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Abstract 
·

Model-based testing has seen a wider range of industrial
applications recently – enabling to systematically generate
test-cases instead of speculate them or analyse post-hoc 
system traces or memory dumps.
Test-case generation techniques vitally depend on symbolic 
computation and constraint-solving techniques. Their limits 
therefore represent limits for model-based testing as a whole. 
The HOL-TestGen system is designed as plug-in into the 
state-of-the-art theorem proving environment Isabelle/HOL. 
Thus, powerful modeling languages as well as powerful 
automated and interactive proof methods for constraint 
resolution are available.
The talk is going to be a guided tour through theory, 
pragmatics, and recent industrial applications. "

http://www.brucker.ch/projects/hol-testgen/index.en.html


BT Ipswich, May 2009                                                                                                                                                                      B.Wolff

Intro: Definition and Summary 
·

WHAT IS MODEL-BASED TESTING ?

Model-Based Testing is the 
automatic generation 

of efficient test procedures/vectors using 
models of system requirements and 

specified functionality.
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Models of Systems for Tests 
·

System
as awkward 
it might be ...
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Modeling ... 
·● ... aims at “blueprints” that can be analysed

BEFORE the system is actually build

● ... does not guarantee the absense of any error
(only the conformance between a model
 and the “system”)

● ... can (and must) be integrated into the software 
development cycle ...
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Modeling ... 
·● ... can be done post-hoc; significant projects 

“reverse engeneer” the model of a legacy system

● ... can help system integration processes
by assuring that third-party components
are in fact usable in a larger system.

The model gets the role of a “contract”
in this scenario. 
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Workflow
·
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Vision 
● Model-development should be integrated into

the classical software development process;
thus into:

● Requirements documents; Design documents ...

● Test-Cases should be used early
for Animation and “Reverse Engineering” ...  

● ... in some cases, a combination with 
verification techniques might be useful ...
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HOL-TestGen: A Solution 
● HOL-TestGen is a Model-based 

TestCase Generation System

● Unlike e.g. Spec-Explorer (by Microsoft,
available as VisualStudio Plugin), it
emphasizes (well, we are academic ;-) ):

● logical cleaness and an expressivness.
Modeling Language HOL instead of, say, 
an OO-language with quantifiers

● symbolic computations having their roots
in Theorem Proving instead of plain enumeration
and model-checking
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Agenda

● TestGen and its Method by Example

● Overview on Symbolic Test Case Generation

● Own Case Studies 

● Industrial Applications

● Conclusion



BT Ipswich, May 2009                                                                                                                                                                      B.Wolff

HOL-TestGen by Example

● Step I in the TestGen - method:

● write Test Document containing HOL Definitions
‚

text{* We include the TestGen system and
start with a litte example *}

Triangle = Testing + 

‚ text{* The result type is defined by: *}
‚ datatype triangle = equilateral | scalene | 

                    isosceles   | error

‚ constdefs triangle :: "[nat,nat,nat] => bool"
‚ "triangle x y z == (0<x ∧ 0<y ∧ 0<z ∧    
‚                    (z<x+y) ∧ (x<y+z) ∧ (y<x+z))"

. . .
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HOL-TestGen by Example

● Step II in the TestGen - method:
● containing a Test Specification TS in HOL ... (ctd'd): 

. . .
testspec TS: 
“prog(x, y, z) = 
 if triangle x y z 
 then if x = y 
      then if y = z  then equilateral 
                     else isosceles 
      else if y = z  then isosceles 
                     else if x = z then isosceles 
                                   else scalene 
 else error”
. . .

● where prog is the program under test
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HOL-TestGen by Example

● Step III in the TestGen - method:

● fire generate cases tactic and get proof-state: 

. . . 

apply(gen_test_cases 3 1 simp: add_commute)
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HOL-TestGen by Example

● Step III in the TestGen - method:

● fire generate cases tactic and get proof-state: 

. . .
⟦0 < z; z < z + z     ⟧ ⟹
    prog(z, z, z) = equilateral
   
⟦x ¯ z; 0 < x; 0 < z; z < x + z; x < z + z  ⟧ ⟹  
    prog(x, z, z) = isosceles 

⟦y ¯ z; z  y;¬z < z + y  ⟧ ⟹
    prog(z, y, z) = error
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A Step Back: Test-Theorem

