
An Approach for the Verification and Synthesis of Complete Test
Generation Algorithms for Finite State Machines

Robert Sachtleben

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 1 / 34

Agenda

1. unified implementation,

2. mechanised completeness proof, and

3. provably correct implementation

of complete test generation algorithms for finite state machines (FSM)

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 2 / 34

Motivation

I complete test strategies are of importance in model-based testing MBT

high guaranteed test strength
well-specified assumptions

I manual verification and implementation are problematic

large number of strategies and variants
distinct complex algorithms and correctness arguments
ambiguities in natural language descriptions

I proposed approach: mechanised proofs and subsequent synthesis of implementations

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 3 / 34

Motivation

I complete test strategies are of importance in model-based testing MBT

high guaranteed test strength
well-specified assumptions

I manual verification and implementation are problematic

large number of strategies and variants
distinct complex algorithms and correctness arguments
ambiguities in natural language descriptions

I proposed approach: mechanised proofs and subsequent synthesis of implementations

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 3 / 34

Model-based Testing using Finite State Machines

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 4 / 34

Finite State Machines (FSMs)

M1 = (Q, q0,ΣI ,ΣO , h1)

Q = {q0, q1, q2}
ΣI = {a, b}

ΣO = {0, 1, 2}
h1 = {(q0, a, 0, q1), (q0, b, 1, q2),

(q1, a, 1, q2), (q1, a, 2, q1),

(q1, b, 2, q1), (q2, a, q, q2)}

I nondeterministic

I partially specified

I observable

I minimal

q0

q1

q2

a/0

b/1

a/2
b/2

a/1

a/1

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 5 / 34

Model-based Testing using FSMs – Models

I Finite State Machines M1 and M2

both observable and minimal
M1 is the reference model
M2 represents the behaviour of the System under Test (SUT)

Black Box
same alphabets as M1, at most m states

Fault Domain F(M1,m) contains all such M2

I goal: check whether M1 are M2 language-equivalent:

L(M2) = L(M1)

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 6 / 34

Model-based Testing using FSMs – Test Suites

Definition

M2 passes test suite TS für M1, denoted M2 ∼TS M1, if the following holds

L(M2) ∩ TS = L(M1) ∩ TS

Definition

test suite TS is m-complete for reference model M1 if for all M2 ∈ F(M1,m) it holds that

M2 ∼TS M1 ⇐⇒ L(M2) = L(M1)

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 7 / 34

H-Condition / H-Method

TS is m-complete if

1. V .Σ≤m−n+1 ⊆ TS

for some state cover V

2. TS preserves divergences of pairs (α, β)

(A) (υ, υ′) for υ, υ′ ∈ V

(B) (υ, υ′.ω) for υ, υ′ ∈ V , ω ∈ Σ≤m−n+1

(C) (υ.ω′, υ.ω) for
υ ∈ V , ω ∈ Σ≤m−n+1, ω′ ∈ pref (ω)

via distinguishing traces γ, added to TS
as α.γ, β.γ

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 8 / 34

H-Condition / H-Method

TS is m-complete if

1. V .Σ≤m−n+1 ⊆ TS

for some state cover V

2. TS preserves divergences of pairs (α, β)

(A) (υ, υ′) for υ, υ′ ∈ V

(B) (υ, υ′.ω) for υ, υ′ ∈ V , ω ∈ Σ≤m−n+1

(C) (υ.ω′, υ.ω) for
υ ∈ V , ω ∈ Σ≤m−n+1, ω′ ∈ pref (ω)

via distinguishing traces γ, added to TS
as α.γ, β.γ

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 8 / 34

H-Condition / H-Method

TS is m-complete if

1. V .Σ≤m−n+1 ⊆ TS

for some state cover V

2. TS preserves divergences of pairs (α, β)

(A) (υ, υ′) for υ, υ′ ∈ V

(B) (υ, υ′.ω) for υ, υ′ ∈ V , ω ∈ Σ≤m−n+1

(C) (υ.ω′, υ.ω) for
υ ∈ V , ω ∈ Σ≤m−n+1, ω′ ∈ pref (ω)

