
Digiteo Seminary, 20.3.13 B.Wolff

 Using Theorem Provers
for Testing:

Foundations, Challenges and Future Directions

Burkhart Wolff

Université Paris-Sud, LRI, CNRS

Digiteo Seminary, 20.3.13 B.Wolff

Abstract
While Formal Testing and Theorem-Proving are still perceived
as antagonisms by many, there is a growing research field using
 the combination of both to increase the applicability of Formal
Methods in industry, in particular in the area of Safety-and
Security critical systems requiring formal certifications.

In this talk, I will present research (partially funded by the
Digiteo Foundation) around the HOL-TestGen System, which
strives for a synthesis of interactive and automated theorem
proving as well of different formal testing techniques. I will
present results which are of mutual interest for both research
areas as well as an outlook for future directions.

Digiteo Seminary, 20.3.13 B.Wolff

Overview
● Test vs. Proof: An old controversy

● Can proofs guarantee the “Absence of Errors”
● Are deductive verifiers “better” than testers?
● Can we avoid Tests ? Or Reality ?

● HOL-TestGen: A verification and validation
approach by Model-based Testing (MBT)

● HOL-TestGen: Achievements FOR Proofs

● The Future of (Model-based) Testing

Digiteo Seminary, 20.3.13 B.Wolff

Test vs. Proof:
An old controversy

● “Dijkstra's Verdict” :

‚ Program testing can be used to show the
presence of bugs, but never to show their

absence!

Digiteo Seminary, 20.3.13 B.Wolff

Test vs. Proof:
An old controversy

● “Dijkstra's Verdict” :

‚ Program testing can be used to show the
presence of bugs, but never to show their

absence!

● Well, Dijkstra was party;
so can he be trusted ?

Digiteo Seminary, 20.3.13 B.Wolff

Test vs. Proof:
An old controversy

● “Dijkstra's Verdict” :

‚ Program testing can be used to show the
presence of bugs, but never to show their

absence!

● So: can proof-based verifications
guarantee the

“abscence of bugs” ?

Test vs. Proof:
An old controversy

● An Architecture of a Program Verifier (VCC)
HOL-Boogie [Böhme, Wolff]

HOL-Boogie

.thy
VCC

Boogie

.bpl

.bpl

axiomatization of the
“c virtual machine” (cvm)

.b2i

C
com
piler

Z3

Digiteo Seminary, 20.3.13 B.Wolff

Test vs. Proof:
An old controversy

● The ugly reality:
deductive verification methods
make a lot of assumptions *besides being costly in brain-power!

● operational semantics should be faithfully executed
● complex memory-machine model

consistent (VCC: 800 axioms)
● correctness of the vc generation

(for concurrent C with “ownership”, “locks”, ... !):
● correctness of the vc generator and prover
● abscence of an environment (= Operating System)

that manipulates the underlying state.

Digiteo Seminary, 20.3.13 B.Wolff

Test vs. Proof:
An old controversy

● Back to “Dijkstra's Verdict” :

‚ Program testing can be used to show the
presence of bugs, but never to show their

absence!

● Deductive Verification infers Properties
on infinite sets of inputs; aren't they then

 “always better than tests” ?

Digiteo Seminary, 20.3.13 B.Wolff

Test vs. Proof:
An old controversy

● Well, this depends on these assumptions ...
See the (very nice) example of Maria Christakis,

where
for a
simple
program:

Digiteo Seminary, 20.3.13 B.Wolff

Test vs. Proof:
An old controversy

● Well, this depends on these assumptions ...

... two different tools
● Clousot (deductive based verification)
● Pex (white-box tester)

provide alltogether differently false results,
since their underlying assumptions on arithmetics
and memory model are simply different.
Accidently, the Pex-Verdict is actually
more correct than Clousots ...

Digiteo Seminary, 20.3.13 B.Wolff

Test vs. Proof:
An old controversy

● “Dijkstra's Verdict” :

‚ Program testing can be used to show the
presence of bugs, but never to show their

absence!

Can we actually always avoid testing ?

Digiteo Seminary, 20.3.13 B.Wolff

Test vs. Proof:
An old controversy

● “Dijkstra's Verdict” :

‚ Program testing can be used to show the presence of
bugs, but never to show their absence!

● “Einsteins scepticism”:

As far as the laws of mathematics refer to reality,
they are not certain, as far as they are certain,
they do not refer to reality.

Digiteo Seminary, 20.3.13 B.Wolff

Test vs. Proof:
An old controversy

·

Model
(behaviour, and data !)

