O
@ universite
PARIS-SACLAY

Isabelle/DOF

A Framework for Proving Ontology-
Relations and Runtime Testing
Ontology Instances

|dir Ait-Sadoune, Nicolas Meric and Burkhart \Wolff
LMF, Université Paris-Saclay, France

GT Deduction 17.2.2022

Overview

Why (Document) Ontologies

Ontologies and
Formal Theories

DOF Design
Isabelle/DOF Implementation

Some Application Scenarios

August 18,2019 (Sotvars | Opan Access |

|Isabelle/DOF

Brucker, Achim D.; Wolff, Burkhart

Isabelle/DOF is a Document Ontology Framework (DOF), on top of Isabelle/HOL, allowing to annotate text elements in
formal developments with structured, typed meta-information which can be defined by developers according to their

purposes (e.g., semantic queries, tool interaction, or document generation).

Files (3.2 MB)
Name Size
Isabelle_DOF-1.0.0_lsabelle2019.tar.xz 3.2 MB
md5:c714698b973b7b212655705e9a976516 @
Isabelle_DOF-1.0.0_lsabelle2019.tar.xz.asc 833 Bytes
md5S.cf2ba2d2a7c0ed98ee7c1c2e711¢7366 @

>
C”.u’.uwso
Show only: Literature (0) = Dataset (0) Software (0) = Unknown (0)

~) Citations to this version

No citations.

PUBLIC RELEASE:
http/10.5281/zenodo.3370483

& Download

& Download

Why Ontologies

B size of the AFP in # of articles

700

—

1

.

O

O

0

0

e 8 § &8 §&§ g8 °

Why Ontologies

B size of the AFP in # of articles

* More powerful ITP systems 700
= growing body of formalised

mathematics and engineering

500

600

400

300

200

Why Ontologies

B size of the AFP in # of articles

* More powerful ITP systems 700
= growing body of formalised

mathematics and engineering

500

600

* The Isabelle AFP as example 400

300

200

Why Ontologies

B size of the AFP in # of articles

* More powerful ITP systems 700
= growing body of formalised

mathematics and engineering

500

600

* The Isabelle AFP as example 400

300

200

In 2022, the count stood at 661
articles, 420 authors and 3.3 mio loc !

Why Ontologies

B sizc of the AFP in # of articles

* More powerful ITP systems 700
= growing body of formalised

mathematics and engineering

500

600

* The Isabelle AFP as example 400

300

* Rising need for

200

In 2022, the count stood at 661
articles, 420 authors and 3.3 mio loc !

Why Ontologies

B sizc of the AFP in # of articles

* More powerful ITP systems 700
= growing body of formalised

mathematics and engineering

600

500

* The Isabelle AFP as example 400

300

* Rising need for

e structuring and consistency,

e advanced “semantic” search,

e tool-interaction.
In 2022, the count stood at 661

articles, 420 authors and 3.3 mio loc !

Why Ontologies

Why Ontologies

* This requires more structured and typed meta-information
for our application domain in theory developments

Why Ontologies

* This requires more structured and typed meta-information
for our application domain in theory developments

e ... and a better dependency-control of the different document elements,

Why Ontologies

* This requires more structured and typed meta-information
for our application domain in theory developments

e ... and a better dependency-control of the different document elements,

* types, terms, theorems

Why Ontologies

* This requires more structured and typed meta-information
for our application domain in theory developments

e ... and a better dependency-control of the different document elements,

* types, terms, theorems

e code (proof-terms, proof generating programs, SML, LaTeX etc, but also Scala and C!)

Why Ontologies

* This requires more structured and typed meta-information
for our application domain in theory developments

e ... and a better dependency-control of the different document elements,
* types, terms, theorems
e code (proof-terms, proof generating programs, SML, LaTeX etc, but also Scala and C!)

e text and diagrams (and perhaps animations, see Jupyter Notebooks https://jupyter.org/)

Why Ontologies

* This requires more structured and typed meta-information
for our application domain in theory developments

e ... and a better dependency-control of the different document elements,
* types, terms, theorems
e code (proof-terms, proof generating programs, SML, LaTeX etc, but also Scala and C!)
e text and diagrams (and perhaps animations, see Jupyter Notebooks https://jupyter.org/)

e ... and the links between them, requiring notions of
consistency and coherence for collaborative development

Why Ontologies

* This requires more structured and typed meta-information
for our application domain in theory developments

e ... and a better dependency-control of the different document elements,
* types, terms, theorems
e code (proof-terms, proof generating programs, SML, LaTeX etc, but also Scala and C!)
e text and diagrams (and perhaps animations, see Jupyter Notebooks https://jupyter.org/)

e ... and the links between them, requiring notions of
consistency and coherence for collaborative development

* The language in which such meta-information can be specified
is called a document ontology (or vocabulary)

Linking the Formal and the Informal
- Existing Approaches -

e Code Antiquotations as in LISP, MetaML, SML, ...

-| val z = <f 4 5>;
val z = <Jf 4 5> : <int>

-| let fun f x y = not x andalso y in run z end;
val it = 8 : int

* Document pragmas as in JavaDoc, Doxygen, et al

public class AddNum {

/**

* This method is used to add two integers. This is
a the simplest form of a class method, just to
show the usage of various javadoc Tags.
@param numA This is the first paramter to addNum method
@param numB This is the second parameter to addNum method
@return int This returns sum of numA and numB.

* ok ok * *

*/
public int addNum(int numA, int numB) {
return numA + numB;

}
 Compilation process allows for document generation and some consistency checks

= batch mode consistency only.

Linking the Formal and the Informal
- Existing Approaches -

Linking the Formal and the Informal
- Existing Approaches -

* The Isabelle Approach to “Text-Antiquotations” (heavily used to assure
coherence and traceability in the technical documentations and papers)

Linking the Formal and the Informal
- Existing Approaches -

* The Isabelle Approach to “Text-Antiquotations” (heavily used to assure
coherence and traceability in the technical documentations and papers)

* Definitions and proofs can be mixed with text elements

Linking the Formal and the Informal
- Existing Approaches -

* The Isabelle Approach to “Text-Antiquotations” (heavily used to assure
coherence and traceability in the technical documentations and papers)

* Definitions and proofs can be mixed with text elements

text(This is a description.)