via distinguishing traces γ, added to TS
as α.γ, β.γ

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 8 / 34

H-Condition / H-Method

TS is m-complete if

1. V .Σ≤m−n+1 ⊆ TS

for some state cover V

2. TS preserves divergences of pairs (α, β)

(A) (υ, υ′) for υ, υ′ ∈ V

(B) (υ, υ′.ω) for υ, υ′ ∈ V , ω ∈ Σ≤m−n+1

(C) (υ.ω′, υ.ω) for
υ ∈ V , ω ∈ Σ≤m−n+1, ω′ ∈ pref (ω)

via distinguishing traces γ, added to TS
as α.γ, β.γ

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 8 / 34

H-Condition / H-Method

TS is m-complete if

1. V .Σ≤m−n+1 ⊆ TS

for some state cover V

2. TS preserves divergences of pairs (α, β)

(A) (υ, υ′) for υ, υ′ ∈ V

(B) (υ, υ′.ω) for υ, υ′ ∈ V , ω ∈ Σ≤m−n+1

(C) (υ.ω′, υ.ω) for
υ ∈ V , ω ∈ Σ≤m−n+1, ω′ ∈ pref (ω)

via distinguishing traces γ, added to TS
as α.γ, β.γ

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 8 / 34

H-Condition / H-Method

TS is m-complete if

1. V .Σ≤m−n+1 ⊆ TS

for some state cover V

2. TS preserves divergences of pairs (α, β)

(A) (υ, υ′) for υ, υ′ ∈ V

(B) (υ, υ′.ω) for υ, υ′ ∈ V , ω ∈ Σ≤m−n+1

(C) (υ.ω′, υ.ω) for
υ ∈ V , ω ∈ Σ≤m−n+1, ω′ ∈ pref (ω)

via distinguishing traces γ, added to TS
as α.γ, β.γ

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 8 / 34

H-Condition / H-Method

TS is m-complete if

1. V .Σ≤m−n+1 ⊆ TS

for some state cover V

2. TS preserves divergences of pairs (α, β)

(A) (υ, υ′) for υ, υ′ ∈ V

(B) (υ, υ′.ω) for υ, υ′ ∈ V , ω ∈ Σ≤m−n+1

(C) (υ.ω′, υ.ω) for
υ ∈ V , ω ∈ Σ≤m−n+1, ω′ ∈ pref (ω)

via distinguishing traces γ, added to TS
as α.γ, β.γ

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 8 / 34

H-Condition / H-Method

TS is m-complete if

1. V .Σ≤m−n+1 ⊆ TS

for some state cover V

2. TS preserves divergences of pairs (α, β)

(A) (υ, υ′) for υ, υ′ ∈ V

(B) (υ, υ′.ω) for υ, υ′ ∈ V , ω ∈ Σ≤m−n+1

(C) (υ.ω′, υ.ω) for
υ ∈ V , ω ∈ Σ≤m−n+1, ω′ ∈ pref (ω)

via distinguishing traces γ, added to TS
as α.γ, β.γ

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 8 / 34

H-Condition / H-Method

TS is m-complete if

1. V .Σ≤m−n+1 ⊆ TS

for some state cover V

2. TS preserves divergences of pairs (α, β)

(A) (υ, υ′) for υ, υ′ ∈ V

(B) (υ, υ′.ω) for υ, υ′ ∈ V , ω ∈ Σ≤m−n+1

(C) (υ.ω′, υ.ω) for
υ ∈ V , ω ∈ Σ≤m−n+1, ω′ ∈ pref (ω)

via distinguishing traces γ, added to TS
as α.γ, β.γ

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 8 / 34

H-Condition / H-Method

TS is m-complete if

1. V .Σ≤m−n+1 ⊆ TS

for some state cover V

2. TS preserves divergences of pairs (α, β)

(A) (υ, υ′) for υ, υ′ ∈ V

(B) (υ, υ′.ω) for υ, υ′ ∈ V , ω ∈ Σ≤m−n+1

(C) (υ.ω′, υ.ω) for
υ ∈ V , ω ∈ Σ≤m−n+1, ω′ ∈ pref (ω)

via distinguishing traces γ, added to TS
as α.γ, β.γ

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 8 / 34

H-Condition / H-Method

TS is m-complete if

1. V .Σ≤m−n+1 ⊆ TS

for some state cover V

2. TS preserves divergences of pairs (α, β)

(A) (υ, υ′) for υ, υ′ ∈ V

(B) (υ, υ′.ω) for υ, υ′ ∈ V , ω ∈ Σ≤m−n+1

(C) (υ.ω′, υ.ω) for
υ ∈ V , ω ∈ Σ≤m−n+1, ω′ ∈ pref (ω)

