
BT Ipswich, May 2009 B.Wolff

 Model-based Testing :
Techniques and

Industrial Applications

Lukas Brügger Burkhart Wolff
Information Security Group, ETH Zürich

LRI, Université Paris-Sud

BT Ipswich, May 2009 B.Wolff

Abstract
·

Model-based testing has seen a wider range of industrial
applications recently – enabling to systematically generate
test-cases instead of speculate them or analyse post-hoc
system traces or memory dumps.
Test-case generation techniques vitally depend on symbolic
computation and constraint-solving techniques. Their limits
therefore represent limits for model-based testing as a whole.
The HOL-TestGen system is designed as plug-in into the
state-of-the-art theorem proving environment Isabelle/HOL.
Thus, powerful modeling languages as well as powerful
automated and interactive proof methods for constraint
resolution are available.
The talk is going to be a guided tour through theory,
pragmatics, and recent industrial applications. "

http://www.brucker.ch/projects/hol-testgen/index.en.html

BT Ipswich, May 2009 B.Wolff

Intro: Definition and Summary
·

WHAT IS MODEL-BASED TESTING ?

Model-Based Testing is the
automatic generation

of efficient test procedures/vectors using
models of system requirements and

specified functionality.

BT Ipswich, May 2009 B.Wolff

Models of Systems for Tests
·

System
as awkward
it might be ...

BT Ipswich, May 2009 B.Wolff

Models of Systems for Tests
·

O
b
s
e
r
v
e
r

Test-Oracle correct
function or behaviour

System
as awkward
it might be ...

a posteriori

run-time testing

BT Ipswich, May 2009 B.Wolff

Models of Systems for Tests
·

M
o
d
e
l

Model describing
function or behaviour

System
as awkward
it might be ...

a posteriori

run-time testing

a priori

run-time testing

BT Ipswich, May 2009 B.Wolff

Modeling ...
·● ... aims at “blueprints” that can be analysed

BEFORE the system is actually build

● ... does not guarantee the absense of any error
(only the conformance between a model
 and the “system”)

● ... can (and must) be integrated into the software
development cycle ...

BT Ipswich, May 2009 B.Wolff

Modeling ...
·● ... can be done post-hoc; significant projects

“reverse engeneer” the model of a legacy system

● ... can help system integration processes
by assuring that third-party components
are in fact usable in a larger system.

The model gets the role of a “contract”
in this scenario.

BT Ipswich, May 2009 B.Wolff

Workflow
·

BT Ipswich, May 2009 B.Wolff

Vision
● Model-development should be integrated into

the classical software development process;
thus into:

● Requirements documents; Design documents ...

● Test-Cases should be used early
for Animation and “Reverse Engineering” ...

● ... in some cases, a combination with
verification techniques might be useful ...

BT Ipswich, May 2009 B.Wolff

HOL-TestGen: A Solution
● HOL-TestGen is a Model-based

TestCase Generation System

● Unlike e.g. Spec-Explorer (by Microsoft,
available as VisualStudio Plugin), it
emphasizes (well, we are academic ;-)):

● logical cleaness and an expressivness.
Modeling Language HOL instead of, say,
an OO-language with quantifiers

● symbolic computations having their roots
in Theorem Proving instead of plain enumeration
and model-checking

BT Ipswich, May 2009 B.Wolff

Agenda

● TestGen and its Method by Example

● Overview on Symbolic Test Case Generation

● Own Case Studies

● Industrial Applications

● Conclusion

BT Ipswich, May 2009 B.Wolff

HOL-TestGen by Example

● Step I in the TestGen - method:

● write Test Document containing HOL Definitions
‚

text{* We include the TestGen system and
start with a litte example *}

Triangle = Testing +

‚ text{* The result type is defined by: *}
‚ datatype triangle = equilateral | scalene |

 isosceles | error

‚ constdefs triangle :: "[nat,nat,nat] => bool"
‚ "triangle x y z == (0<x ∧ 0<y ∧ 0<z ∧
‚ (z<x+y) ∧ (x<y+z) ∧ (y<x+z))"

. . .

BT Ipswich, May 2009 B.Wolff

HOL-TestGen by Example

● Step II in the TestGen - method:
● containing a Test Specification TS in HOL ... (ctd'd):

. . .
testspec TS:
“prog(x, y, z) =
 if triangle x y z
 then if x = y
 then if y = z then equilateral
 else isosceles
 else if y = z then isosceles
 else if x = z then isosceles
 else scalene
 else error”
. . .

