
A Sound Type System for
Physical Quantities, Units, and

Measurements

Simon Foster and Burkhart Wolff 
University of York,  

LMF, Université Paris-Saclay

LMF Seminary @ Fremigny, 3 Dec 2021

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Abstract

• I present an Isabelle theory building a formal model for both
the International System of Quantities (ISQ) and the
International System of Units (SI), which are both fundamental
for physics and engineering. Both the ISQ and the SI are
deeply integrated into Isabelle's type system. Quantities are
parameterised by dimension types, which correspond to base
vectors, and thus only quantities of the same dimension can
be equated. Since the underlying "algebra of quantities"
induces congruences on quantity and SI types, specific tactic
support is developed to capture these. Our construction is
validated by a test-set of known equivalences between both
quantities and SI units. Moreover, the presented theory can be
used for type-safe conversions between the SI system and
others, like the British Imperial System (BIS).

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Motivation

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Motivation

• Modern Physics is based on the concept of quantifiable
properties for phenomena such as

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Motivation

• Modern Physics is based on the concept of quantifiable
properties for phenomena such as

• mass,

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Motivation

• Modern Physics is based on the concept of quantifiable
properties for phenomena such as

• mass,
• length,

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Motivation

• Modern Physics is based on the concept of quantifiable
properties for phenomena such as

• mass,
• length,
• time,

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Motivation

• Modern Physics is based on the concept of quantifiable
properties for phenomena such as

• mass,
• length,
• time,
• electric current, etc.

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Motivation

• Modern Physics is based on the concept of quantifiable
properties for phenomena such as

• mass,
• length,
• time,
• electric current, etc.

• These phenomena, called quantities (“grandeurs” /
“Größen”), are linked via an algebra to derived
concepts such as

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Motivation

• Modern Physics is based on the concept of quantifiable
properties for phenomena such as

• mass,
• length,
• time,
• electric current, etc.

• These phenomena, called quantities (“grandeurs” /
“Größen”), are linked via an algebra to derived
concepts such as

• speed,

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Motivation

• Modern Physics is based on the concept of quantifiable
properties for phenomena such as

• mass,
• length,
• time,
• electric current, etc.

• These phenomena, called quantities (“grandeurs” /
“Größen”), are linked via an algebra to derived
concepts such as

• speed,
• force,

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Motivation

• Modern Physics is based on the concept of quantifiable
properties for phenomena such as

• mass,
• length,
• time,
• electric current, etc.

• These phenomena, called quantities (“grandeurs” /
“Größen”), are linked via an algebra to derived
concepts such as

• speed,
• force,
• energy, and many others.

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Motivation

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Motivation

• The algebra of quantities allows for a dimensional
analysis of physical equations.

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Motivation

• The algebra of quantities allows for a dimensional
analysis of physical equations.

• … and represents a kind of type-system going
back to Newtons Principia Naturalis and the trans-
lation of Du Châtelet.

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Motivation

• The algebra of quantities allows for a dimensional
analysis of physical equations.

• … and represents a kind of type-system going
back to Newtons Principia Naturalis and the trans-
lation of Du Châtelet.

• In parallel, physics developed the research field
“metrology” for the study of the measurement of
physical quantities.

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background I

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background I

• Relevant Standard:
“Vocabulaire International de Metrologie” (VIM)
[Bureau International des Poids et des Mesures, BIPM]

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background I

• Relevant Standard:
“Vocabulaire International de Metrologie” (VIM)
[Bureau International des Poids et des Mesures, BIPM]

• The VIM defines:

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background I

• Relevant Standard:
“Vocabulaire International de Metrologie” (VIM)
[Bureau International des Poids et des Mesures, BIPM]

• The VIM defines:
• International System of Quantities (ISQ)

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background I

• Relevant Standard:
“Vocabulaire International de Metrologie” (VIM)
[Bureau International des Poids et des Mesures, BIPM]

• The VIM defines:
• International System of Quantities (ISQ)
• Système International of Mesurement Units (SI)

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background I

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background I
• Base Dimensions / Units: Derived Dimensions / Units

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background I
• Base Dimensions / Units: Derived Dimensions / Units

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background I
• Base Dimensions / Units: Derived Dimensions / Units

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background I
• Base Dimensions / Units: Derived Dimensions / Units