via distinguishing traces γ, added to TS
as α.γ, β.γ

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 8 / 34

H-Condition / H-Method

TS is m-complete if

1. V .Σ≤m−n+1 ⊆ TS

for some state cover V

2. TS preserves divergences of pairs (α, β)

(A) (υ, υ′) for υ, υ′ ∈ V

(B) (υ, υ′.ω) for υ, υ′ ∈ V , ω ∈ Σ≤m−n+1

(C) (υ.ω′, υ.ω) for
υ ∈ V , ω ∈ Σ≤m−n+1, ω′ ∈ pref (ω)

via distinguishing traces γ, added to TS
as α.γ, β.γ

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 8 / 34

SPY-Condition / SPY-Method

TS is m-complete if

1. V .Σ ⊆ TS

2. TS preserves convergence of υq.(x/y)
and υq′ for all (q, x , y , q′) ∈ h1

by establishing divergences in
{υq.(x/y), υq′}.pref (ω) for all
ω ∈ Σ≤m−n

SPY-Method: realised via harmonised
state identifiers
enables distribution of extensions over
previously established convergences

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 9 / 34

SPY-Condition / SPY-Method

TS is m-complete if

1. V .Σ ⊆ TS

2. TS preserves convergence of υq.(x/y)
and υq′ for all (q, x , y , q′) ∈ h1

by establishing divergences in
{υq.(x/y), υq′}.pref (ω) for all
ω ∈ Σ≤m−n

SPY-Method: realised via harmonised
state identifiers
enables distribution of extensions over
previously established convergences

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 9 / 34

SPY-Condition / SPY-Method

TS is m-complete if

1. V .Σ ⊆ TS

2. TS preserves convergence of υq.(x/y)
and υq′ for all (q, x , y , q′) ∈ h1

by establishing divergences in
{υq.(x/y), υq′}.pref (ω) for all
ω ∈ Σ≤m−n

SPY-Method: realised via harmonised
state identifiers
enables distribution of extensions over
previously established convergences

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 9 / 34

SPY-Condition / SPY-Method

TS is m-complete if

1. V .Σ ⊆ TS

2. TS preserves convergence of υq.(x/y)
and υq′ for all (q, x , y , q′) ∈ h1

by establishing divergences in
{υq.(x/y), υq′}.pref (ω) for all
ω ∈ Σ≤m−n

SPY-Method: realised via harmonised
state identifiers
enables distribution of extensions over
previously established convergences

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 9 / 34

SPY-Condition / SPY-Method

TS is m-complete if

1. V .Σ ⊆ TS

2. TS preserves convergence of υq.(x/y)
and υq′ for all (q, x , y , q′) ∈ h1

by establishing divergences in
{υq.(x/y), υq′}.pref (ω) for all
ω ∈ Σ≤m−n

SPY-Method: realised via harmonised
state identifiers
enables distribution of extensions over
previously established convergences

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 9 / 34

SPY-Condition / SPY-Method

TS is m-complete if

1. V .Σ ⊆ TS

2. TS preserves convergence of υq.(x/y)
and υq′ for all (q, x , y , q′) ∈ h1

by establishing divergences in
{υq.(x/y), υq′}.pref (ω) for all
ω ∈ Σ≤m−n

SPY-Method: realised via harmonised
state identifiers
enables distribution of extensions over
previously established convergences

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 9 / 34

SPY-Condition / SPY-Method

TS is m-complete if

1. V .Σ ⊆ TS

2. TS preserves convergence of υq.(x/y)
and υq′ for all (q, x , y , q′) ∈ h1

by establishing divergences in
{υq.(x/y), υq′}.pref (ω) for all
ω ∈ Σ≤m−n

SPY-Method: realised via harmonised
state identifiers
enables distribution of extensions over
previously established convergences

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 9 / 34

SPY-Condition / SPY-Method

TS is m-complete if

1. V .Σ ⊆ TS

2. TS preserves convergence of υq.(x/y)
and υq′ for all (q, x , y , q′) ∈ h1

by establishing divergences in
{υq.(x/y), υq′}.pref (ω) for all
ω ∈ Σ≤m−n

SPY-Method: realised via harmonised
state identifiers

enables distribution of extensions over
previously established convergences

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 9 / 34

SPY-Condition / SPY-Method

TS is m-complete if

1. V .Σ ⊆ TS

2. TS preserves convergence of υq.(x/y)
and υq′ for all (q, x , y , q′) ∈ h1

by establishing divergences in
{υq.(x/y), υq′}.pref (ω) for all
ω ∈ Σ≤m−n

SPY-Method: realised via harmonised
state identifiers
enables distribution of extensions over
previously established convergences

