
17.9.2010 B.Wolff - Formal Methods 1

Formal Methods
 and its Relevance

for Industry
and Emmergent Markets

Prof. Burkhart Wolff
Univ - Paris-Sud / LRI

 Burkhart Wolff

Université Paris-Sud

17.9.2010 B.Wolff - Formal Methods 2

Sort of an Introduction
● We have seen a lot of discussions these days

what communication systems are built nowadays ...
● I'd like to shift the question on

● how were (high quality) systems were built ?
● what are the necessary processes and tools ?
● how can engineers in a project detect that

the right system is built ?
● how can engineers in a project detect the

the system is built right ?

17.9.2010 B.Wolff - Formal Methods 3

Why is so difficult to get software
right?

Requirement
Analysis

Design

Coding Phase

Integration

Deployment

…
�

…
�

17.9.2010 B.Wolff - Formal Methods 4

Why is so difficult to get software
right?

Requirement
Analysis

Design

Coding Phase

Integration

Deployment

…
�

…
�

17.9.2010 B.Wolff - Formal Methods 5

Sort of an Introduction
● These are problems adressed by sub-field in

software engineering, called Formal Methods. They:
● … have their roots in Formal Logic and Math
● … are fundamental for Program Analysis and

Automated Program Construction
● … are nowadays key-technology for systems

● complex
● mission, safety- or security critical

● for which legislative or certification
procedures require this ...

17.9.2010 B.Wolff - Formal Methods 6

Formal Methods Today - Outline
● Brief History
● TOP-DOWN: Model-Driven Approaches

(“Correctness by Construction”)
● BOTTOM-UP:

Approaches like Code-Verification/Verifying Compilers
● Relevance in Industrial Applications Today
● Relevance for Emmerging Countries ?
● A Perspective for Teaching at ICT - IIT Rajastan

17.9.2010 B.Wolff - Formal Methods 7

Brief History
● early approaches to automated theorem

proving (ATP):
– Turing 52 !!!
– Nelson / Oppen 60
– Robinson Resolution Procedure : 62

● Problem is fundamentally hard:
decidability of PL is NP,
(nearly all approaches in ATP suffer from
 state explosion - still today)
FOL is undecidable, HOL is even incomplete ...

17.9.2010 B.Wolff - Formal Methods 8

Brief History
● Hoare Calculus (BOTTOM UP) 1972

Dijkstra/Floyds WP (BOTTOM UP) 1976
● Algebraic Specification (TOP DOWN) 1980

Refinement Calculus (TOP DOWN) 1990
● Z [86], B[90], CSP[86], CCS[88], ...
● Interactive Theorem Prover:

Edinburg LCF [82], Coq [86], Isabelle [86]
Automated TP: Otter, . . ., BoyerMoore 78

● Abstract Interpretation (TOP DOWN)
Cousot~[80], HankinBurnAbramski [86]

17.9.2010 B.Wolff - Formal Methods 9

Brief History
● ...
● UML / OCL [03 …] started as informal lang.
● ESC Java [04] (with ATP Simplify), Spec#[08]
● Automated Provers: AltErgo, Z3 [08]
● Verifying Compilers for C: Isabelle/Simpl,[06]

VCC[08], Frama-C/Jessie[07] etc.
● Test: Korat [02], SpecExplorer[05], Pexx[06]
● Refinement: Rhodin System [08]

...

17.9.2010 B.Wolff - Formal Methods 10

Model-Driven Approaches
(“Correctness by Construction”, MDE)

● Refinement / Transformation Oriented
Approaches: writing a model, refine it to
concreter models,generate code
(Z, CSP, B, Refinement Calculus, UML xxx)

Spec
1

Spec
2

Spec
n Code. . . genref ref ref

17.9.2010 B.Wolff - Formal Methods 11

Example TOP-DOWN : The UML
it offers the advantage ...

● ... of being a basis for Integrated Development Environments
(IDE's like ArgoUML, Poseidon, Rational Rose, ...)

● ... to offer „object-oriented“ specifications
in form of pre- and post conditions + behaviour descriptions

● ... to offer a formal, mathematical semantics
(well, at least to some parts of the UML)

● ... to be fairly widely used in industry, even
if not always supported entirely

● ... is the basis for a whole software-engineering
paradigm called Model-Driven Engineering (MDE).