● where prog is the program under test

BT Ipswich, May 2009 B.Wolff

HOL-TestGen by Example

● Step III in the TestGen - method:

● fire generate cases tactic and get proof-state:

. . .

apply(gen_test_cases 3 1 simp: add_commute)

BT Ipswich, May 2009 B.Wolff

HOL-TestGen by Example

● Step III in the TestGen - method:

● fire generate cases tactic and get proof-state:

. . .
⟦0 < z; z < z + z ⟧ ⟹
 prog(z, z, z) = equilateral

⟦x ¯ z; 0 < x; 0 < z; z < x + z; x < z + z ⟧ ⟹
 prog(x, z, z) = isosceles

⟦y ¯ z; z y;¬z < z + y ⟧ ⟹
 prog(z, y, z) = error

BT Ipswich, May 2009 B.Wolff

A Step Back: Test-Theorem

● Step III in the TestGen - method:

● consisting of 26 test cases C
1
 to C

26

(having the form of Horn clauses, where the
 premises are called constraints)

● where the proof state corresponds to an equivalent
test theorem of the form:

C
1
 ⟹ . . . (C

26
⟹TS) (written: ⟦C

1
; . . . ;C

26
 ⟧ ⟹TS)

BT Ipswich, May 2009 B.Wolff

HOL-TestGen by Example

● Step V in the TestGen – method:

● fire generate cases tactic and get proof-state and
produce test statements (i.e. premises of the form):

. . .
gen_test_data “Triangle”

BT Ipswich, May 2009 B.Wolff

HOL-TestGen by Example

● Step V in the TestGen – method:

● fire generate cases tactic and get proof-state and
produce test statements (i.e. premises of the form):

. . .
prog(3, 3, 3) = equilateral
prog(4, 6, 0) = error

BT Ipswich, May 2009 B.Wolff

HOL-TestGen by Example

● Step VI in the TestGen – method:

● Convert test-data automatically into a test driver.

. . .
gen_test_script “Triangle”

In our case, this is an SML program that
fires the test-harness, which can be linked to
any .o file containing the program under test...
(so, the SUT must not be SML, rather C, Java, ...)

BT Ipswich, May 2009 B.Wolff

Symbolic Computations Involved
● Basis for TestGen package (comprising Test Case

and Test Data Generation tactics)
● Isabelle/HOL library: 10000 derived rules . . .
● about 500 are organized in larger data-structures

used by Isabelles proof procedures . . .

● How are tactics organized?

● Rewriting Normal Form Computation (RNF)
● Tableaux Normal Form Computation (HCNF)
● Testing Normal Form Computation (TNF)
● Testing Normal Form Minimization (MTNF)
● Generating and Using Test Hypothesis

BT Ipswich, May 2009 B.Wolff

Own Case Study: Red Black Trees
 Red-Black-Trees: Test Specification

 testspec :
 (redinv t ∧ blackinv t)

 f
(redinv (delete x t) ∧
 blackinv (delete x t))

 where delete is the program under test.

BT Ipswich, May 2009 B.Wolff

Own Case Study: Red Black Trees
● Statistics:

348 test cases were generated, within 2 min.

● one Error in the SML library was found,
that makes crucial violation against redblack-
invariants; makes lookup linear

● ... error not found within 12 years ...

● ... reproduced meanwhile by random test tool

BT Ipswich, May 2009 B.Wolff

Own Case Study: Firewalls
● Statistics:

10000 test cases were generated, within 8 h.

● ... realistic scenarios of analysis require
quite advanced techniques for case-splitting
and deduction

● ... uses real theorem proving

BT Ipswich, May 2009 B.Wolff

Industrial Applications
● Windows 98-Server Protocol: the story so far

● 2000 : EU and US administration ruled Microsoft
is a Monopoly in the Server Market (applying older
Antitrust rules in the Telecommunication market)

● 2002 : EU required the “specification” of the
server protocols in order to allow third-party
vendors acces to the market

● Polished internal documents of Mocrosoft
were considered “insufficient” by the EU referees ...

BT Ipswich, May 2009 B.Wolff

Industrial Applications
● 2003: Microsoft legally contested this ruling,

considering protocols as protected being IPR

● 2005: Microsoft lost the legal battle, was fined
by 700 mio €, and forced to produce a document
which:

● also provides a formal specification
● provides evidence that the model is

actually compliant to the implemented system.

Since then, a team of 200 people started
to reverse engineer the Protocol (developed in
1995), essentially using a tool-family on the
 basis of Spec-Explorer

BT Ipswich, May 2009 B.Wolff

Industrial Applications

BT Ipswich, May 2009 B.Wolff

Industrial Applications
· Windows Server 98 Protocol :

Wolfgang Grieskamp[2008]:

Using Model-Based Testing for Quality
Assurance of Protocol Documentation

Invited Talk MBT 2008, Budapest.
http://research.microsoft.com/users/wrwg
/MBTETAPS.pdf

BT Ipswich, May 2009 B.Wolff

Conclusion
● Nowadays, model-based

Testing is viable Technology

● ... for systematic Testing
 (unit, sequence, reactive sequence, protocol testing)

● ... for reverse-engineering Systems
and integrating components of third-parties

● ... to comply with future, legally required
 documentation standards

BT Ipswich, May 2009 B.Wolff

Conclusion
● HOL-TestGen

● Specs were written in HOL
● proof-state explosion controllable by abstraction
● although logically puristic, systematic

test of a “real” library code or network components
security policies has been shown feasible ...

● besides: HOL-TestGen is a verified tool

inside a (well-known) theorem prover