Linking the Formal and the Informal
- Existing Approaches -

* The Isabelle Approach to “Text-Antiquotations” (heavily used to assure
coherence and traceability in the technical documentations and papers)

* Definitions and proofs can be mixed with text elements

text(This is a description.)

e Text Elements may contain Antiquotations to Formal Content
in the Logical Context, which are checked and animated in the IDE:

Linking the Formal and the Informal
- Existing Approaches -

* The Isabelle Approach to “Text-Antiquotations” (heavily used to assure
coherence and traceability in the technical documentations and papers)

* Definitions and proofs can be mixed with text elements

text(This is a description.)

e Text Elements may contain Antiquotations to Formal Content
in the Logical Context, which are checked and animated in the IDE:

text(According to the reflexivity axiom @{t , we obtain in I’
for @{t : - the result @ : o)

Linking the Formal and the Informal
- Existing Approaches -

* The Isabelle Approach to “Text-Antiquotations” (heavily used to assure
coherence and traceability in the technical documentations and papers)

* Definitions and proofs can be mixed with text elements

text(This is a description.)

e Text Elements may contain Antiquotations to Formal Content
in the Logical Context, which are checked and animated in the IDE:

text(According to the reflexivity axiom , we obtain in I’
for @ : - the result @ :)

* The global doc-generation process yields a presentation in, e.g., .pdf:

Linking the Formal and the Informal
- Existing Approaches -

* The Isabelle Approach to “Text-Antiquotations” (heavily used to assure
coherence and traceability in the technical documentations and papers)

* Definitions and proofs can be mixed with text elements

text(This is a description.)

e Text Elements may contain Antiquotations to Formal Content
in the Logical Context, which are checked and animated in the IDE:

text(According to the reflexivity axiom @{t >fl}, we obtain in I’
for @{term "fac 5"} the result @{ve fac 5"} .)

* The global doc-generation process yields a presentation in, e.g., .pdf:

According to the reflexivity axiom x = x, we obtain in I for fac 5 the result 120.

Linking the Formal and the Informal
- Existing Approaches -

Linking the Formal and the Informal
- Existing Approaches -

e Similarly, Isabelle Code uses heavily “SML-Antiquotations”

Linking the Formal and the Informal
- Existing Approaches -

e Similarly, Isabelle Code uses heavily “SML-Antiquotations”

e SML System Code can be mixed with antiquotations producing
SML level representation of types and terms:

Linking the Formal and the Informal
- Existing Approaches -

e Similarly, Isabelle Code uses heavily “SML-Antiquotations”

e SML System Code can be mixed with antiquotations producing
SML level representation of types and terms:

fun 1tx of term (Const (@{const name <Cons>},
@{typ "char = char list = char list"}) $ t1 $ t2)
= HOLogic.dest string (Const (@{const name <Cons>},
@{typ "char = char list = char list"}) $ t1 $ t2)
| 1tx of term (Const (@{const name <Nil»>},)) = ""
| ltx of term (@{term "numeral :: = "} $ t) = Int.toString(HOLogic.dest numeral t)
| Ltx of term ctx encl ((Const (@{const name <Cons>},) $ t1) $ t2) =
let val inner = (case t2 of
Const (@{const name <Nil»>},) => (ltx of term ctx true tl)
| => ((ltx of term ctx false tl1)~", " ~(ltx of term ctx false t2))
)
B in if encl then enclose "{" "}" inner else inner end
| 1tx of term (Const (@{const name <None>},)) = ""

| ltx of term ctxt _ (Const (@{const name <Some>},)$t) = ltx of term ctxt true t
| 1tx of term ctxt t = ""~(Sledgehammer Util.hackish string of term ctxt t)

Isabelle’s Document-Centric View
on Formal Development

Isabelle’s Document-Centric View
on Formal Development

* Primary document type: “XXX.thy”

Isabelle’s Document-Centric View
on Formal Development

* Primary document type: “XXX.thy”

I:>

* Acyclic Graph of units that consist of e
a sequence of document elements definition
called “commands”

context
definition

context
definition

context
definition

Isabelle’s Document-Centric View
on Formal Development

* Primary document type: “XXX.thy”

I:>

* Acyclic Graph of units that consist of e
a sequence of document elements definition
called “commands”

context
definition

context
definition

e commands user-programmable in SML

context
definition

Isabelle’s Document-Centric View
on Formal Development

* Primary document type: “XXX.thy”

I:>

* Acyclic Graph of units that consist of e
a sequence of document elements definition
called “commands”

context
definition

context
definition

e commands user-programmable in SML

e Support of Cascade Syntax:
@Q{SML « ... @{type ¢« >} ... >}

context
definition

Isabelle’s Document-Centric View
on Formal Development

* Primary document type: “XXX.thy”

I:>

* Acyclic Graph of units that consist of e
a sequence of document elements definition
called “commands”

context
definition

context
definition

e commands user-programmable in SML

e Support of Cascade Syntax:
@Q{SML « ... @{type ¢« >} ... >}

context
definition

e (Commands are semantically transformers
of the logical context: © = O

Isabelle’s Document-Centric View
on Formal Development

Primary document type: “XXX.thy”

Acyclic Graph of units that consist of
a sequence of document elements
called “commands”

commands user-programmable in SML

Support of Cascade Syntax:
@Q{SML « ... @{type ¢« >} ... >}

Commands are semantically transformers
of the logical context: © = O

context
definition

I:>

context
definition

context
definition

context
definition

anti-quotations are “semantic macros” and as such partial) functions:

O = text, © = sml, O = term

Isabelle’s Document-Centric View
on Formal Development

Primary document type: “XXX.thy”

Acyclic Graph of units that consist of
a sequence of document elements
called “commands”

commands user-programmable in SML

Support of Cascade Syntax:
@Q{SML « ... @{type ¢« >} ... >}

Commands are semantically transformers
of the logical context: © = O

context
definition

I:>

context
definition

context
definition

context
definition

anti-quotations are “semantic macros” and as such partial) functions:

O = text, © = sml, O = term

pervasive continuous build/check of Isabelle/PIDE supports anti-quotations.