Name Symbol Quantity In SI base
units

In other SI
units

hertz Hz frequency s−1

newton N force, weight kg⋅m⋅s−2

pascal Pa pressure, stress kg⋅m−1⋅s−2 N/m2

joule J energy, work, h
eat

kg⋅m2⋅s−2 N⋅m = Pa⋅m3

watt W power, radiant
flux

kg⋅m2⋅s−3 J/s

volt V electrical
potential

kg⋅m2⋅s−3⋅A−1 W/A = J/C

https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Newton_(unit)
https://en.wikipedia.org/wiki/Force
https://en.wikipedia.org/wiki/Weight
https://en.wikipedia.org/wiki/Pascal_(unit)
https://en.wikipedia.org/wiki/Pressure
https://en.wikipedia.org/wiki/Stress_(physics)
https://en.wikipedia.org/wiki/Joule
https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Mechanical_work
https://en.wikipedia.org/wiki/Heat
https://en.wikipedia.org/wiki/Watt
https://en.wikipedia.org/wiki/Power_(physics)
https://en.wikipedia.org/wiki/Radiant_flux
https://en.wikipedia.org/wiki/Volt
https://en.wikipedia.org/wiki/Electrical_potential_difference
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Electromotive_force

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background I
• Base Dimensions / Units: Derived Dimensions / Units

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background I
• Base Dimensions / Units: Derived Dimensions / Units

Nm = J

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Objective

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Objective

• Deep, semantically sound integration into the
Isabelle type system

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Objective

• Deep, semantically sound integration into the
Isabelle type system

• … including the “dimension algebra”

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Objective

• Deep, semantically sound integration into the
Isabelle type system

• … including the “dimension algebra”
• … being polymorphic wrt. scalars, so “'α [m/s]”

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Objective

• Deep, semantically sound integration into the
Isabelle type system

• … including the “dimension algebra”
• … being polymorphic wrt. scalars, so “'α [m/s]”

• ℤ[m/s]

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Objective

• Deep, semantically sound integration into the
Isabelle type system

• … including the “dimension algebra”
• … being polymorphic wrt. scalars, so “'α [m/s]”

• ℤ[m/s]
• ℝ[m/s] — 1-dimensional continuous speed

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Objective

• Deep, semantically sound integration into the
Isabelle type system

• … including the “dimension algebra”
• … being polymorphic wrt. scalars, so “'α [m/s]”

• ℤ[m/s]
• ℝ[m/s] — 1-dimensional continuous speed
• ℝ3 [m] ⇒ ℝ3 [N] — 3-dimensional force field

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Objective

• Deep, semantically sound integration into the
Isabelle type system

• … including the “dimension algebra”
• … being polymorphic wrt. scalars, so “'α [m/s]”

• ℤ[m/s]
• ℝ[m/s] — 1-dimensional continuous speed
• ℝ3 [m] ⇒ ℝ3 [N] — 3-dimensional force field

• double3[m/s] — double precision float

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background II

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background II

• Isabelle is built upon a Curry-Style type-system:
(most-general) types were automatically inferred

 λ x. E vs λx:τ. E

 x + y = y + x

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background II

• Isabelle is built upon a Curry-Style type-system:
(most-general) types were automatically inferred

 λ x. E vs λx:τ. E

 x + y = y + x

• Consequence: Calculations on types are
in general impossible

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background II

• Isabelle is built upon a Curry-Style type-system:
(most-general) types were automatically inferred

 λ x. E vs λx:τ. E

 x + y = y + x

• Consequence: Calculations on types are
in general impossible

• … in particular with the universal HOL equality
=:: α⇒α⇒bool rules out terms like
 1::nat[Nm] = 1::nat[J]

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background II

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background II
On the other hand, Isabelle type-system supports
order-sorted polymorphism:

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background II
On the other hand, Isabelle type-system supports
order-sorted polymorphism:

class ord =

 fixes less_eq :: "'a ⇒ 'a ⇒ bool"

 and less :: "'a ⇒ 'a ⇒ bool"

notation less_eq ("'(≤')") and less

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background II
On the other hand, Isabelle type-system supports
order-sorted polymorphism:

… which can be associated to semantic properties

class ord =

 fixes less_eq :: "'a ⇒ 'a ⇒ bool"

 and less :: "'a ⇒ 'a ⇒ bool"

notation less_eq ("'(≤')") and less

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background II
On the other hand, Isabelle type-system supports
order-sorted polymorphism:

… which can be associated to semantic properties

class ord =

 fixes less_eq :: "'a ⇒ 'a ⇒ bool"

 and less :: "'a ⇒ 'a ⇒ bool"

notation less_eq ("'(≤')") and less

class preorder = ord +

 assumes less_le_not_le:
 "x < y ⟷ x ≤ y ∧ ¬ (y ≤ x)"

 and order_refl [iff]: "x ≤ x"

 and order_trans:
 "x ≤ y ⟹ y ≤ z ⟹ x ≤ z"

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background II

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background II
• … and used for inductively defined sub-classes of types

(fun is the internal name for the type constructor ⇒)

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background II
• … and used for inductively defined sub-classes of types

(fun is the internal name for the type constructor ⇒)

instantiation "fun" :: (type, ord) ord

begin

definition le_fun_def:
 "f ≤ g ⟷ (∀x. f x ≤ g x)”

definition less_fun_def:
 "(f::’a ⇒ 'b) < g ⟷ f ≤ g ∧ ¬ (g ≤ f)"

instance ..

instance "fun" :: (type, preorder) preorder
proof

qed (auto simp add: le_fun_def
 less_fun_def intro: order_trans
 order.antisym)

end

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Background II
• … and used for inductively defined sub-classes of types

(fun is the internal name for the type constructor ⇒)

instantiation "fun" :: (type, ord) ord

begin

definition le_fun_def:
 "f ≤ g ⟷ (∀x. f x ≤ g x)”

definition less_fun_def:
 "(f::’a ⇒ 'b) < g ⟷ f ≤ g ∧ ¬ (g ≤ f)"

instance ..

instance "fun" :: (type, preorder) preorder
proof

qed (auto simp add: le_fun_def
 less_fun_def intro: order_trans
 order.antisym)

end

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

The Plan

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

The Plan

• Semantic Domain of Dimension Types:
an Executable Algebra

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

The Plan

• Semantic Domain of Dimension Types:
an Executable Algebra

• Constructing the type-language of dimension types

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

The Plan

• Semantic Domain of Dimension Types:
an Executable Algebra

• Constructing the type-language of dimension types
• Lifting to ISQ and SI Types

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

The Plan

• Semantic Domain of Dimension Types:
an Executable Algebra

• Constructing the type-language of dimension types
• Lifting to ISQ and SI Types
• The derived algebra of Dimensions and

Measurement (as defined by VIM)

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

The Plan

• Semantic Domain of Dimension Types:
an Executable Algebra

• Constructing the type-language of dimension types
• Lifting to ISQ and SI Types
• The derived algebra of Dimensions and

Measurement (as defined by VIM)
• Proof Support

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

An Executable Algebra of
Dimensions

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

An Executable Algebra of
Dimensions

• An finite-indexed family of types: DI

•

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

An Executable Algebra of
Dimensions

• An finite-indexed family of types: DI

•

typedef ('D, 'I) dimvec =
 "UNIV::('I::enum⇒'D) set"

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

An Executable Algebra of
Dimensions

• An finite-indexed family of types: DI

•

Theorem:
(if I is finite and ordered)
(D,0,_+_,_-) abelian group

then (DI,1,_o_,_-1) abelian group

typedef ('D, 'I) dimvec =
 "UNIV::('I::enum⇒'D) set"

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

An Executable Algebra of
Dimensions

• An finite-indexed family of types: DI

•

typedef ('D, 'I) dimvec =
 "UNIV::('I::enum⇒'D) set"

instance dimvec :: (ab_group_add,enum) ab_group_mult
proof …

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

An Executable Algebra of
Dimensions

• An finite-indexed family of types: DI

•

• Relevant instance: ℤ{Length,Mass,Time,Current,Temp, Amount,Intensity}

typedef ('D, 'I) dimvec =
 "UNIV::('I::enum⇒'D) set"

instance dimvec :: (ab_group_add,enum) ab_group_mult
proof …

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

An Executable Algebra of
Dimensions

• An finite-indexed family of types: DI

•

• Relevant instance: ℤ{Length,Mass,Time,Current,Temp, Amount,Intensity} type_synonym Dimension = "(int, sdim) dimvec"

typedef ('D, 'I) dimvec =
 "UNIV::('I::enum⇒'D) set"

instance dimvec :: (ab_group_add,enum) ab_group_mult
proof …

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

An Executable Algebra of
Dimensions

• An finite-indexed family of types: DI

•

• Relevant instance: ℤ{Length,Mass,Time,Current,Temp, Amount,Intensity}

• Concept: A base dimension is a dimension where
precisely one component has power 1

type_synonym Dimension = "(int, sdim) dimvec"

typedef ('D, 'I) dimvec =
 "UNIV::('I::enum⇒'D) set"

instance dimvec :: (ab_group_add,enum) ab_group_mult
proof …

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

An Executable Algebra of
Dimensions

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

An Executable Algebra of
Dimensions

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

An Executable Algebra of
Dimensions

• The executable algebra gives terms for a semantic
universe of dimension types and its theory.
In Isabelle, this gives the following infrastructure:

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

An Executable Algebra of
Dimensions

• The executable algebra gives terms for a semantic
universe of dimension types and its theory.
In Isabelle, this gives the following infrastructure:

• term “L⋅M⋅T-2 / M”

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

An Executable Algebra of
Dimensions

• The executable algebra gives terms for a semantic
universe of dimension types and its theory.
In Isabelle, this gives the following infrastructure:

• term “L⋅M⋅T-2 / M”

• value "L⋅M⋅T-2 / M"

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

An Executable Algebra of
Dimensions

• The executable algebra gives terms for a semantic
universe of dimension types and its theory.
In Isabelle, this gives the following infrastructure:

• term “L⋅M⋅T-2 / M”

• value "L⋅M⋅T-2 / M"

• lemma "L⋅M⋅T-2 / M = mk_dimvec [1, 0, - 2, 0, 0, 0, 0]”

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Dimensions

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Dimensions

• Inductive subclass of types dim_type’s

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Dimensions

• Inductive subclass of types dim_type’s
• … that posses a “semantic interpretation”

in a physical dimension.

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Dimensions

• Inductive subclass of types dim_type’s
• … that posses a “semantic interpretation”

in a physical dimension.

class dim_type = unitary +

 fixes dim_ty_sem :: "'a itself ⇒ Dimension"

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Dimensions

• Inductive subclass of types dim_type’s
• … that posses a “semantic interpretation”

in a physical dimension.

• … we define the type constructor symbols
L, M, T, I, Θ, N, J and define them arbitrarily

class dim_type = unitary +

 fixes dim_ty_sem :: "'a itself ⇒ Dimension"

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Dimensions

• Inductive subclass of types dim_type’s
• … that posses a “semantic interpretation”

in a physical dimension.

• … we define the type constructor symbols
L, M, T, I, Θ, N, J and define them arbitrarily

class dim_type = unitary +

 fixes dim_ty_sem :: "'a itself ⇒ Dimension"

typedef Length = "UNIV :: unit set"
type_synonym L = Length
typedef Mass = "UNIV :: unit set"
type_synonym M = Mass
…

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Dimensions

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Dimensions

• Inductive subclass of types dim_type’s

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Dimensions

• Inductive subclass of types dim_type’s
• … by setting for each type constructor symbol

its semantics to the corresponding value in the
dimension algebra:

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Dimensions

• Inductive subclass of types dim_type’s
• … by setting for each type constructor symbol

its semantics to the corresponding value in the
dimension algebra:
instantiation Length :: dim_type

begin

 definition [si_eq]: "dim_ty_sem_Length (_::Length itself) = L"

 instance <proof … >

end

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Dimensions

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Dimensions

• Inductive subclass of types dim_type’s

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Dimensions

• Inductive subclass of types dim_type’s
• remains to construct the product inside the

dim_type-class:

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Dimensions

• Inductive subclass of types dim_type’s
• remains to construct the product inside the

dim_type-class:

typedef ('a::dim_type, 'b::dim_type) DimTimes (infixl "⋅" 69) = "UNIV :: unit set

instantiation DimTimes :: (dim_type, dim_type) dim_type
begin
 definition dim_ty_sem_mult :: "('a ⋅ 'b) itself ⇒ Dimension"
 where “dim_ty_sem_mult x = dim_ty_sem(TYPE 'a) ⋅ dim_ty_sem(TYPE 'b)"
 instance <proof …>
end

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Dimensions

• Inductive subclass of types dim_type’s
• remains to construct the product inside the

dim_type-class:

• the inversion constructor (_-1) is built analogously.

typedef ('a::dim_type, 'b::dim_type) DimTimes (infixl "⋅" 69) = "UNIV :: unit set

instantiation DimTimes :: (dim_type, dim_type) dim_type
begin
 definition dim_ty_sem_mult :: "('a ⋅ 'b) itself ⇒ Dimension"
 where “dim_ty_sem_mult x = dim_ty_sem(TYPE 'a) ⋅ dim_ty_sem(TYPE 'b)"
 instance <proof …>
end

