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Abstract
While Formal Testing and Theorem-Proving are still perceived 
as antagonisms by many, there is a growing research field using 
 the combination of both to increase the applicability of Formal 
Methods in industry, in particular in the area of Safety-and 
Security critical systems requiring formal certifications.

In this talk, I will present research (partially funded by the 
Digiteo Foundation) around the HOL-TestGen System, which 
strives for a synthesis of interactive and automated theorem 
proving as well of different formal testing techniques. I will 
present results which are of mutual interest for both research 
areas as well as an outlook for future directions.
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Overview
● Test vs. Proof: An old controversy

● Can proofs guarantee the “Absence of Errors”
● Are deductive verifiers “better” than testers?
● Can we avoid Tests ? Or Reality ?

● HOL-TestGen:  A verification and validation 
approach by Model-based Testing (MBT)

● HOL-TestGen: Achievements FOR Proofs

● The Future of (Model-based) Testing
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Test vs. Proof: 
An old controversy

● “Dijkstra's Verdict” :

‚ Program testing can be used to show the 
presence of bugs, but never to show their 

absence! 
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Test vs. Proof: 
An old controversy

● “Dijkstra's Verdict” :

‚ Program testing can be used to show the 
presence of bugs, but never to show their 

absence! 

● Well, Dijkstra was party; 
so can he be trusted ? 
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Test vs. Proof: 
An old controversy

● “Dijkstra's Verdict” :

‚ Program testing can be used to show the 
presence of bugs, but never to show their 

absence! 

● So: can proof-based verifications 
guarantee the  

“abscence of bugs” ?



Test vs. Proof: 
An old controversy

● An Architecture of a Program Verifier   (VCC)
HOL-Boogie [Böhme, Wolff]

HOL-Boogie

.thy
VCC

Boogie

.bpl

.bpl

axiomatization of the 
“c virtual machine” (cvm)

.b2i

C 
com
piler

Z3
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Test vs. Proof: 
An old controversy

● The ugly reality:
deductive verification methods   
make a lot of assumptions *besides being costly in brain-power!

● operational semantics should be faithfully executed
● complex memory-machine model 

consistent (VCC: 800 axioms)
● correctness of the vc generation

(for concurrent C with “ownership”, “locks”, ... ! ):
● correctness of the vc generator and prover
● abscence of an environment (= Operating System)

that manipulates the underlying state.
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Test vs. Proof: 
An old controversy

● Back to “Dijkstra's Verdict” :

‚ Program testing can be used to show the 
presence of bugs, but never to show their 

absence! 

● Deductive Verification infers Properties
on infinite sets of inputs; aren't they then 

    “always better than tests” ?
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Test vs. Proof: 
An old controversy

● Well, this depends on these assumptions ...
See the (very nice) example of Maria Christakis,

where 
for a 
simple 
program: 
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Test vs. Proof: 
An old controversy

● Well, this depends on these assumptions ...

... two different tools
● Clousot (deductive based verification)
● Pex  (white-box tester)

provide alltogether differently false results,
since their underlying assumptions on arithmetics
and memory model are simply different. 
Accidently, the Pex-Verdict is actually 
more correct than Clousots ...
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Test vs. Proof: 
An old controversy

● “Dijkstra's Verdict” :

‚ Program testing can be used to show the 
presence of bugs, but never to show their 

absence! 

Can we actually always avoid testing ?
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Test vs. Proof: 
An old controversy

● “Dijkstra's Verdict” :

‚ Program testing can be used to show the presence of 
bugs, but never to show their absence! 

● “Einsteins scepticism”:

As far as the laws of mathematics refer to reality, 
they are not certain, as far as they are certain, 
they do not refer to reality.
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Test vs. Proof: 
An old controversy

·

Model  
(behaviour, and data !) 

System
(hard + software)

a posteriori

learning by experimenting
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Test vs. Proof: 
An old controversy

·

Model  
(behaviour, and data !) 

System
(hard + software)

a posteriori

learning by experimenting

a priori

test-case generation
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Test vs. Proof: 
An old controversy

·

Model  
(behaviour, and data !) 

System
(hard + software)

a posteriori

learning by experimenting

a priori

test-case generation
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Verification by
Model-based Testing ... 

·
● ... can be done post-hoc; significant projects 

“reverse engineer” the model of a legacy system

● ... attempts to find bugs in specifications EARLY
(and can thus complement proof-based verification ...)

● ... can help system integration processes
in a partly unknown environment (“embedded systems”)

Nothing of this can be done by 
deductive verification methods !
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Test vs. Proof: 
Is it actually still a controversy?

● Dijkstra - Test : 
‚ Would Dijkstra fly with an aeroplane

which is verified by deduct. methods alone ?
‚  

● Well, that's illegal.
Certification bodies (CC, DO183) require tests,
(and are very reluctant at proofs)
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Test vs. Proof: 
Is it actually still a controversy?