Isabelle/DOF

Isabelle/DOF

e DOF : The Document Ontology Framework

Isabelle/DOF

e DOF : The Document Ontology Framework

e Prior Versions of Isabelle/DOF support semantic
annotations of text and code-contexts:

Isabelle/DOF

e DOF : The Document Ontology Framework

e Prior Versions of Isabelle/DOF support semantic
annotations of text and code-contexts:

text*[label::classid, attr; =E:, ... attr, =E, [some semi-formal text)
ML+[label::classid, attr; =E. , ... attr, =E,] { some SML code)

Isabelle/DOF

e DOF : The Document Ontology Framework

e Prior Versions of Isabelle/DOF support semantic
annotations of text and code-contexts:

text*[label::classid, attr; =E:, ... attr, =E, [some semi-formal text)
ML+[label::classid, attr; =E. , ... attr, =E,] { some SML code)

* Novelty in Isabelle/DOF: support of A-term-contexts, e.g.:

Isabelle/DOF

e DOF : The Document Ontology Framework

e Prior Versions of Isabelle/DOF support semantic
annotations of text and code-contexts:

text*[label::classid, attr; =E:, ... attr, =E, [some semi-formal text)
ML+[label::classid, attr; =E. , ... attr, =E,] { some SML code)

* Novelty in Isabelle/DOF: support of A-term-contexts, e.g.:

value*[label:.classid, attr; =E, ... attr, =E, [some annotated A-term >

Isabelle/DOF Core : ODL

Isabelle/DOF Core : ODL

 The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

Isabelle/DOF Core : ODL

e The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

e Features:

(@) i L L : I () ‘

title = short_title :: "string option" <= "None"
author = email :: "string" <= "'''"'"

datatype classification = SILO | SIL1 | SIL2 | SIL3 | SIL4

abstract =
keywordlist :: "string list" <= []
safety level :: "classification" <= "SIL3"
text_section =
authored_by :: "author set" <= "{}"

level :: "int option” <= "None"

Isabelle/DOF Core : ODL

e The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

e Features:

(@) i L L : I () ‘

* classes (for the “concepts”) title = short_title :: "string option" <= "None"
author — emall .- "S-tringll <= "t

datatype classification = SILO | SIL1 | SIL2 | SIL3 | SIL4

abstract =
keywordlist :: "string list" <= []
safety level :: "classification" <= "SIL3"
text_section =
authored_by :: "author set" <= "{}"

level :: "int option” <= "None"

Isabelle/DOF Core : ODL

e The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

e Features:

L 17/ L ‘

e classes (for the “concepts”) doc_class "string option" <= "None"

Ilstringll <= mie oo n

datatype classification = SILO | SIL1 | SIL2 | SIL3 | SIL4

keywo o 'string list" <= []
8 assification" <= "STIL3"

authoretd=oy—: —aadthor set" <= "{}"
level :: "int option” <= "None"

Isabelle/DOF Core : ODL

e The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

e Features:

(@) i L L : I () ‘

* classes (for the “concepts”) title = short_title :: "string option" <= "None"
author — emall .- "S-tringll <= "t

datatype classification = SILO | SIL1 | SIL2 | SIL3 | SIL4

abstract =
keywordlist :: "string list" <= []
safety level :: "classification" <= "SIL3"
text_section =
authored_by :: "author set" <= "{}"

level :: "int option” <= "None"

Isabelle/DOF Core : ODL

e The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

* Features:
. 4 4 L 17/ o \
* classes (for the “concepts”) title = short_title :: "string option" <= "None"
author = email :: "string" <= "'"'"""
e classes may have attributes
with HOL type datatype classification = SILO | SIL1 | SIL2 | SIL3 | SIL4
abstract =
keywordlist :: "string list" <= []
safety level :: "classification" <= "SIL3"
text_section =
authored_by :: "author set" <= "{}"

level :: "int option” <= "None"

Isabelle/DOF Core : ODL

e The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

e Features:
* Classes (for the “concepts™) goc_class title = short_title : = "None"
: author = email ;1 "string” <=
e classes may have attributes
with HOL type datatype classification = SILO | SIL1 | SIL2 | SIL3 | SIL4
abstract =

keywordlist :: "string list" <= []
safety level :: "classification" <= "STIL3"

| text_section =
authored_by ::

<= "{}"

<= IINonell

Isabelle/DOF Core : ODL

e The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

* Features:
. 4 4 L 17/ o \
* classes (for the “concepts”) title = short_title :: "string option" <= "None"
author = email :: "string" <= "'"'"""
e classes may have attributes
with HOL type datatype classification = SILO | SIL1 | SIL2 | SIL3 | SIL4
abstract =
keywordlist :: "string list" <= []
safety level :: "classification" <= "SIL3"
text_section =
authored_by :: "author set" <= "{}"

level :: "int option” <= "None"

Isabelle/DOF Core : ODL

e The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

e Features:

(@) i e L 17/ (@) [
* classes (for the “concepts”) (oc_class title = short title :: "string option" <= "None"
doc_class author = email :: "string" <= "*''*'"

e classes may have attributes

with HOL type datatype classification = SILO | SIL1 | SIL2 | SIL3 | SIL4

_ doc_class abstract =
* _CIaSS deCIara’FlonS can be keywordlist :: "string list" <= []
mterleav.ed with arbitrary HOL safety_level :: <= "GIL3"
declarations doc_class text_section =
authored_by :: "author set" <= "{}"
level :: "int option” <= "None"

Isabelle/DOF Core : ODL

e The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

e Features:
() 4 4 L 17/ o \
* classes (for the “concepts”) title = short_title :: "string option" <= "None"
author = email :: "string" <= "'"'"""
e classes may have attributes
with HOL type datatype classification = SILO | SIL1 | SIL2 | SIL3 | SIL4
| decl _ . abstract =
* .CtaST ecsraﬂﬁnsbqtan eHOL keywordlist :: "string list" <= []
n1ereaye with arbitrary safety level :: "classification" <= "SIL3"
declarations :
text_section =
authored_by :: "author set" <= "{}"

level :: "int option” <= "None"