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Quantities and
Measurements

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Quantities and
Measurements

• We repeat this construction analogously for

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Quantities and
Measurements

• We repeat this construction analogously for
• Quantities and Measurement Systems

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Quantities and
Measurements

• We repeat this construction analogously for
• Quantities and Measurement Systems

record ('A, 'I::enum) Quantity =
 mag :: 'A ― ‹ Magnitude of the quantity. ›
 dim :: "(ℤ, 'I) dimvec" ― ‹ Dimension of the quantity. ›

record ('A, 'I::enum, 's::unit_system) Measurement_System

 = "('A, 'I::enum) Quantity" +
 unit_sys :: 's ― ‹ The system of units being employed, e.g. SI, BIS, ACS,… ›

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Quantities and
Measurements

• We repeat this construction analogously for
• Quantities and Measurement Systems

• … where the tag-type ’s says:

 this magnitude has been measured in system ’s …

record ('A, 'I::enum) Quantity =
 mag :: 'A ― ‹ Magnitude of the quantity. ›
 dim :: "(ℤ, 'I) dimvec" ― ‹ Dimension of the quantity. ›

record ('A, 'I::enum, 's::unit_system) Measurement_System

 = "('A, 'I::enum) Quantity" +
 unit_sys :: 's ― ‹ The system of units being employed, e.g. SI, BIS, ACS,… ›

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Quantities and
Measurements

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Quantities and
Measurements

• We repeat this construction analogously for

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Quantities and
Measurements

• We repeat this construction analogously for
• … and this leads to the type definition, that

“freezes” a non-empty set to a type:

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Quantities and
Measurements

• We repeat this construction analogously for
• … and this leads to the type definition, that

“freezes” a non-empty set to a type:

 typedef ('D, 'd::dim_type, 's::unit_system) gmt ("_[_, _]" [999,0,0] 999)

 = "{x :: ('D, sdim, 's) Measurement_System. dim x = dim_ty_sem(TYPE 'D)}"

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Quantities and
Measurements

• We repeat this construction analogously for
• … and this leads to the type definition, that

“freezes” a non-empty set to a type:

• … which induces the syntax for type expressions:

typedef ('D, 'd::dim_type, 's::unit_system) gmt ("_[_, _]" [999,0,0] 999)
 = "{x :: ('D, sdim, 's) Measurement_System. dim x = dim_ty_sem(TYPE 'D)}"

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Quantities and
Measurements

• We repeat this construction analogously for
• … and this leads to the type definition, that

“freezes” a non-empty set to a type:

• … which induces the syntax for type expressions:

typedef ('D, 'd::dim_type, 's::unit_system) gmt ("_[_, _]" [999,0,0] 999)
 = "{x :: ('D, sdim, 's) Measurement_System. dim x = dim_ty_sem(TYPE 'D)}"

 ℤ[L⋅T-1,SI]

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Quantities and
Measurements

• We repeat this construction analogously for
• … and this leads to the type definition, that

“freezes” a non-empty set to a type:

• … which induces the syntax for type expressions:

typedef ('D, 'd::dim_type, 's::unit_system) gmt ("_[_, _]" [999,0,0] 999)
 = "{x :: ('D, sdim, 's) Measurement_System. dim x = dim_ty_sem(TYPE 'D)}"

 ℤ[m⋅s-1] ℤ[L⋅T-1,SI]

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Quantities and
Measurements

• We repeat this construction analogously for
• … and this leads to the type definition, that

“freezes” a non-empty set to a type:

• … which induces the syntax for type expressions:

typedef ('D, 'd::dim_type, 's::unit_system) gmt ("_[_, _]" [999,0,0] 999)
 = "{x :: ('D, sdim, 's) Measurement_System. dim x = dim_ty_sem(TYPE 'D)}"

 ℤ[m⋅s-1]

 ℝ[m⋅s-1]

 ℤ[L⋅T-1,SI]

 ℝ[L⋅T-1,SI]

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Types for Quantities and
Measurements

• We repeat this construction analogously for
• … and this leads to the type definition, that

“freezes” a non-empty set to a type:

• … which induces the syntax for type expressions:

typedef ('D, 'd::dim_type, 's::unit_system) gmt ("_[_, _]" [999,0,0] 999)
 = "{x :: ('D, sdim, 's) Measurement_System. dim x = dim_ty_sem(TYPE 'D)}"

 ℤ[m⋅s-1]

 ℝ[m⋅s-1]

 ℝ3 [m] ⇒ ℝ3 [N]

 ℤ[L⋅T-1,SI]

 ℝ[L⋅T-1,SI]

 ℝ3 [L,SI] ⇒ ℝ3 [F,SI]

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Algebra of Quantities and
Measurements

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Algebra of Quantities and
Measurements

• The semantic equality on Dimension induces
for types of dim_type class a congruence:

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Algebra of Quantities and
Measurements

• The semantic equality on Dimension induces
for types of dim_type class a congruence:

(≅Q) :: 'D['a::dim_type,'s::unit_system]⇒'D['b::dim_type,'s] ⇒ bool

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Algebra of Quantities and
Measurements

• The semantic equality on Dimension induces
for types of dim_type class a congruence:

• … which allow for the derivation of the algebra:

(≅Q) :: 'D['a::dim_type,'s::unit_system]⇒'D['b::dim_type,'s] ⇒ bool

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Algebra of Quantities and
Measurements

• The semantic equality on Dimension induces
for types of dim_type class a congruence:

• … which allow for the derivation of the algebra:

(≅Q) :: 'D['a::dim_type,'s::unit_system]⇒'D['b::dim_type,'s] ⇒ bool

"a ≅Q a” "a ≅Q b ⟹ b ≅Q a” "𝟭 ⋅ x ≅Q x”

"⟦ a ≅Q b; b ≅Q c ⟧ ⟹ a ≅Q c” "(x ⋅ y) ⋅ z ≅Q x ⋅ (y ⋅ z)” "x ⋅ 𝟭 ≅Q x”

"a *Q x + y = (a *Q x) + (a *Q y)” "a + b *Q x = (a *Q x) + (b *Q x)” "0 *Q x = 0”

"a *Q b *Q x = a ⋅ b *Q x” "(a *Q x) ⋅ y = a *Q x ⋅ y” "1 *Q x = x”

"-a *Q x = a *Q -x” "x ⋅ (a *Q y) = a *Q x ⋅ y”. "a *Q x ≅Q (a *Q 𝟭) ⋅ x”

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Proof Automation

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Proof Automation
• Semantic interpretation and semantic equivalences

are organised to proof support,

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Proof Automation
• Semantic interpretation and semantic equivalences

are organised to proof support,
• … wrapped up in tactics “si_simp” and “si_calc”

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Proof Automation
• Semantic interpretation and semantic equivalences

are organised to proof support,
• … wrapped up in tactics “si_simp” and “si_calc”
• … we checked all the VIM reference equations:

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Proof Automation
• Semantic interpretation and semantic equivalences

are organised to proof support,
• … wrapped up in tactics “si_simp” and “si_calc”
• … we checked all the VIM reference equations:

lemma cel_to_kelvin: "T°C = (T *Q kelvin) + (273.15 *Q kelvin)” by
(si_simp)

theorem metre_definition:

 "1 *Q metre ≅Q (c / (299792458 *Q 𝟭)) ⋅ second”

 "1 *Q metre ≅Q (9192631770 / 299792458) *Q (c / ΔvCs)”

where ΔvCs ≡ 9192631770 *Q hertz (* caesium frequency *)

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Conclusion

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Conclusion
• A Formal Model of Dimensions and Measurements

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Conclusion
• A Formal Model of Dimensions and Measurements
• A derived sound and complete (by construction)

type system for ISQ and SI

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Conclusion
• A Formal Model of Dimensions and Measurements
• A derived sound and complete (by construction)

type system for ISQ and SI
• Validated by the catalogue of VIM definitions

for SI units and derived equivalences

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Conclusion
• A Formal Model of Dimensions and Measurements
• A derived sound and complete (by construction)

type system for ISQ and SI
• Validated by the catalogue of VIM definitions

for SI units and derived equivalences

• … useful in physics and engineering

24/11/21 Types for Physical Quantities and
Measurements

LMF Seminary

Conclusion
• A Formal Model of Dimensions and Measurements
• A derived sound and complete (by construction)

type system for ISQ and SI
• Validated by the catalogue of VIM definitions

for SI units and derived equivalences

• … useful in physics and engineering
• … available as component in the Isabelle AFP