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 9 / 34

SPY-Condition / SPY-Method

TS is m-complete if

1. V .Σ ⊆ TS

2. TS preserves convergence of υq.(x/y)
and υq′ for all (q, x , y , q′) ∈ h1

by establishing divergences in
{υq.(x/y), υq′}.pref (ω) for all
ω ∈ Σ≤m−n

SPY-Method: realised via harmonised
state identifiers
enables distribution of extensions over
previously established convergences

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 9 / 34

Historical Development of Test Strategies

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

Size of the Reference Model

A
ve

ra
ge

N
u

m
b

er
of

T
es

t
C

as
es

W
Wp
HSI
H
SPY
H

SPYH

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 10 / 34

Unified Implementation

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 11 / 34

Are these Strategies Merely Special Cases of Each Other?

WWp

HSI

H

SPY

SPYH

using Wq = W

using Hq = W

no exploitation of convergences

using minimal HSIs using minimal HSIs

no consideration of length

no exploitation of convergences

no establishment of convergences

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 12 / 34

Frameworks

I goal: unify representation and avoid duplication

I implementation using a generic framework

”framework” here denotes a higher order function

behaviour shared by all strategies is implemented directly in the framework

differing behaviours are supplied via procedural parameters, e.g.

selection of distinguishing traces
exploitation of convergences

tool-independent

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 13 / 34

H-Framework

Input : minimal OFSM M1 = (Q, q0,ΣI ,ΣI , h1) with |Q| = n
Input : integer m
Input : functions getStateCover, handleStateCover, sortTransitions,

handleUnverifiedTransition, handleUndefinedIOPair
Output: test suite TS ⊆ Σ∗

1 V ← getStateCover(M1)
2 (TS ,G)← handleStateCover(M1, V)
3 U ←

{
(q, x , y , q′) ∈ h1

∣∣ υq.(x/y) 6= υq′
}

// unverified transitions

4 U ← sortTransitions(U,V)
5 foreach t ∈ U do
6 (TS ,G)← handleUnverifiedTransition(M1,V , t,m,TS ,G)

7 foreach q ∈ Q, x ∈ ΣI , y ∈ ΣO such that x/y /∈ LM1(q) do
8 TS ← handleUndefinedIOPair(M1,V , q, x , y ,TS ,G)

9 return TS

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 14 / 34

H-Framework – Nesting of Higher Order Functions

handleUnverifiedTransition

handleUT-Static handleUT-Dynamic

getDistSetForLength CG

getCharSet

getCharSetOrHSI

getHSI

Empty

Standard

doEstablishConvergence

False

True

S-Heuristic

W Wp HSI SPY H SPYH Spartial

implements

parameter of

uses

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 15 / 34

Frameworks

Framework Strategy Completeness Condition

W Wp HSI H SPY SPYH

H X X X X X X H-Condition

SPY X X X (X) X X SPY-Condition

Pair X X X X H-Condition, simplified

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 16 / 34

Mechanised Completeness Proofs using Isabelle/HOL

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 17 / 34

Proof Concept – Interface Lemmata

∀f , g , h, i , j . φ1(f) ∧ φ2(g) ∧ φ3(h) ∧ φ4(i) ∧ φ5(j) −→ H-Framework(M1,m, f , g , h, i , j)

is m-complete

I proof via satisfaction of the H-Condition

I maintainability

definition of function f1 needs to be unfolded only in the proof of φ1(f1), limiting the impact
in changes to f1

I extensibility

arbitrary replacement of f1 by f2 if φ1(f2) holds
completeness of arbitrary combinations of arguments follows ”for free”