● Microsoft: Five major verification tools:
Pex (Structural Test), SAGE(Fuzz Test) and
Dafny, Spec#, VCC (VCG) use SMT solver Z3 !

● Test and Proofs, are they actually adversaries?  
(Tony Hoare, POPL2012, “says meanwhile no”).



HOL-TestGen: 
A model-based approach to 

Verification
● Vision of HOL-Testgen 

● HOL-TestGen provides:
● A formal testcase-generation method based

on the solution of logical constraints



HOL-TestGen: 
A model-based approach to 

Verification
● HOL-TestGen provides:

● A formal testcase-generation method based
on the solution of logical constraints

● Built-on top of an interactive theorem proving 
environment, it allows to combine
automated provers with user intelligence



HOL-TestGen as Plugin
in the Isabelle Architecture

nano-kernel
+ kernel

proof procedures
(simp, fast, auto, 
etc...)

components:
datatype 
record, ...

integrators
sledge, smtATP

Tools
HOL-Z, HOL-TestGen, 
Simpl, HOL-Boogie, HOL-OCL 

 Boogie/VCC

Argo/UML 

PIDE / jEdit

code
gen.

Scala System Interface

integrators
sledge, 

ML running on multi-core arch
C1 C2 C3 C4



Why Reusing Isabelle
 

Isabelle has:

... a lot of Infrastructure not worth to re-invent. 

We us it as:

Formal Methods Tool Framework

“The ECLIPSE of FM - Tools”



HOL-TestGen: 
“The Standard Workflow”

● Writing a test-theory (the “model”)



HOL-TestGen: 
“The Standard Workflow”

● Writing a test-theory (the “model”)

Example: Sorting in HOL

fun ins :: "(’a::linorder) ’a list  ’a list" ⇒ ⇒

where   "ins x [] = [x]"
|"ins x (y#ys) = (if (x < y) then x#y#ys

                  else (y#(ins x ys)))"

fun sort:: "(’a::linorder) list  ’a list" ⇒

where    "sort [] = [] "
| "sort (x#xs) = ins x (sort xs)"



HOL-TestGen: 
“The Standard Workflow”

● Writing a test-theory
● Writing a test-specification TS



HOL-TestGen: 
“The Standard Workflow”

● Writing a test-theory
● Writing a test-specification TS

pattern:

        test_spec “pre x  →   post  x  (prog x)”



HOL-TestGen: 
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

example:

test_spec "sort(l) = prog(l)"



HOL-TestGen: 
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem 
(“Testcase Generation”)



HOL-TestGen: 
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem 
(“Testcase Generation”)

apply(gen_test_cases 3 1 “prog”)



HOL-TestGen: 
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem
                           (“Testcase Generation”)
   TC

1
 ⇒ . . . ⇒� TC

n�
⇒� THYP(H

1
)

�
⇒ �����

�
⇒� THYP(H

m
)� ⇒� TS   

• where testcases TC
i  
have the form 

      Constraint
1
(x) ⇒ . . . ⇒ Constraint

k
(x) ⇒� P(prog x)

• and where THYP(H
i
) are test-hypothesis



HOL-TestGen: 
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem

Example: 
[] = prog([])
[?X1] = prog([?X1])

[?X1 ≤?X2 ] ⇒  [?X1, ?X2] = prog([?X1, ?X2]) 

[?X1 > ?X2 ] ⇒  [?X2, ?X1] = prog([?X1, ?X2])
                            



HOL-TestGen: 
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem

...
5: THYP(∃ x y. is_sorted(PUT[x,y]) → 

                                ∀ x y. is_sorted(PUT[x,y]))
      6:  is_sorted(PUT [?X, ?Y, ?X])

7:  THYP(∃ x y z. is_sorted(PUT [x,y,z]) →
   ∀ x y z. is_sorted(PUT [x,y,z]))

8:  THYP(3 < |l| → is_sorted(PUT l))



HOL-TestGen: 
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem 
• Generation of test-data



HOL-TestGen: 
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem 
• Generation of test-data

gen_test_data “...”



HOL-TestGen: 
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem 
• Generation of test-data

[] = prog []
[3] = prog [3]
[6,8] = prog [6, 8] 
[0,19] = prog [19, 0]



HOL-TestGen: 
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem
• Generation of test-data
• Generating a test-harness



HOL-TestGen: 
“The Standard Workflow”

• Writing a test-theory
• Writing a test-specification TS

• Conversion into test-theorem
• Generation of test-data
• Generating a test-harness
• Run of testharness and 

generation of test-document (a “test plan”)
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HOL-TestGen: 
A Larger Example: Red Black Trees

 Red-Black-Trees: Test Specification

 testspec :
 (redinv t  ∧  

   blackinv t) 

 �

(redinv (delete x t)  ∧     
 blackinv (delete x t))

 

 where delete is the program under test.
 