System
(hard + software)

a posteriori

learning by experimenting

Digiteo Seminary, 20.3.13 B.Wolff

Test vs. Proof:
An old controversy

·

Model
(behaviour, and data !)

System
(hard + software)

a posteriori

learning by experimenting

a priori

test-case generation

Digiteo Seminary, 20.3.13 B.Wolff

Test vs. Proof:
An old controversy

·

Model
(behaviour, and data !)

System
(hard + software)

a posteriori

learning by experimenting

a priori

test-case generation

Val
idat

ion
 Pr

obl
em:

What
 yo

u c
an't

 do
 with

Ver
ific

atio
n

Digiteo Seminary, 20.3.13 B.Wolff

Verification by
Model-based Testing ...

·
● ... can be done post-hoc; significant projects

“reverse engineer” the model of a legacy system

● ... attempts to find bugs in specifications EARLY
(and can thus complement proof-based verification ...)

● ... can help system integration processes
in a partly unknown environment (“embedded systems”)

Nothing of this can be done by
deductive verification methods !

Digiteo Seminary, 20.3.13 B.Wolff

Test vs. Proof:
Is it actually still a controversy?

● Dijkstra - Test :
‚ Would Dijkstra fly with an aeroplane

which is verified by deduct. methods alone ?
‚

● Well, that's illegal.
Certification bodies (CC, DO183) require tests,
(and are very reluctant at proofs)

Digiteo Seminary, 20.3.13 B.Wolff

Test vs. Proof:
Is it actually still a controversy?

● Microsoft: Five major verification tools:
Pex (Structural Test), SAGE(Fuzz Test) and
Dafny, Spec#, VCC (VCG) use SMT solver Z3 !

● Test and Proofs, are they actually adversaries?
(Tony Hoare, POPL2012, “says meanwhile no”).

HOL-TestGen:
A model-based approach to

Verification
● Vision of HOL-Testgen

● HOL-TestGen provides:
● A formal testcase-generation method based

on the solution of logical constraints

HOL-TestGen:
A model-based approach to

Verification
● HOL-TestGen provides:

● A formal testcase-generation method based
on the solution of logical constraints

● Built-on top of an interactive theorem proving
environment, it allows to combine
automated provers with user intelligence

HOL-TestGen as Plugin
in the Isabelle Architecture

nano-kernel
+ kernel

proof procedures
(simp, fast, auto,
etc...)

components:
datatype
record, ...

integrators
sledge, smtATP

Tools
HOL-Z, HOL-TestGen,
Simpl, HOL-Boogie, HOL-OCL

 Boogie/VCC

Argo/UML

PIDE / jEdit

code
gen.

Scala System Interface

integrators
sledge,

ML running on multi-core arch
C1 C2 C3 C4

Why Reusing Isabelle

Isabelle has:

... a lot of Infrastructure not worth to re-invent.

We us it as:

Formal Methods Tool Framework

“The ECLIPSE of FM - Tools”

HOL-TestGen:
“The Standard Workflow”

● Writing a test-theory (the “model”)

HOL-TestGen:
“The Standard Workflow”

● Writing a test-theory (the “model”)

Example: Sorting in HOL

fun ins :: "(’a::linorder) ’a list ’a list" ⇒ ⇒

where "ins x [] = [x]"
|"ins x (y#ys) = (if (x < y) then x#y#ys

 else (y#(ins x ys)))"

fun sort:: "(’a::linorder) list ’a list" ⇒

where "sort [] = [] "
| "sort (x#xs) = ins x (sort xs)"

HOL-TestGen:
“The Standard Workflow”

● Writing a test-theory
● Writing a test-specification TS

HOL-TestGen:
“The Standard Workflow”

● Writing a test-theory
● Writing a test-specification TS

pattern:

 test_spec “pre x → post x (prog x)”

HOL-TestGen:
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

example:

test_spec "sort(l) = prog(l)"

HOL-TestGen:
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem
(“Testcase Generation”)

HOL-TestGen:
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem
(“Testcase Generation”)

apply(gen_test_cases 3 1 “prog”)

HOL-TestGen:
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem
 (“Testcase Generation”)
 TC

1
 ⇒ . . . ⇒� TC

n�
⇒� THYP(H

1
)

�
⇒ �����

�
⇒� THYP(H

m
)� ⇒� TS

• where testcases TC
i
have the form

 Constraint
1
(x) ⇒ . . . ⇒ Constraint

k
(x) ⇒� P(prog x)