SPY-W, SPY-Wp, partial S-Method

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 18 / 34

Structured Proofs in Isabelle/HOL

lemma acyclic_path_length_limit :

assumes "path M q p" and "distinct (visited_states q p)"

shows "length p < size M"

proof (rule ccontr)

assume "¬ length p < size M"

then have "length p ≥ card (states M)" using size_def by auto

then have "length (visited_states q p) > card (states M)" by auto

moreover have "set (visited_states q p) ⊆ states M"

by (metis assms path_prefix path_target_is_state visited_states_prefix)

ultimately have "¬ distinct (visited_states q p)"

by (metis distinct_card List.finite_set card_mono fsm_states_finite)

then show "False" using assms(2) by blast

qed

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 19 / 34

Proof Mechanisation Effort

I basic FSM library

data types
transformations (observable, minimal, initially connected, prime)
computation of minimal length distinguishing traces
generalisation of convergence

I frameworks

H, SPY, Pair
H- and SPY-Condition

I concrete implementations of strategies (W, Wp, HSI, H, SPY, SPYH)

functions for procedural parameters

36.6 kLoC
329 definitions
856 lemmata

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 20 / 34

Proof Mechanisation Effort

I basic FSM library

data types
transformations (observable, minimal, initially connected, prime)
computation of minimal length distinguishing traces
generalisation of convergence

I frameworks

H, SPY, Pair
H- and SPY-Condition

I concrete implementations of strategies (W, Wp, HSI, H, SPY, SPYH)

functions for procedural parameters

36.6 kLoC
329 definitions
856 lemmata
≈ 50% fully automated top-level proofs

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 20 / 34

Generating Provably Correct Implementations

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 21 / 34

Code Generation via Isabelle/HOL

I translation to Haskell / SML / Scala / OCaml

I many definitions immediately translatable

I code equations specify alternative implementations

I refinements

data structures – extended FSM data type, Containers
algorithms
much potential for further improvement

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 22 / 34

Tool Set

M1

k = m − n

"W" | "Wp" | ...

test-suite-generator

generated code

test suite TS
stored as input sequences

sut-wrapper

SUT test-harness verdict: SUT ∼TS M1?

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 23 / 34

Evaluation – DFSMs with 3 Inputs and Outputs each, using m − n = 0

0 20 40 60 80
0

200

400

600

Size of the Reference Model

A
ve

ra
ge

N
u

m
b

er
of

T
es

t
C

as
es

0 20 40 60 80
0

0.5

1

Size of the Reference Model

A
verage

C
om

p
u

tation
T

im
e

in
s

H Pair H (FSMlib) H (fsmlib-cpp) H Pair 3 11

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 24 / 34

Evaluation – DFSMs with 3 Inputs and Outputs each, using m − n = 2

0 20 40 60 80
0

2,000

4,000

Size of the Reference Model

A
ve

ra
ge

N
u

m
b

er
of

T
es

t
C

as
es

0 20 40 60 80
0

20

40

60

Size of the Reference Model

A
verage

C
om

p
u

tation
T

im
e

in
s

H Pair H (FSMlib) H (fsmlib-cpp) H Pair 3 11

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 25 / 34

Evaluation – Average Test Suite Length
∑

α∈TS |α| for m − n = 0

0 10 20 30 40 50 60 70 80
0

1,000

2,000

3,000

4,000

Size of the Reference Model

A
ve

ra
ge

N
u

m
b

er
of

In
p

u
t

S
ym

b
ol

s A
verage

C
om

p
u

tation
T

im
e

in
s

H Pair H (FSMlib) H (fsmlib-cpp) H Pair 3 11

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 26 / 34

Evaluation – Average Test Suite Length
∑

α∈TS |α| for m − n = 2

0 10 20 30 40 50 60 70 80
0

20,000

40,000

Size of the Reference Model

A
ve

ra
ge

N
u

m
b

er
of

In
p

u
t

S
ym

b
ol

s A
verage

C
om

p
u

tation
T

im
e

in
s

H Pair H (FSMlib) H (fsmlib-cpp) H Pair 3 11

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 27 / 34

Conclusion and Future Work

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 28 / 34

Conclusion

I main contributions

1. unified implementation of complete test strategies using frameworks
2. mechanised correctness and completeness proofs
3. provably correct implementations embedded in a practical tool set

I further contributions

generalisation of SPY and SPYH to partial, nondeterministic FSMs
provably correct library of basic FSM operations
analogous results for a test strategy for the reduction conformance relation

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 29 / 34

Future Work

I extend the approach to
further conformance relations

quasi-reduction/equivalence, strong reduction, ...

further modelling formalisms

EFSMs, SFSMs, timed Automata, LTSs, ...

further test strategies

S-Method, Safety-H-Method, Property Oriented Testing via FSMs, ...