● Step III in the TestGen - method:

● consisting of 26 test cases C
1
 to C

26
 

(having the form of Horn clauses, where the
 premises are called constraints)

● where the proof state corresponds to an equivalent 
test theorem of the form:

C
1
 ⟹ . . . (C

26
⟹TS)    (written:  ⟦C

1
; . . . ;C

26
 ⟧ ⟹TS)
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HOL-TestGen by Example

● Step V in the TestGen – method:

● fire generate cases tactic and get proof-state and 
produce test statements  (i.e. premises of the form):

. . . 
gen_test_data “Triangle”
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HOL-TestGen by Example

● Step V in the TestGen – method:

● fire generate cases tactic and get proof-state and 
produce test statements  (i.e. premises of the form):

. . . 
prog(3, 3, 3) = equilateral 
prog(4, 6, 0) = error
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HOL-TestGen by Example

● Step VI in the TestGen – method:

● Convert test-data automatically into a test driver.

. . . 
gen_test_script “Triangle”

In our case, this is an SML program that
fires the test-harness, which can be linked to
any .o file containing the program under test...
(so, the SUT must not be SML, rather C, Java, ...)
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Symbolic Computations Involved
● Basis for TestGen package (comprising Test Case 

and  Test Data Generation tactics)
● Isabelle/HOL library: 10000 derived rules . . .
● about 500 are organized in larger data-structures

used by Isabelles proof procedures . . .

● How are tactics organized?

● Rewriting Normal Form Computation (RNF)
● Tableaux Normal Form Computation  (HCNF)
● Testing Normal Form Computation (TNF) 
● Testing Normal Form  Minimization (MTNF)
● Generating and Using Test Hypothesis
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Own Case Study: Red Black Trees
 Red-Black-Trees: Test Specification

 testspec :
 (redinv t  ∧     blackinv t) 

 f
(redinv (delete x t)  ∧     
 blackinv (delete x t))

 

 where delete is the program under test.
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Own Case Study: Red Black Trees
● Statistics:

348 test cases were generated, within 2 min.

● one Error in the SML library was  found, 
that makes  crucial violation against redblack-
invariants; makes lookup linear

● ... error not found within 12 years ...

● ... reproduced meanwhile by random test tool
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Own Case Study: Firewalls
● Statistics:

10000 test cases were generated, within 8 h.

● ... realistic scenarios of analysis require
quite advanced techniques for case-splitting
and deduction

● ...  uses real theorem proving
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Industrial Applications
● Windows 98-Server Protocol: the story so far

● 2000 : EU  and  US administration ruled Microsoft
is a Monopoly in the Server Market (applying older
Antitrust rules in the Telecommunication market)

● 2002 : EU required the  “specification” of the 
server protocols in order to allow third-party
vendors acces to the market

● Polished internal documents of Mocrosoft
were considered “insufficient” by the EU referees ...
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Industrial Applications
● 2003: Microsoft legally contested this ruling,

considering protocols as protected being IPR

● 2005: Microsoft lost the legal battle, was fined
by 700 mio €, and forced to produce a document
which:

● also provides a formal specification
● provides evidence that the model is

actually compliant to the implemented system.

Since then, a team of 200 people started
to reverse engineer the Protocol (developed in
1995), essentially using a tool-family on the
 basis of Spec-Explorer
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Industrial Applications
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Industrial Applications
· Windows Server 98 Protocol :

Wolfgang Grieskamp[2008]:

Using Model-Based Testing for Quality 
Assurance of Protocol Documentation

Invited Talk MBT 2008, Budapest.
http://research.microsoft.com/users/wrwg
/MBTETAPS.pdf
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Conclusion
● Nowadays, model-based 

Testing is viable Technology

● ... for systematic Testing
    (unit, sequence, reactive sequence, protocol testing)

● ... for reverse-engineering Systems
and integrating components of third-parties

● ... to comply with future, legally required 
    documentation standards
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Conclusion
● HOL-TestGen

● Specs were written in HOL
● proof-state explosion controllable by abstraction 
● although logically puristic,  systematic 

test of a “real” library code or network components
security policies has been shown feasible ...

● besides: HOL-TestGen is a verified tool

inside a (well-known) theorem prover 