• and where THYP(H
i
) are test-hypothesis

HOL-TestGen:
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem

Example:
[] = prog([])
[?X1] = prog([?X1])

[?X1 ≤?X2] ⇒ [?X1, ?X2] = prog([?X1, ?X2])

[?X1 > ?X2] ⇒ [?X2, ?X1] = prog([?X1, ?X2])

HOL-TestGen:
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem

...
5: THYP(∃ x y. is_sorted(PUT[x,y]) →

 ∀ x y. is_sorted(PUT[x,y]))
 6: is_sorted(PUT [?X, ?Y, ?X])

7: THYP(∃ x y z. is_sorted(PUT [x,y,z]) →
 ∀ x y z. is_sorted(PUT [x,y,z]))

8: THYP(3 < |l| → is_sorted(PUT l))

HOL-TestGen:
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem
• Generation of test-data

HOL-TestGen:
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem
• Generation of test-data

gen_test_data “...”

HOL-TestGen:
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem
• Generation of test-data

[] = prog []
[3] = prog [3]
[6,8] = prog [6, 8]
[0,19] = prog [19, 0]

HOL-TestGen:
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem
• Generation of test-data
• Generating a test-harness

HOL-TestGen:
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem
• Generation of test-data
• Generating a test-harness
• Run of testharness and

generation of test-document (a “test plan”)

Digiteo Seminary, 20.3.13 B.Wolff

HOL-TestGen:
A Larger Example: Red Black Trees

 Red-Black-Trees: Test Specification

 testspec :
 (redinv t ∧

 blackinv t)

 �

(redinv (delete x t) ∧
 blackinv (delete x t))

 where delete is the program under test.

Theory: Explicit Test-Hypothesises
● What to do with infinite data-strucutures ?
● What is the connection between test-cases

and test statements and the test theorems?

 Two problems, one answer:
Introducing Testhypothesis “on the fly” ...

THYP :: “bool  bool”
THYP (x)  x

Theory of HOL-TestGen
● One type of test hypothesis:

Uniformity-Hypothesis (for TestCase C)

THYP (∃ a C∈ . P a → ∀ a C∈ . P a)

Theory of HOL-TestGen
● Another: Regularity Hypothesis (, k)

● Consider the case  = list(), k = 2,3,4:

size(x::)<2 = (x = []) ∨ (∃ a. x = [a])

size(x::)<3 = (x = []) ∨ (∃ a. x = [a]) ∨ (∃ a b. x = [a,b])

size(x::)<4 = (x = []) ∨ (∃ a. x = [a]) ∨ (∃ a b. x = [a,b])
 ∨ (∃ a b c. x = [a,b,c])

Theory of HOL-TestGen

● . . . derive the rule (  = list(), k = 2):

[x=[]] [x=[a]] [x=[a,b]]

 P ∧a. P ∧a b. P THYP M

 P

 where M= (size x >k P) 

● data separation lemma vs. “regularity hypothesis”

Theory Test-Hypothesis:
Verifying Uniformity

● Reconsider the Uniformity Hypothesis:
Case A: We test the hypothesis:

5: THYP(∃ x y. y < x → [y,x] = sort(PUT [x,y]) →
 ∀ x y. y < x → [y,x] = sort(PUT [x,y]))

i.e. we state the hypothesis as test-spec!

HOL-TestGen:
Achievements FOR TP Community

• Larger Case-Studies in Test and Proof
• NPfIT, Firewalls
• Recently: Test-case generation for Hardware
• EURO-MILS Projects in Certification CC

• Isabelle Distributions 2009-1, 2011, 2012

including pervasive parallelisation of Kernel
• P-IDE Interface

Digiteo Seminary, 20.3.13 B.Wolff

HOL-TestGen:
Achievements FOR TP Community

● National Program for IT (NPfIT) :
Large Case-Study together with British Telecom

● Test-Goal: NHS patient record access control
mechanism

● Large Distributed, Heterogeneous System
● Legally required Access Control Policy

(practically mostly enforced on the application level)

 SPINE

NHS-London NHS-Midlands

AP1 AP2 AP3

Digiteo Seminary, 20.3.13 B.Wolff

HOL-TestGen:
Achievements FOR TP Community

● National Program for IT (NPfIT) :
Large Case-Study together with British Telecom

● Led to development of the

Unified Policy Framework (Isabelle theory)
encompassing RBAC, ARBAC and Firewall Policies

Work on Verified Policy-Transformations
led to interesting application in Network-
Security testing

Digiteo Seminary, 20.3.13 B.Wolff

Models of Systems for Tests
·

UPF Model instantiated
with NPfIT AC Model

British Telecom Spine

a posteriori
learning by experimenting

a priori

test-case generation

HOL-TestGen:
Achievements FOR TP Community

● ANR Project Paral ITP: Testing fueled the
Parallelization in the Kernel of Isabelle

(thanks Digiteo!)

nano-kernel
+ kernel PO

decision
procedures ...