Isabelle/DOF Core : ODL

e The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

e Features:
() 4 4 L 17/ o \
* classes (for the “concepts”) title = short_title :: "string option" <= "None"
author = email :: "string" <= "'"'"""
e classes may have attributes
with HOL type datatype classification = SILO | SIL1 | SIL2 | SIL3 | SIL4
| declarati . abstract =
.CtaST ecsra.;(r)]nsbqtan eHOL keywordlist :: "string list" <= []
n1ereaye with arbitrary safety level :: "classification" <= "SIL3"
declarations :
text_section =
authored_by :: "author set" <= "{}"
e attributes of class-instances level :: "int option" <= "None"

are mutable; (default) values
can be denoted by HOL-terms

Isabelle/DOF Core : ODL

e The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

e Features:
() 4 4 L 17/ o \
* classes (for the “concepts”) title = short_title :: "string option" <= "None"
author = email :: "string" <= "'"'"""
e classes may have attributes
with HOL type datatype classification = SILO | SIL1 | SIL2 | SIL3 | SIL4
| decl _ . abstract =
* .CtaST ecsraﬂﬁnsbqtan eHOL keywordlist :: "string list" <= []
n1ereaye with arbitrary safety level :: "classification" <= "SIL3"
declarations :
text_section =
authored_by :: "author set" <= "{}"
e attributes of class-instances level :: "int option" <= "None"

are mutable; (default) values
can be denoted by HOL-terms

e class declarations induce a HOL-type; this allows to establish “ontological links”

Isabelle/DOF Core : ODL

e The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

e Features:
. 4 4 L 17/ o |
* classes (for the “concepts”) title = short_title :: "string option" <= "None"
mai'L : : Ilstringll <= nmiL o orrn
e classes may have attributes
with HOL type datatype classifisgtion = SILO | SIL1 | SIL2 | SIL3 | SIL4

abstract =
keywordlist :: "st
safety level ::

e class declarations can be
interleaved with arbitrary HOL
declarations

ing list" <= []
"classification" <= "SIL3"

authored_by : <= "{}"
e attributes of class-instances level P option" <= "None"
are mutable; (default) values
can be denoted by HOL-terms

e class declarations induce a HOL-type; this allows to establish “ontological links”

Isabelle/DOF Core : ODL

e The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

e Features:
() 4 4 L 17/ o \
* classes (for the “concepts”) title = short_title :: "string option" <= "None"
author = email :: "string" <= "'"'"""
e classes may have attributes
with HOL type datatype classification = SILO | SIL1 | SIL2 | SIL3 | SIL4
| decl _ . abstract =
* .CtaST ecsraﬂﬁnsbqtan eHOL keywordlist :: "string list" <= []
n1ereaye with arbitrary safety level :: "classification" <= "SIL3"
declarations :
text_section =
authored_by :: "author set" <= "{}"
e attributes of class-instances level :: "int option" <= "None"

are mutable; (default) values
can be denoted by HOL-terms

e class declarations induce a HOL-type; this allows to establish “ontological links”

Isabelle/DOF Core : ODL

Isabelle/DOF Core : ODL

e The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

Isabelle/DOF Core : ODL

e The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

e Features:

Isabelle/DOF Core : ODL

e The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

e Features:

type—_synonym notion = string

introduction = text_section +
authored_by :: "author set” <=
uses :: "notion set"

claim = introduction +
based_on :: "notion list"

technical = text_section +
formal_results :: "thm list"

"definition" = technical +
is_formal :: "bool"
property :: "term list" <=

"UNIV"

II[]II

Isabelle/DOF Core : ODL

The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

Features:

classes have single inheritance
(is a - relation)

type—_synonym notion = string

introduction = text_section +
authored_by :: "author set” <=

uses :: "notion set"
claim = introduction +
based_on :: "notion list"

technical = text_section +

formal_results :: "thm list”
"definition" = technical +

is_formal :: "bool"

property :: "term list" <=

"UNIV"

II[]II

Isabelle/DOF Core : ODL

The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

Features:

classes have single inheritance
(is a - relation)

type—_synonym notion = string

introduction =Jtext_section +

or set” <=
uses

:: "notiqn._set"
based_on :: "TTOTIC

L3 technical = text_section +

formal_results :: "thm list"

Lass "definition" = technical +
is_formal :: "bool"
property :: "term list" <=

"UNIV"

II[]II

Isabelle/DOF Core : ODL

The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

Features:

classes have single inheritance
(is a - relation)

type—_synonym notion = string

introduction = text_section +
authored_by :: "author set” <=

uses :: "notion set"
claim = introduction +
based_on :: "notion list"

technical = text_section +

formal_results :: "thm list”
"definition" = technical +

is_formal :: "bool"

property :: "term list" <=

"UNIV"

II[]II

Isabelle/DOF Core : ODL

The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

Features:

classes have single inheritance
(is a - relation)

attribute overriding of attributes
IS possible

type—_synonym notion = string

introduction = text_section +
authored_by :: "author set” <=
uses :: "notion set"

claim = introduction +
based_on :: "notion list"

technical = text_section +

formal_results :: "thm list”
"definition" = technical +

is_formal :: "bool"

property :: "term list" <=

"UNIV"

II[]II

Isabelle/DOF Core : ODL

The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

Features:

classes have single inheritance
(is a - relation)

attribute overriding of attributes
IS possible

meta-level types of the ITP were
included as abstract HOL types;
their inhabitance is checked

in the global context ©

type—_synonym notion = string

introduction = text_section +
authored_by :: "author set” <=

uses :: "notion set"
claim = introduction +
based_on :: "notion list"

technical = text_section +

formal_results :: "thm list”
"definition" = technical +

is_formal :: "bool"

property :: "term list" <=

"UNIV"