17.9.2010 B.Wolff - Formal Methods 12

The UML 2.0 Diagrams
(for corresponding models)

Architectural View

Dynamic View

Static View

17.9.2010 B.Wolff - Formal Methods 13

17.9.2010 B.Wolff - Formal Methods 14

The HOL-OCL Environment

17.9.2010 B.Wolff - Formal Methods 15

Model-Driven Approaches
(Model-Based Testing (MBT))

● Test-Generation Oriented Approaches:
writing a model, writing a program,
generate Test Cases to check conformance
(Z, Pexx, SpecExplorer, HOL-TestGen)

Spec Code
gen

Test
Data

Test
Dri
ver

Model-based Testing ...
·● ... can be done post-hoc; significant industrial projects

“reverse engeneer” legacy system models

● ... attempts to find bugs in specifications EARLY
(and can complement verification projects ...)

● ... can help system integration processes
by assuring that third-party components
are in fact usable in a larger system.

The model gets the role of a “contract”
in this scenario.

Our System: HOL-TestGen is ...
● ... based on HOL (Higher-order Logic):

● “Functional Programming Language with Quantifiers”
● plus definitional libraries on Sets, Lists, . . .
● can be used meta-language for HoareCalculi, Z, CSP. . .

● ... implemented on top of Isabelle
● an interactive prover implementing HOL
● the test-engineer must decide over, abstraction level,

split rules, breadth and depth of data structure exploration . . .
● providing automated and interactive

constraint-resolution techniques
● interface: ProofGeneral

● ... by thy way, a verified test-tool

HOL-TestGen Workflow
● Modelisation

● writing background theory of problem domain

HOL-TestGen Workflow
● Modelisation

● writing background theory of problem domain
● Test-Case-Generation from Test-Specification

● automated procedure gen_test_case ...
● Test-Cases: partitions of I/O relation of the form

 C
1
(x) ⟹ . . . C

n
(x) ⟹ post x (PUT x)

HOL-TestGen Workflow
● Modelisation

● writing background theory of problem domain
● Test-Case-Generation from Test-Specification

● automated procedure gen_test_case ...
● Test-Cases: partitions of I/O relation of the form

 C
1
(x) ⟹ . . . C

n
(x) ⟹ post x (PUT x)

● Test-Data-Selection
● constraint Solver gen_test_data
● finds x satisfying C

i
(x)

HOL-TestGen Workflow
● Modelisation

● writing background theory of problem domain
● Test-Case-Generation from Test-Specification

● automated procedure gen_test_case ...
● Test-Cases: partitions of I/O relation of the form

 C
1
(x) ⟹ . . . C

n
(x) ⟹ post x (PUT x)

● Test-Data-Selection
● constraint solver gen_test_data
● finds x satisfying C

i
(x)

● Test-Driver Generation
● automatically compiled, drives external program

HOL-TestGen Workflow
● Modelisation

● writing background theory of problem domain
● Test-Case-Generation from Test-Specification

● automated procedure gen_test_case ...
● Test-Cases: partitions of I/O relation of the form

 C
1
(x) ⟹ . . . C

n
(x) ⟹ post x (PUT x)

● Test-Data-Selection
● constraint solver gen_test_data
● finds x satisfying C

i
(x)

● Test-Driver Generation
● automatically compiled, drives external program

● Test Execution, Test-Documentation

Mini-Example
● Modelisation

● is_sorted, insert, sort
● Test-Case-Generation from Test-

Specification
● Test-Sepcification: sort x = PUT x
● Test-Cases: ... x ¯ y ⟹ [x,y] = PUT [x,y]

 ... x > y ⟹ [y,x] = PUT [x,y] ...
● Test-Data-Selection

● Test Data: [3,9] = PUT [3,9]
[1,6] = PUT [6,1]

● Test-Driver Generation
● SML driver

● Test Execution, Test-Documentation

Midi Example: Red Black Trees
 Red-Black-Trees: Test Specification

 testspec :
 (redinv t ∧

 blackinv t)

 f

(redinv (delete x t) ∧
 blackinv (delete x t))

 where delete is the program under test.