...

PIDE jEdit
Scala System Interface

...

PolySML multi-core
C1 C2 C3 C4

.

.

.
nano-kernel
+ kernel PO

parallel
Isabelle
decision
procedures ...

...

Isa Scala System Interface

...

PolySML multi-core

C1

.

.

.
Parallel Coq
 kernel PO

parallelized
Coq
decision
procedures ...

...

PIDE jEdit

Coq Scala System Interface

...

Parallal OCaml Engine

.

.

.

C2 C1C16C15 C1 C2 C1C16C15

HOL-TestGen:
Achievements FOR TP Community

● . . . a technology which is now attempted to
be transferred to Coq ...

nano-kernel
+ kernel PO

decision
procedures ...

...

PIDE jEdit
Scala System Interface

...

PolySML multi-core
C1 C2 C3 C4

.

.

.
nano-kernel
+ kernel PO

parallel
Isabelle
decision
procedures ...

...

Isa Scala System Interface

...

PolySML multi-core

C1

.

.

.
Parallel Coq
 kernel PO

parallelized
Coq
decision
procedures ...

...

PIDE jEdit

Coq Scala System Interface

...

Parallal OCaml Engine

.

.

.

C2 C1C16C15 C1 C2 C1C16C15

HOL-TestGen:
Achievements FOR TP Community

● Isabelle: PIDE / jedit is meanwhile robust and
stable and part of the Isabelle Distribution.

Since Version 2013 the default interface.
● Support for advanced (nested) tool-tipping

and hypertexting in the entire session.
● experiments with JAVA-Browsers.
● Coq: First Proof-of-Technologies

to replace CoqIde available.

HOL-TestGen:
Achievements FOR TP Community

● Isabelle: Substantial Performance Boost:

Parallel fine-
grained
validation
of structured
proofs in

in the

jEdit - PIDE

(Isabelle2012-D)

Digiteo Seminary, 20.3.13 B.Wolff

The Future of (Model-based)
Testing

· More “Formal Methods under the Hood”
· HOL-TestGenFW, SAGE, SAL,

Excel-Expert, Crash-Analyser, ...

· Cloudification
· Excel-Expert ...

· Gamification
· Pex4Fun, Edutainment...

· Parallelization
· In Test and Proof ... but “no free lunch”...

· New Domain-Specializations
· GUI-Testing, Model-Search, MKM ...

Digiteo Seminary, 20.3.13 B.Wolff

Conclusion: Test & Proof

· ... can never ever establish the absense of
“Bugs” in a system! Never ever. Both of them.

· ... can, when combined, further increase
confidence in verification results by using
mutually independent assumptions.

· ... can, when combined, offer new ways
to tackle abstraction and state space explosion.
(Normalization Theorems,
Massage of Constraint Systems, ...)

Conclusion: HOL-Testgen ?
A formal testcase-generation method based
on the solution of logical constraints
● Built-on top of an interactive theorem proving

environment, it allows to combine
automated provers with user intelligence

● has been applied in substantial case-studies
(Firewall Case-Study, see TestCom/Fates 08)

● produces explicit test-hypothesis
to establish a logical link between test and proof

● profits a lot from massive paralellization of
symbolic computation ...

Sources Available


Version HOL-TestGen 1.7 (Isabelle 2011-1)

http://www.brucker.ch/projects/hol-testgen

Including Example Suite . . .

Case-Study: NPfIT
● Challenges:

● access control rules for patient-identifiable information are complex and
reflect the trade-off between patient confidentiality, usability, functional,
and legislative constraints.

● Traditional discretionary and mandatory access control and RBAC are
insufficiently expressive to capture complex policies such as Legitimate
Relationships, Sealed Envelopes or Patient Consent Management.

● access rules of such a large system comprise not only elementary rules of
data-access, but also access to security policies themselves enabling policy
management. The latter is conventionally modeled in ABAC [6–8] and
administrative RBAC [9, 10] models; A uniform modelling framework must be
able to accommodate this.

● The requirements are mandated by laws, official guidelines and ethical
positions (e. g. [11, 12]) that are prone to change.