II[]II

Isabelle/DOF Core : ODL

The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

Features:

classes have single inheritance
(is a - relation)

attribute overriding of attributes
IS possible

meta-level types of the ITP were
included as abstract HOL types;
their inhabitance is checked

in the global context ©

type—_synonym notion = string

introduction = text_section +
authored_by :: "author set” <=

uses :: "notion set"
claim = introduction +
based_on :: "notion list"

technical = text_section +

formal_results : :ist"

"definition" = technical +
is_formal :: "bool"
property :: list“ <=

"UNIV"

II[]II

Isabelle/DOF Core : ODL

The Ontology Definition Language (ODL):
The Mechanism to define Ontologies

Features:

classes have single inheritance
(is a - relation)

attribute overriding of attributes
IS possible

meta-level types of the ITP were
included as abstract HOL types;
their inhabitance is checked

in the global context ©

type—_synonym notion = string

introduction = text_section +
authored_by :: "author set” <=

uses :: "notion set"
claim = introduction +
based_on :: "notion list"

technical = text_section +

formal_results :: "thm list”
"definition" = technical +

is_formal :: "bool"

property :: "term list" <=

"UNIV"

II[]II

DOF Example Document

DOF Example Document

* Defining the

Ontological
Context

DOF Example Document

° Deﬂning the theory Steam Boiler
Ontological imports | -
Context tiny_cert (* The ontology defined in Listing 1.1. *)

begin

DOF Example Document

Defining the theory Steam_Boiler

Ontological imports
Context tiny_cert (* The ontology defined in Listing 1.1. %)

begin

And there we go:

DOF Example Document

* Defining the
Ontological
Context

* And there we go: [a]

(The Steam Boiler Controllenr

[abs, safety_level="SIL4", keywordlist = "[''controller'"']"]«

We present a formalization of a program which serves to control the
level of water in a steam boiler.

[intro::introduction](Introduction)
textWe present ...)

[T1::technical](Physical Environment)
text(

The system comprises the following units
e the steam-boiler

e a device to measure the quantity of water in the steam-boiler

DOF Example Document

* Defining the

Ontological
Context
e And there we go: [a] (The Steam Boiler Controller’
[abs, safety_level="SIL4", keywordlist = "[''controller'"']"]«
We present a formalization of a program which serves to control the
® Where and level of water in a steam boiler.
)
dare macros
for [atltle] [intro::introduction](Introduction)
o S text(We present ...)
etc...

[T1::technical](Physical Environment)
text(
The system comprises the following units

e the steam-boiler
e a device to measure the quantity of water in the steam-boiler

DOF Example Document

Defining the
Ontological
Context
And there we go. [a] (The Steam Boiler Controllen
[abs, safety_level="SIL4", keywordlist = "[''controller'"']"]«
We present a formalization of a program which serves to control the
Where and level of water in a steam boiler.
)
are macros
for [at|t|e] [intro::introduction](Introduction)
a S textWe present ...)
etc...

[T1::technical](Physical Environment)
text(

... and the meta-data The system comprises the following units
. e the steam-boiler
Instances are a, abs, e a device to measure the quantity of water in the steam-boiler

intro, T1, attached to .
these doc elements

DOF Example Document

Defining the
Ontological
Context
And there we go: @ he Steam Boiler Controller
@ safety_level="SIL4", keywordlist = "['‘'controller'"']"]«
We preseé a formalization of a program which serves to control the
Where tltle* and level of water in a steam boiler.
)
dare macros
=adi [introfd:introduction](Introduction)
for [a::title,...], B - o
etc...

technical](Physical Environment)
text(

... and the meta-data The system comprises the following units
. e the steam-boiler
Instances are a, abs, e a device to measure the quantity of water in the steam-boiler

intro, T1, attached to .
these doc elements

Isabelle/DOF Core :
Class Invariants

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

» New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and commands like value*

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

» New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and commands like value*

 Eg.: Invariants for

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

» New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and commands like value*

° Eg Invariants for datatype kind = expert_opinion | argument | proof

result = technical +
evidence :: kind
property :: "thm list" <= "[]"

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

» New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and commands like value*

° Eg Invariants for datatype kind = expert_opinion | argument | proof

_ _ result = technical +
. data—lnt.egrlty evidence :: kind
constraints property :: "thm list" <= "[1"

Isabelle/DOF Core:

Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

» New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and commands like value*

 Eg.: Invariants for

data-integrity
constraints

datatype kind = expert_opinion | argument | proof
result = technical +

evidence :: kind
property :: "thm list" <= "[]"

YV o e result. evidence o = proof —. property o % []

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

» New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and commands like value*

° Eg Invariants for datatype kind = expert_opinion | argument | proof

_ _ result = technical +
. data—lnt.egrlty evidence :: kind
constraints property :: "thm list" <= "[1"

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

» New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and commands like value*

° Eg Invariants for datatype kind = expert_opinion | argument | proof
result = technical +

* data-integrity evidence :: kind
constraints property :: "thm list" <= "[]"

<lab> : evidence o = proof — property o # []

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

» New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and commands like value*

° Eg Invariants for datatype kind = expert_opinion | argument | proof

result = technical +

. data—int.egrity evidence :: kind
constraints property :: "thm list" <= "[]"
—> <lab> inv :: ‘a result_scheme = bool”

“<lab>_inv o = evidence o = proof — property o # []

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

» New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and commands like value*

° Eg Invariants for datatype kind = expert_opinion | argument | proof

_ _ result = technical +
. data—lnt.egrlty evidence :: kind
constraints property :: "thm list" <= "[1"

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

» New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and commands like value*

° Eg Invariants for datatype kind = expert_opinion | argument | proof

result = technical +

* data-integrity evidence :: kind
constraints property :: "thm list" <= "[]"
e ... using “built-in”

term antiquotations
for “term”, “typ”, “thm

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

» New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and commands like value*

° Eg Invariants for datatype kind = expert_opinion | argument | proof

result = technical +

* data-integrity evidence :: kind
constraints property :: "thm list" <= "[]"
e ... using “built-in”

term antiquotations
for “term”, “typ”, “thm

<lab> : evidence o=proof — @{thm"safe'"}eset(property o)

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

» New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and commands like value*

° Eg Invariants for datatype kind = expert_opinion | argument | proof

result = technical +

* data-integrity evidence :: kind
constraints property :: "thm list" <= "[]"
e ... using “built-in”

term antiquotations
for “term”, “typ”, “thm

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

» New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and commands like value*

° Eg Invariants for datatype kind = expert_opinion | argument | proof
result = technical +

evidence :: kind
property :: "thm list" <= "[]"

e data-integrity
constraints

e ... using “built-in”
term antiquotations
for “term”, “typ”, “thm

 may use DOF-generated term-antiquotations like @{result “<some result instance>"}
or @fintroduction “intro”} or @{instance-of “result”}, etc.