Large Example: Firewalls
● Modelisation

● TCP-IP, nets and subnets, (stateful) firewalls, policies
● Test-Case-Generation from Test-Specification

● Test-Sepcification: policy pkt = FUT pkt
● Test-Cases: ... subnet x y ⟹ accept(http,x,d,y) =

PUT(http,x,d,y)
● Test-Data-Selection

● Test Data: accept(http,(132,17,24,12),
 ”blob”,(132,17,0,0))

● Test-Driver Generation
● test-data fed into external driver [Diana Krueger 05)

● Test Execution, Test-Documentation
● partially contained in our distribution

Case-Study: NPfIT
● Large Case-Study together with Britisch Telecom
● Test-Goal: NHS paptient record access control

mechanism
● Large Distributed, Heterogenious System
● Legally required Access Control Policy

(practically not really enforced)

 SPINE

NHS-LondonNHS-Midlands

AP1 AP2 AP3

Case-Study: NPfIT
● Modelisation

● RBAC policies, Legitimate Consent, ...
● Test-Case-Generation from Test-Specification

● Test-Specification: policy (AP1, sc, pat, op) = SPINE ...
● Test-Cases: ... legitimite() ⟹ accept(AP1, sc, pat, op) =

 SPINE
● Test-Data-Selection

● Test Data: . . .

● Test-Driver Generation
● ?

● Test Execution, Test-Documentation
● IPR

Case-Study: VAMP Processor
● Modelisation

● registers, physical memory, processor-step-relation
● Test-Case-Generation from Test-Specification

● ...

● Test-Data-Selection
● ...

● Test-Driver Generation
● automatic

● Test Execution, Test-Documentation
● none

17.9.2010 B.Wolff - Formal Methods 29

Code-Verification / Verifying
Compilers

● Basis: Hoare Calculus + Dijkstra's wp calculus
● Specification in form of pre-post-condition

programming language imperative
● Adaptions to realistic PL necessary

(Java, C#, C (vanilla, X86 -o3, concurrent, …)
● Can VERIFY a program wrt. spec

for all input and all possible output !
● Needs massive automated theorem proving

technology (Simplify, AltErgo, Z3, ...)

17.9.2010 B.Wolff - Formal Methods 30

● Example:

Code-Verification / Verifying
Compilers

17.9.2010 B.Wolff - Formal Methods 31

 Microsoft Visual-Studio + Spec# + Boogie + Z3
(for a C# like language)

 Microsoft Visual-Studio + VCC + Boogie + Z3
(for a realistic subset of C / X86)

 gwhy + Why + AltErgo
 Eclipse + Jessy + Why + Z3 / AltErgo

(Vanilla C)
 Isabelle/HOL + Simpl + …

(Has a Vanilla C frontend)

Code-Verification / Verifying
Compilers

17.9.2010 B.Wolff - Formal Methods 32

Code-Verification / Verifying
Compilers

17.9.2010 B.Wolff - Formal Methods 33

Relevance of Formal Methods
in Industrial Applications Today

● MDE

● MBT

● Code Verification by Automated Proof

Industrial Applications MDE
● The second-largest Software-Company

SAP

is in fact very MDE:

● Business-Models of Companies were modeled in UML
● own tool-chains generate data-base configs,

tool-chains and entire web-services from that

● little code is written by hand ...

Industrial Applications MBT
● Windows 98-Server Protocol: the story so far

● 2000 : EU and US administration ruled Microsoft
is a Monopoly in the Server Market (applying older
Antitrust rules in the Telecommunication market)

● 2002 : EU required the “specification” of the
server protocols in order to allow third-party
vendors acces to the market

● Polished internal documents of Mocrosoft
were considered “insufficient” by the EU referees ...

Industrial Applications MBT
● 2003: Microsoft legally contested this ruling,

considering protocols as protected being IPR

● 2005: Microsoft lost the legal battle, was fined
by 700 mio €, and forced to produce a document
which:

● also provides a formal specification
● provides evidence that the model is

actually compliant to the implemented system.

Since then, a team of 200 people started
to reverse engineer the Protocol (developed in
1995), essentially using a tool-family on the
 basis of Spec-Explorer
… by the way, the team was located in Bangalore ...