Case-Study: NPfIT
● Different “Information Gouvernance Principles”

(= Policies):
● Role-Based Access Control (RBAC): NPfIT uses administrative RBAC [9] to
control who can access what system functionality. Each user is assigned
one or more User Role Profile (URP). Each URP permits the user to
perform several Activities.

● Legitimate Relationship (LR): A user is only allowed to access the data of
patients in whose care he is actually involved. Users are assigned to
hierarchically ordered workgroups that reflect the organisational
structure of a workplace.

● Patient Consent (PC): Patients can opt out in having a Summary Care
Record (SCR) at all, or to control uploads of data into the SCR. This
requires additional mechanisms to manage consent.

● Sealed Envelope (SE): The sealing concept is used to hide parts of an SCR
from users. Kinds of seals: seal, seal and lock, clinician seal.

Modeling Framework:
Unified Policy Framework (UPF)

● UPF (A Theory in HOL / for HOL-TestGen)
· A Policy: A Decision Function

(Modeling a “Policy Enforcement Point” in a System)

datatype α decision = allow α | deny α

types (α,β) policy = α β decision (* = α ⇀ ⇒ β option *)

notation α ↦ β = (α,β) policy

Modeling Framework:
Unified Policy Framework (UPF)

● UPF (A Theory in HOL / for HOL-TestGen)
● Policy Constructors

definition ∅≡ λ y. None (* :: ∅ α ↦ β *)

definition p(x+↦t) p(x ≡ Some(↦ allow t)) (* p :: α ↦ β *)
 p(x−↦t) p(x ≡ Some(↦ deny t)) (* where p(x ↦ t) ≡

 λ y. if y = x then A else p y *)

definition (*AllowAll :: "(α β) (α ⇀ ⇒ ↦ β)" *)

 ∀A x. pf(x) (λ x. case pf x of Some y Some(allow(y))≡ ⇒
 | None None)⇒

 (*DenyAll :: "(α β) (α ⇀ ⇒ ↦ β)"*)
 ∀D x. pf(x) (λ x. case pf x of Some y Some(allow(y))≡ ⇒

 | None None)⇒

Modeling Framework:
Unified Policy Framework (UPF)

● UPF (A Theory in HOL / for HOL-TestGen)
– Domain, Range and Restictions on Policies (Z-like)

definition A {x. y. x = allow y}, D {x. y. x = deny y}≡ ∃ ≡ ∃

definition dom:: α β ⇀ ⇒ α set
where dom f {x. f x ≡ ≠ None}

definition ran:: α β ⇀ ⇒ β set ...

definition _ �� _ :: α set ⇒ α β α β⇀ ⇒ ⇀
where S � p ≡ (λ x. if x S then p x else none)∈ (* domain restriction *)

definition _ � _ :: α β ⇀ ⇒ α set ⇒ α β⇀ ... (* range restriction *)

definition _ _ :: ⨁ α β ⇀ ⇒ α β⇀ α β ...⇒ ⇀ (* first fit override *)

Example: Firewalls

● Firewall Policies in UPF
– Data:

ip-address = int × int × int × int
ip-packet = ip-address × protocol × content × ip-

address

– Firewall - Policies:

policy : ip-packet ↦ ip-packet

… this covers also Network Adress Translations
(NAT's)

Example: Firewalls

● Firewall Policies in UPF
– Elementary Policies

definition me-ftp :: ip-packet ↦ ip-packet
where me-ftp ≡ (∅ (192,22,14,76),ftp,d,(192,22,14,76)
 +↦(192,22,14,76),ftp,d,(192,22,14,76))

Example: Firewalls

● Firewall Policies in UPF
– Elementary Policies

definition me-ftp :: ip-packet ↦ ip-packet
where me-ftp ≡ (∅ (192,22,14,76),ftp,d,(192,22,14,76)
 +↦(192,22,14,76),ftp,d,(192,22,14,76))

– Combined Policies:

definition me-none-else:: ip-packet ↦ ip-packet

where me-none-else ≡ me-ftp ⨁ ∀D x. x

Example: Firewalls

● Firewall Policies in UPF
– Elementary Policies

definition me-ftp :: ip-packet ⇛ ip-packet
where me-ftp ≡ (∅ (192,22,14,76),ftp,d,(192,22,14,76)
 +↦(192,22,14,76),ftp,d,(192,22,14,76))

– Combined Policies:

definition me-none-else:: ip-packet ⇛ ip-packet

where me-none-else ≡ me-ftp ⨁ ∀D x. x

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