Isabelle/DOF Core :
Class Invariants

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

e New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and some commands like value*

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

e New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and some commands like value*

e |nvariants for

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

e New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and some commands like value*

e |nvariants for datatype kind = expert_opinion | argument | proof

result = technical +

evidence :: kind

property :: "thm list" <= "[]"
example = technical +

referring_to :: "(notion + definition) set" <= "{}"
"conclusion" = text_section +

establish :: "(claim X result) set"

e ODL used already A-(ground)-terms to denote values for attributes.

e New: ODL uses arbitrary A-terms containing generated term-antiquo-

Isabelle/DOF Core:

Class Invariants

tations in invariants, attribute definitions and some commands like value*

e |nvariants for

“a result
text element
must provide
evidence in
form of a
proven theo-
rem...”

datatype kind = expert_opinion | argument | proof

result = technical +
evidence :: kind

property :: "thm list" <= "[]"

example = technical +

referring_to :: "(notion + definition)

"conclusion" = text_section +
establish :: "(claim X result) set"

II{}II

Isabelle/DOF Core:

Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

e New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and some commands like value*

e |nvariants for

“a result
text element
must provide
evidence in
form of a
proven theo-
rem...”

datatype kind = expert_opinion | argument | proof

result = technical +

evidence :: kind

property :: "thm list" <= "I]"
example = technical +

referring_to :: "(notion + definition) set" <= "{}"
"conclusion" = text_section +

establish :: "(claim X result) set"

YV o e conclusion. ¥V x € Domain(establish o).
d y e Range(establish o). (x, y) € establish o

Isabelle/DOF Core :
Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

e New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and some commands like value*

e |nvariants for datatype kind = expert_opinion | argument | proof
result = technical +
* “aresult evidence :: kind

text elemgnt property :: "thm list" <= "[1"
must provide .

. : example = technical +
evidence in _ . _ L . o
form of a referring_to (notion + def}nltlon) set" <= {}
proven theo- "conclusion" = text_section +
rem ...” establish :: "(claim X result) set"

Y o € conclUSi e Domai

. (X, y) € establish o

e ODL used already A-(ground)-terms to denote values for attributes.

e New: ODL uses arbitrary A-terms containing generated term-antiquo-

Isabelle/DOF Core:

Class Invariants

tations in invariants, attribute definitions and some commands like value*

e |nvariants for

“a result
text element
must provide
evidence in
form of a
proven theo-
rem...”

datatype kind = expert_opinion | argument | proof

result = technical +
evidence :: kind

property :: "thm list" <= "[]"

example = technical +

referring_to :: "(notion + definition)

"conclusion" = text_section +
establish :: "(claim X result) set"

II{}II

Isabelle/DOF Core:

Class Invariants

e ODL used already A-(ground)-terms to denote values for attributes.

e New: ODL uses arbitrary A-terms containing generated term-antiquo-
tations in invariants, attribute definitions and some commands like value*

e |nvariants for

“a result
text element
must provide
evidence in
form of a
proven theo-
rem...”

datatype kind = expert_opinion | argument | proof

result = technical +

evidence :: kind

property :: "thm list" <= "I]"
example = technical +

referring_to :: "(notion + definition) set" <= "{}"
"conclusion" = text_section +

establish :: "(claim X result) set"

YV o € conclusion. V' y € @{instance_of “claim”}.
d y € Range(establish o). (x,y) € establish o

Conseqguences

Conseqguences

e |f an ODL ontology generates “intra-logical”
representations, what'’s the benefit ?

Conseqguences

e |f an ODL ontology generates “intra-logical”
representations, what'’s the benefit ?

e We don’t have to learn a new (meta)-language

Conseqguences

e |f an ODL ontology generates “intra-logical”
representations, what'’s the benefit ?

e We don’t have to learn a new (meta)-language

 \We can define new operations on them inside
the logic and develop their theory ...

Conseqguences

e |f an ODL ontology generates “intra-logical”
representations, what'’s the benefit ?

e We don’t have to learn a new (meta)-language

 \We can define new operations on them inside
the logic and develop their theory ...

e ...to develop a query language, for example:

Conseqguences

e |f an ODL ontology generates “intra-logical”
representations, what'’s the benefit ?

e We don’t have to learn a new (meta)-language

 \We can define new operations on them inside
the logic and develop their theory ...

e ...to develop a query language, for example:
value*{ filter (is_interesting) @{instances-of “result”})

Conseqguences

e |f an ODL ontology generates “intra-logical”
representations, what'’s the benefit ?

e We don’t have to learn a new (meta)-language

 \We can define new operations on them inside
the logic and develop their theory ...

e ...to develop a query language, for example:
value*{ filter (is_interesting) @{instances-of “result”})

* We can relate ontologies and ontology instances
by formal proof (“ontology alignment, ontology mapping”)

Consequences: Example
Proof of an Ontology Mapping

Consequences: Example
Proof of an Ontology Mapping

e A “‘Generic’ Reference Ontology” vs. a “*local’ Ontology”

Consequences: Example
Proof of an Ontology Mapping

e A “*Generic’ Reference Ontology” vs. a “‘local’ Ontology”

