information can be specified
is called a document ontology (or vocabulary)



Linking the Formal and the Informal
- Existing Approaches -

e Code Antiquotations as in LISP, MetaML, SML, ...

-| val z = <f 4 5>;
val z = <Jf 4 5> : <int>

-| let fun f x y = not x andalso y in run z end;
val it = 8 : int

* Document pragmas as in JavaDoc, Doxygen, et al

public class AddNum {

/**

* This method is used to add two integers. This is
a the simplest form of a class method, just to
show the usage of various javadoc Tags.
@param numA This is the first paramter to addNum method
@param numB This is the second parameter to addNum method
@return int This returns sum of numA and numB.

* ok ok * *

*/
public int addNum(int numA, int numB) {
return numA + numB;

}
 Compilation process allows for document generation and some consistency checks

= batch mode consistency only.
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Linking the Formal and the Informal
- Existing Approaches -

* The Isabelle Approach to “Text-Antiquotations” (heavily used to assure
coherence and traceability in the technical documentations and papers)

* Definitions and proofs can be mixed with text elements

text(This is a description.)

e Text Elements may contain Antiquotations to Formal Content
in the Logical Context, which are checked and animated in the IDE:

text(According to the reflexivity axiom @{t >fl}, we obtain in I’
for @{term "fac 5"} the result @{ve fac 5"} .)

* The global doc-generation process yields a presentation in, e.g., .pdf:

According to the reflexivity axiom x = x, we obtain in I for fac 5 the result 120.
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Linking the Formal and the Informal
- Existing Approaches -

e Similarly, Isabelle Code uses heavily “SML-Antiquotations”

e SML System Code can be mixed with antiquotations producing
SML level representation of types and terms:

fun 1tx of term  (Const (@{const name <Cons>},
@{typ "char = char list = char list"}) $ t1 $ t2)
= HOLogic.dest string (Const (@{const name <Cons>},
@{typ "char = char list = char list"}) $ t1 $ t2)
| 1tx of term  (Const (@{const name <Nil»>}, )) = ""
| ltx of term  (@{term "numeral :: = "} $ t) = Int.toString(HOLogic.dest numeral t)
| Ltx of term ctx encl ((Const (@{const name <Cons>}, ) $ t1) $ t2) =
let val inner = (case t2 of
Const (@{const name <Nil»>}, ) => (ltx of term ctx true tl)
| => ((ltx of term ctx false tl1)~", " ~(ltx of term ctx false t2))
)
B in if encl then enclose "{" "}" inner else inner end
| 1tx of term  (Const (@{const name <None>}, )) = ""

| ltx of term ctxt _ (Const (@{const name <Some>}, )$t) = ltx of term ctxt true t
| 1tx of term ctxt t = ""~(Sledgehammer Util.hackish string of term ctxt t)
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Isabelle’s Document-Centric View
on Formal Development

Primary document type: “XXX.thy”

Acyclic Graph of units that consist of
a sequence of document elements
called “commands”

commands user-programmable in SML

Support of Cascade Syntax:
@Q{SML « ... @{type ¢« .... >} ... >}

Commands are semantically transformers
of the logical context: © = O

context
definition

I:>

context
definition

context
definition

context
definition

anti-quotations are “semantic macros” and as such partial) functions:

O = text, © = sml, O = term

pervasive continuous build/check of Isabelle/PIDE supports anti-quotations.
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e DOF : The Document Ontology Framework

e Prior Versions of Isabelle/DOF support semantic
annotations of text and code-contexts:

text*[label::classid, attr; =E:, ... attr, =E, [ some semi-formal text )
ML+[label::classid, attr; =E. , ... attr, =E, ] { some SML code )

* Novelty in Isabelle/DOF: support of A-term-contexts, e.g.:

value*[label:.classid, attr; =E, ... attr, =E, [ some annotated A-term >
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formal_results : :ist"

"definition" = technical +
is_formal :: "bool"
property :: list“ <=
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example = technical +

referring_to :: "(notion + definition) set" <= "{}"
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e |f an ODL ontology generates “intra-logical”
representations, what'’s the benefit ?

e We don’t have to learn a new (meta)-language

 \We can define new operations on them inside
the logic and develop their theory ...

e ...to develop a query language, for example:
value*{ filter (is_interesting) @{instances-of “result”} )

* We can relate ontologies and ontology instances
by formal proof (“ontology alignment, ontology mapping”)
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Isabelle code

definition sum
where "sum S = (fold (+) S 0)"

datatype Hardware_Type =
Motherboard |
Expansion_Card |
Storage_Device |
Fixed_Media |
Removable_Media |
Input_Device |
Output_Device

onto__class Resource =
name :: string

onto__class Electronic = Resource +
provider :: string
manufacturer :: string

onto__class Component = Electronic +
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dimensions :: "int list"
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mass :: int
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definition sum onto__class Item =

where "sum S = (fold (+) S 0)" name :: string
datatype Hardware_Type = onto_ _class Product = Item +
Motherboard | serial_number :: int
Expansion_Card | provider :: string
Storage_Device | mass :: int
Fixed_Media |
Removable_Media | onto__class Computer_Software = Item +
Input_Device | version :: int