I completeness checking instead of test suite generation

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 30 / 34

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 31 / 34

Bibliography I

Achim D. Brucker and Burkhart Wolff. “On theorem prover-based testing”. In: Formal
Aspects of Computing 25.5 (2013), pp. 683–721. doi: 10.1007/s00165-012-0222-y.
url: https://doi.org/10.1007/s00165-012-0222-y.

Tsun S. Chow. “Testing Software Design Modeled by Finite-State Machines”. In: IEEE
Transactions on Software Engineering 4.3 (1978), pp. 178–187. doi:
10.1109/TSE.1978.231496. url: https://doi.org/10.1109/TSE.1978.231496.

Rita Dorofeeva, Khaled El-Fakih, and Nina Yevtushenko. “An Improved Conformance
Testing Method”. In: Formal Techniques for Networked and Distributed Systems -
FORTE 2005, 25th IFIP WG 6.1 International Conference, Taipei, Taiwan, October 2-5,
2005, Proceedings. Ed. by Farn Wang. Vol. 3731. Lecture Notes in Computer Science.
Springer, 2005, pp. 204–218. doi: 10.1007/11562436_16. url:
https://doi.org/10.1007/11562436%5C_16.

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 32 / 34

https://doi.org/10.1007/s00165-012-0222-y
https://doi.org/10.1007/s00165-012-0222-y
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1007/11562436_16
https://doi.org/10.1007/11562436%5C_16

Bibliography II

Gang Luo, Gregor von Bochmann, and Alexandre Petrenko. “Test Selection Based on
Communicating Nondeterministic Finite-State Machines Using a Generalized
WP-Method”. In: IEEE Trans. Software Eng. 20.2 (1994), pp. 149–162. doi:
10.1109/32.265636. url: https://doi.org/10.1109/32.265636.

Gang Luo, Alexandre Petrenko, and Gregor von Bochmann. “Selecting Test Sequences
for Partially-Specified Nondeterministic Finite State Machines”. In: Protocol Test
Systems: 7th workshop 7th IFIP WG 6.1 international workshop on protocol text systems.
Ed. by Tadanori Mizuno, Teruo Higashino, and Norio Shiratori. Boston, MA: Springer US,
1995, pp. 95–110. isbn: 978-0-387-34883-4. doi: 10.1007/978-0-387-34883-4_6.
url: https://doi.org/10.1007/978-0-387-34883-4_6.

Adenilso da Silva Simão, Alexandre Petrenko, and Nina Yevtushenko. “On reducing test
length for FSMs with extra states”. In: Software Testing, Verification and Reliability 22.6
(2012), pp. 435–454. doi: 10.1002/stvr.452. url:
https://doi.org/10.1002/stvr.452.

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 33 / 34

https://doi.org/10.1109/32.265636
https://doi.org/10.1109/32.265636
https://doi.org/10.1007/978-0-387-34883-4_6
https://doi.org/10.1007/978-0-387-34883-4_6
https://doi.org/10.1002/stvr.452
https://doi.org/10.1002/stvr.452

Bibliography III

Michal Soucha. “Testing and active learning of resettable finite-state machines”.
PhD thesis. University of Sheffield, 2019.

Michal Soucha and Kirill Bogdanov. “SPYH-Method: An Improvement in Testing of
Finite-State Machines”. In: 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops, ICST Workshops, Väster̊as, Sweden, April 9-13,
2018. IEEE Computer Society, 2018, pp. 194–203. doi: 10.1109/ICSTW.2018.00050.
url: http://doi.ieeecomputersociety.org/10.1109/ICSTW.2018.00050.

M. P. Vasilevskii. “Failure diagnosis of automata”. In: Kibernetika (Transl.) 4 (1973),
pp. 98–108.

Robert Sachtleben An Approach for the Verification and Synthesis of Complete Test Generation Algorithms for Finite State Machines 34 / 34

https://doi.org/10.1109/ICSTW.2018.00050
http://doi.ieeecomputersociety.org/10.1109/ICSTW.2018.00050

	Model-based Testing using Finite State Machines
	Unified Implementation
	Mechanised Completeness Proofs using Isabelle/HOL
	Generating Provably Correct Implementations
	Conclusion and Future Work
	Bibliography
	References