Isabelle code

definition sum
where "sum S = (fold (+) S 0)"

datatype Hardware_Type =
Motherboard |
Expansion_Card |
Storage_Device |
Fixed_Media |
Removable_Media |
Input_Device |
Output_Device

onto__class Resource =
name :: string

onto__class Electronic = Resource +
provider :: string
manufacturer :: string

onto__class Component = Electronic +
mass :: int
dimensions :: "int list"

onto__class Simulation_Model = Electronic +
type :: string

onto__class Informatic = Resource +
description :: string

onto__class Hardware = Informatic +
type :: Hardware_Type
mass :: int
composed_of :: "Component list"
invariant c1 :: "mass o = sum(map Component.mass (composed_of o))"

Consequences: Example
Proof of an Ontology Mapping

e A “‘Generic’ Reference Ontology” vs. a “*local’ Ontology”

Isabelle code Isabelle code

definition sum onto__class Item =

where "sum S = (fold (+) S 0)" name :: string
datatype Hardware_Type = onto_ _class Product = Item +
Motherboard | serial_number :: int
Expansion_Card | provider :: string
Storage_Device | mass :: int
Fixed_Media |
Removable_Media | onto__class Computer_Software = Item +
Input_Device | version :: int

Output_Device
onto__class Electronic_Component = Product +

onto__class Resource = dimensions :: "int set"
name :: string
onto__class Computer_Hardware = Product +
onto__class Electronic = Resource + type :: Hardware_Type
provider :: string composed_of :: "Product list"
manufacturer :: string invariant c2 :: "Product.mass o = sum(map Product.mass (composed_of o))"

onto__class Component = Electronic +
mass :: int
dimensions :: "int list"

onto__class Simulation_Model = Electronic +
type :: string

onto__class Informatic = Resource +
description :: string

onto__class Hardware = Informatic +
type :: Hardware_Type
mass :: int
composed_of :: "Component list"
invariant c1 :: "mass o = sum(map Component.mass (composed_of o))"

Consequences: Example
Proof of an Ontology Mapping

e A “*Generic’ Reference Ontology” vs. a “‘local’ Ontology”

definition sum onto__class Item =
where "sum S = (fold (+) S 0)" name :: string
datatype Hardware_Type = onto_ _class Product = Item +
Motherboard | serial_number :: int
Expansion_Card | provider :: string
Storage_Device | mass :: int
Fixed_Media |
Removable_Media | onto__class Computer_Software = Item +
Input_Device | version :: int
Output_Device
onto__class Electronic_Component = Product +
onto__class Resource = dimensions :: "int set"
name :: string

onto__class Computer_Hardware = Product +
type :: Hardware_Type
composed_of :: "Product list"
invariant c2 :: "Product.mass o = sum(map Product.mass (composed_of o))"

onto__class Electronic = Resource +
provider :: string
manufacturer :: string

onto__class Component = Electronic +
mass :: int
dimensions :: "int list"

onto__class Simulation_Model = Electronic +
type :: string

onto__class Informatic = Resource +
description :: string

type :: Hardware_Type
mass :: int

composed_of :: "Component list"
invariant c1 :: "mass o = sum(map Component.mass (composed_of o))/

Consequences: Example
Proof of an Ontology Mapping

e A “*Generic’ Reference Ontology” vs. a “‘local’ Ontology”

Isabelle code

definition sum
where "sum S = (fold (+) S 0)"

datatype Hardware_Type =

Motherboard |
Expansion_Card |
Storage_Device |
Fixed_Media |
Removable_Media |
Input_Device |
Output_Device

onto__class Resource =
name :: string

onto__class Electronic = Resource +
provider :: string
manufacturer :: string

onto__class Component = Electronic +
mass :: int
dimensions :: "int list"

onto__class Simulation_Model = Electronic +
type :: string

onto__class Informatic = Resource +
description :: string

Hardware_Type

type ::

mass :: int
composed_of :: "Component list"
invariant c1 :: "mass o = sum(map Component.mass (composed_of o))/

Isabelle code

onto__class Item =
name :: string

onto__class Product = Item +

serial_number :: int
provider :: string
mass :: int

onto__class Computer_Software = Item +
version :: int

onto__class Electronic_Component = Product +
dimensions :: "int set"

onto__class Computer_Hardware = Product +
type :: Hardware_Type
composed_of :: "Product list"
invariant c2 :: "Product.mass o = sum(map Product.mass (composed_of o))"

definition Computer_Hardware_to_Hardware_morphism ::

"’a Computer_Hardware_scheme = Hardware"
("— (Hardware>ComputerHardware“ [1000]999)
where "o (Hardware)computerHardware =
(Resource.tag_attribute = 2::int ,
Resource.name = name o ,
Informatic.description = ’'’no description’’,
Hardware.type = Computer_Hardware.type o ,
Hardware.mass = mass o ,
Hardware.composed_of =
map Product_to_Component_morphism
(Computer_Hardware.composed_of o) |)"

Consequences: Example
Proof of an Ontology Mapping

Consequences: Example
Proof of an Ontology Mapping

e A “Generic’ Reference Ontology” vs. a “‘local’ Ontology”

Consequences: Example
Proof of an Ontology Mapping

e A “Generic’ Reference Ontology” vs. a “‘local’ Ontology”

“The mapping is correct (preserves the invariants)”

Consequences: Example
Proof of an Ontology Mapping

e A “‘Generic’ Reference Ontology” vs. a “local’ Ontology”
“The mapping is correct (preserves the invariants)”

Isabelle code

lemma inv_c2_preserved :
"c2_inv ¢ = cl_inv (o (Hardware)computerHardware)"
unfolding cl_inv_def c2_inv_def
Computer_Hardware_to_Hardware_morphism_def
Product_to_Component_morphism_def
using comp_def by (auto)

lemma Computer_Hardware_to_Hardware_morphism_total :
“"Computer_Hardware_to_Hardware_morphism ‘ ({X::Computer_Hardware. c2_inv X})
C ({X::Hardware. cl_inv X})"
using inv_c2_preserved by auto

But what “are” ontology-generated
term antiquotations ???

But what “are” ontology-generated
term antiquotations ???