Output_Device
onto__class Electronic_Component = Product +

onto__class Resource = dimensions :: "int set"
name :: string
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e A “*Generic’ Reference Ontology” vs. a “‘local’ Ontology”

Isabelle code

definition sum
where "sum S = (fold (+) S 0)"

datatype Hardware_Type =

Motherboard |
Expansion_Card |
Storage_Device |
Fixed_Media |
Removable_Media |
Input_Device |
Output_Device

onto__class Resource =
name :: string

onto__class Electronic = Resource +
provider :: string
manufacturer :: string

onto__class Component = Electronic +
mass :: int
dimensions :: "int list"

onto__class Simulation_Model = Electronic +
type :: string

onto__class Informatic = Resource +
description :: string

Hardware_Type

type ::

mass :: int
composed_of :: "Component list"
invariant c1 :: "mass o = sum(map Component.mass (composed_of o))/

Isabelle code

onto__class Item =
name :: string

onto__class Product = Item +

serial_number :: int
provider :: string
mass :: int

onto__class Computer_Software = Item +
version :: int

onto__class Electronic_Component = Product +
dimensions :: "int set"

onto__class Computer_Hardware = Product +
type :: Hardware_Type
composed_of :: "Product list"
invariant c2 :: "Product.mass o = sum(map Product.mass (composed_of o))"

definition Computer_Hardware_to_Hardware_morphism ::

"’a Computer_Hardware_scheme = Hardware"
("— (Hardware>ComputerHardware“ [1000]999)
where "o (Hardware)computerHardware =
( Resource.tag_attribute = 2::int ,
Resource.name = name o ,
Informatic.description = ’'’no description’’,
Hardware.type = Computer_Hardware.type o ,
Hardware.mass = mass o ,
Hardware.composed_of =
map Product_to_Component_morphism
(Computer_Hardware.composed_of o) |)"
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Consequences: Example
Proof of an Ontology Mapping

e A “‘Generic’ Reference Ontology” vs. a “local’ Ontology”
“The mapping is correct (preserves the invariants)”

Isabelle code

lemma inv_c2_preserved :
"c2_inv ¢ = cl_inv (o (Hardware)computerHardware)"
unfolding cl_inv_def c2_inv_def
Computer_Hardware_to_Hardware_morphism_def
Product_to_Component_morphism_def
using comp_def by (auto)

lemma Computer_Hardware_to_Hardware_morphism_total :
“"Computer_Hardware_to_Hardware_morphism ‘ ({X::Computer_Hardware. c2_inv X})
C ({X::Hardware. cl_inv X})"
using inv_c2_preserved by auto
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But what “are” ontology-generated
term antiquotations ???

* First of all: how are they processed:
* parsing
* type checking
e validation (an argument is indeed a valid reference in the context)
e expansion (replacement of a reference against logical terms)

e evaluation (to SML code, or by nbe)
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But what “are” ontology-generated
term antiqguotations ?7??

 Then “built-in” term-anti quotations can be:

* just uninterpreted constants (without expansion)

sort “typ”
consts typ_anno :: “string = typ” (“@{typ _}” 100)

e a “shallow” data-type representation (without expansion)
datatype “typ” = typ_anno “string” (“@{typ _}” 100)

e or a “deep” data-type representation into an Isabelle
Meta-Model such as [Nipkow,Rosskopf 21] (with expansion)

definition typ_anno : “string = typ” where “typ_anno S = undefined”

datatype “typ” = is_Ty: Ty name “typ list”

Is-Tv : Tv variable sort

is_Ct : Ct name “typ”

Is_Fv: Fv variable “typ”

Is_Bv: Bv nat
IS_Abs : Abs “typ” “term”
is_App : App “term” “term” {infix| “$” 100)

datatype “term”
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* DOF provides a framework

e for defining ontologies in the context of ITP systems

® jts typed ! It has a logical interpretation !
It is therefore an “in-between” between an ML and a logic.

® provides a generated infrastructure for meta-data of
types, terms, thm’s and text and code elements

e DOF provides a framework to enforce on-the-fly
ontology-conform documentation checking

e DOF provides infrastructure for proofs over the

logical representation of ontologies and meta-data ...

e Ontologies generating meta-data can be used
for other forms of Tool Interaction via “deep
interpretations” into a meta-model
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* (P)IDE’s are more than just a technical asset

e ... It Is a corner-stone for a revolution

e 1970’ies TEXT
e 1990%ies HYPERTEXT

e 2010’ies REACTIVE DOCUMENTS

e 2020%ies SEMANTIC DOCUMENTS (???)