Industrial Applications

TestGen vs. Spec-Explorer
● HOL-TestGen offers a similar approach

to SE process integration (albeit on a smaller scale ...)

● Unlike e.g. Spec-Explorer (by Microsoft,
available as VisualStudio Plugin), it
emphasizes (well, we are academic ;-)):

● logical cleaness and an expressivness.
Modeling Language HOL instead of, say,
an OO-language with quantifiers

● symbolic computations having their roots
in Theorem Proving instead of plain enumeration
and model-checking

Industrial Applications - MBT
· Windows Server 98 Protocol :

Wolfgang Grieskamp[08]:

Using Model-Based Testing for Quality
Assurance of Protocol Documentation

Invited Talk MBT 2008, Budapest.
http://research.microsoft.com/users/wrw
g/MBTETAPS.pdf

17.9.2010 B.Wolff - Formal Methods 40

 Hardware Suppliers:
 INTEL: Proof of Floating Point Computation compliance

to IEEE754 (Forte-System)
 INTEL: Correctness of Cash-Memory-Coherence Protocols
 AMD: Correctness of Floating-Point-Units againt Design-

Spec (ACL2)
 GemPlus: Verification of Smart-Card-Applications in

Security (Coq)

Industrial Applications -
Code Verification by Proof

17.9.2010 B.Wolff - Formal Methods 41

 Software Suppliers:
 Microsoft: SAL Annotations (a limited form of

pre-postconds restricted to memory properties)
has been used to specify the entire Vista/Windows7
Code-Base (… and MS Office, too). 15 MLocs Code !!!

 MicroSoft: Many Drivers running in „Kernel Mode“
were verified

 MicroSoft: Verification of the Hyper-V OS
(60000 Lines of Concurrent, Low-Level C Code ...)

 NICTA: L4-Verified Project Verified a Mach Kernel
 Pike-OS Verification

...

Industrial Applications -
Code Verification by Proof

17.9.2010 B.Wolff - Formal Methods 42

Relevance for Emmerging
Countries ?

● No Modern Hardware without Verification
Techniques (SAT, BDD, HOL, ACL2)

● Software Specifications will turn up in
Outsourcing Scenarios

● Model-based Testing IS ALREADY APPLIED
IN INDIA ...

17.9.2010 B.Wolff - Formal Methods 43

A Perspective for Teaching at ICT
- IIT Rajastan

● Teaching Proving (Interactive & Automated)
is a Prerequisite for Scientific Engineering
(Phd's should have learned it, even if they
 don't do it professionally)

● Teaching Tool-oriented Verification
– for Hardware
– for protocols in services

● Teaching Model-based Testing for a controlled,

quality-oriented Software-Development Process

17.9.2010 B.Wolff - Formal Methods 44

Conclusion
● Formal Methods ARE relevant for Emmerging

Countries !!!
– Model-based Testing (see next)
– Interactive Proof Techniques for Teaching (see next)
– Automated Theoremproving is highly

relevant for Hardware-verification
– Automated Theoremproving is

relevant for (high-quality) Software-verification

17.9.2010 B.Wolff - Formal Methods 45

Conclusion

● Model-based Testing allows:
– development of Modeling Capabilities

fundamental for Advanced Software Engineering
– Key-Technique for Globalized Software

Production !
– Expertise in automated Testing

Soft- and Hardware, even in presence of
heterogeneous or legacy code

17.9.2010 B.Wolff - Formal Methods 46

Conclusion

● Protocol Analysis allows:
– establishing deadlock-freeness or
– … security properties in protocols
– … and protocol implementations

17.9.2010 B.Wolff - Formal Methods 47

Conclusion

● The ITP Programme (and Isabelle in
particular, which I consider a leading
edge) allows:
– reconciliation of foundational with pragmatic

technology issues
– reconciliation specification & programming
– proved feasibility of proof architectures of

considerable size

17.9.2010 B.Wolff - Formal Methods 48

Conclusion
● Reusing Isabelle as FM tool foundation

offers:
– substantial conservative libraries
– standardized interfaces to tactic

and automatic proof
– proof documentation
– code generation
– a programming interface and genericity in design

... a lot of machinery not worth to reinvent.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