* First of all: how are they processed:

But what “are” ontology-generated
term antiquotations ???

* First of all: how are they processed:

* parsing

But what “are” ontology-generated
term antiquotations ???

* First of all: how are they processed:
* parsing

* type checking

But what “are” ontology-generated
term antiquotations ???

* First of all: how are they processed:
* parsing
* type checking

e validation (an argument is indeed a valid reference in the context)

But what “are” ontology-generated
term antiquotations ???

* First of all: how are they processed:
* parsing
* type checking
e validation (an argument is indeed a valid reference in the context)

e expansion (replacement of a reference against logical terms)

But what “are” ontology-generated
term antiquotations ???

* First of all: how are they processed:
* parsing
* type checking
e validation (an argument is indeed a valid reference in the context)
e expansion (replacement of a reference against logical terms)

e evaluation (to SML code, or by nbe)

But what “are” ontology-generated
term antiquotations ???

But what “are” ontology-generated
term antiquotations ???

 Then “built-in” term-anti quotations can be:

But what “are” ontology-generated
term antiquotations ???

 Then “built-in” term-anti quotations can be:
e just uninterpreted constants (without expansion)

But what “are” ontology-generated
term antiquotations ???

 Then “built-in” term-anti quotations can be:
e just uninterpreted constants (without expansion)

sort “typ”
consts typ_anno :: “string = typ” (“@{typ _}” 100)

But what “are” ontology-generated
term antiqguotations ?7??

 Then “built-in” term-anti quotations can be:
e just uninterpreted constants (without expansion)

sort “typ”
consts typ_anno :: “string = typ” (“@{typ _}” 100)

e a “shallow” data-type representation (without expansion)
datatype “typ” = typ_anno “string” (“@{typ _}” 100)

But what “are” ontology-generated
term antiquotations ???

 Then “built-in” term-anti quotations can be:
e just uninterpreted constants (without expansion)

sort “typ”
consts typ_anno :: “string = typ” (“@{typ _}” 100)

e a “shallow” data-type representation (without expansion)
datatype “typ” = typ_anno “string” (“@{typ _}” 100)

e or a “deep” data-type representation into an Isabelle
Meta-Model such as [Nipkow,Rosskopf 21] (with expansion)

But what “are” ontology-generated
term antiqguotations ?7??

 Then “built-in” term-anti quotations can be:

* just uninterpreted constants (without expansion)

sort “typ”
consts typ_anno :: “string = typ” (“@{typ _}” 100)

e a “shallow” data-type representation (without expansion)
datatype “typ” = typ_anno “string” (“@{typ _}” 100)

e or a “deep” data-type representation into an Isabelle
Meta-Model such as [Nipkow,Rosskopf 21] (with expansion)

definition typ_anno : “string = typ” where “typ_anno S = undefined”

datatype “typ” = is_Ty: Ty name “typ list”

Is-Tv : Tv variable sort

is_Ct : Ct name “typ”

Is_Fv: Fv variable “typ”

Is_Bv: Bv nat
IS_Abs : Abs “typ” “term”
is_App : App “term” “term” {infix| “$” 100)

datatype “term”

Conclusion

Conclusion

* DOF provides a framework

Conclusion

* DOF provides a framework

e for defining ontologies in the context of ITP systems

Conclusion

* DOF provides a framework

e for defining ontologies in the context of ITP systems

® jts typed ! It has a logical interpretation !
It is therefore an “in-between” between an ML and a logic.

Conclusion

* DOF provides a framework

e for defining ontologies in the context of ITP systems

® jts typed ! It has a logical interpretation !
It is therefore an “in-between” between an ML and a logic.

® provides a generated infrastructure for meta-data of
types, terms, thm’s and text and code elements

Conclusion

* DOF provides a framework

e for defining ontologies in the context of ITP systems

® jts typed ! It has a logical interpretation !
It is therefore an “in-between” between an ML and a logic.

® provides a generated infrastructure for meta-data of
types, terms, thm’s and text and code elements

e DOF provides a framework to enforce on-the-fly
ontology-conform documentation checking

Conclusion

* DOF provides a framework

e for defining ontologies in the context of ITP systems

® jts typed ! It has a logical interpretation !
It is therefore an “in-between” between an ML and a logic.

® provides a generated infrastructure for meta-data of
types, terms, thm’s and text and code elements

e DOF provides a framework to enforce on-the-fly
ontology-conform documentation checking

e DOF provides infrastructure for proofs over the

logical representation of ontologies and meta-data ...

Conclusion

* DOF provides a framework

e for defining ontologies in the context of ITP systems

® jts typed ! It has a logical interpretation !
It is therefore an “in-between” between an ML and a logic.

® provides a generated infrastructure for meta-data of
types, terms, thm’s and text and code elements

e DOF provides a framework to enforce on-the-fly
ontology-conform documentation checking

e DOF provides infrastructure for proofs over the

logical representation of ontologies and meta-data ...

e Ontologies generating meta-data can be used
for other forms of Tool Interaction via “deep
interpretations” into a meta-model

Conclusion

Conclusion

* (P)IDE’s are more than just a technical asset

Conclusion

* (P)IDE’s are more than just a technical asset

e ... It Is a corner-stone for a revolution

Conclusion

* (P)IDE’s are more than just a technical asset

e ... It Is a corner-stone for a revolution

e 1970’ies TEXT

Conclusion

* (P)IDE’s are more than just a technical asset

e ... It Is a corner-stone for a revolution

e 1970’ies TEXT
* 1990’ies HYPERTEXT

Conclusion

* (P)IDE’s are more than just a technical asset

e ... It Is a corner-stone for a revolution

e 1970’ies TEXT
* 1990’ies HYPERTEXT
e 2010’ies REACTIVE DOCUMENTS

Conclusion

* (P)IDE’s are more than just a technical asset

e ... It Is a corner-stone for a revolution

e 1970’ies TEXT
e 1990%ies HYPERTEXT

e 2010’ies REACTIVE DOCUMENTS

e 2020%ies SEMANTIC DOCUMENTS (???)