Theory: Explicit Test-Hypothesises
● What to do with infinite data-strucutures ?
● What is the connection between test-cases 

and test statements and the test theorems? 

 Two problems, one answer:
Introducing Testhypothesis “on the fly” ...

THYP :: “bool  bool”
THYP (x)    x



Theory of HOL-TestGen
● One type of test hypothesis:

Uniformity-Hypothesis (for TestCase C)

THYP (∃  a  C∈ . P a  → ∀ a  C∈ . P a)  



Theory of HOL-TestGen
● Another: Regularity Hypothesis (, k)

● Consider the case    =  list(),  k = 2,3,4:

size(x::)<2 =  (x = []) ∨    (∃ a. x = [a])

size(x::)<3 =  (x = []) ∨    (∃ a. x = [a]) ∨  (∃ a b. x = [a,b])

size(x::)<4 =  (x = []) ∨    (∃ a. x = [a]) ∨  (∃ a b. x = [a,b])  
                         ∨  (∃ a b c. x = [a,b,c])



Theory of HOL-TestGen

● . . .  derive the rule (   =  list(),  k = 2):

[x=[]]               [x=[a]]                  [x=[a,b]]
    ..                       ..                             ..
   P            ∧a.    P               ∧a b.   P             THYP M

                                           P

                                        where M= (size x >k  P) 

● data separation lemma vs. “regularity hypothesis”



Theory Test-Hypothesis:
Verifying Uniformity

● Reconsider the Uniformity Hypothesis:
Case A: We test the hypothesis:

5:  THYP(∃ x y. y < x  → [y,x] = sort(PUT [x,y]) →
  ∀ x y. y < x  → [y,x] = sort(PUT [x,y]))

i.e. we state the hypothesis as test-spec!



HOL-TestGen: 
Achievements FOR TP Community

• Larger Case-Studies in Test and Proof
• NPfIT, Firewalls
• Recently: Test-case generation for Hardware
• EURO-MILS Projects in  Certification CC

• Isabelle Distributions 2009-1, 2011, 2012

including pervasive parallelisation of Kernel
• P-IDE Interface
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HOL-TestGen: 
Achievements FOR TP Community

● National Program for IT (NPfIT) :
Large Case-Study together with British Telecom

● Test-Goal: NHS patient record access control
mechanism

● Large Distributed, Heterogeneous System
● Legally required Access Control Policy

(practically mostly enforced on the application level)

                                            SPINE

NHS-London NHS-Midlands ....

AP1 AP2 AP3
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HOL-TestGen: 
Achievements FOR TP Community

● National Program for IT (NPfIT) :
Large Case-Study together with British Telecom

● Led to development of the

Unified Policy Framework (Isabelle theory)
encompassing RBAC, ARBAC and Firewall Policies

Work on Verified Policy-Transformations
led to interesting application in Network-
Security testing 
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Models of Systems for Tests 
·

UPF Model instantiated 
with NPfIT AC Model 

British Telecom Spine

a posteriori
learning by experimenting

a priori

test-case generation



HOL-TestGen: 
Achievements FOR TP Community

● ANR Project Paral ITP: Testing fueled the 
Parallelization in the Kernel of Isabelle 

(thanks Digiteo!)

nano-kernel
+ kernel PO

decision
procedures ...

...

PIDE jEdit
Scala System Interface

...

PolySML  multi-core
C1 C2 C3 C4

.

.

.
nano-kernel
+ kernel PO

parallel
Isabelle
decision
procedures ...

...

Isa Scala System Interface

...

PolySML  multi-core

C1

.

.

.
Parallel Coq
 kernel PO

parallelized
Coq
decision
procedures ...

...

PIDE jEdit

Coq Scala System Interface

...

Parallal OCaml Engine

.

.

.

C2 .. .. .... .. C1C16C15 C1 C2 .. .. .... .. C1C16C15



HOL-TestGen: 
Achievements FOR TP Community

● . . . a technology which is now attempted to 
be transferred to Coq ...

nano-kernel
+ kernel PO

decision
procedures ...

...

PIDE jEdit
Scala System Interface

...

PolySML  multi-core
C1 C2 C3 C4

.

.

.
nano-kernel
+ kernel PO

parallel
Isabelle
decision
procedures ...

...

Isa Scala System Interface

...

PolySML  multi-core

C1

.

.

.
Parallel Coq
 kernel PO

parallelized
Coq
decision
procedures ...

...

PIDE jEdit

Coq Scala System Interface

...

Parallal OCaml Engine

.

.

.

C2 .. .. .... .. C1C16C15 C1 C2 .. .. .... .. C1C16C15



HOL-TestGen: 
Achievements FOR TP Community

● Isabelle: PIDE / jedit is meanwhile robust and
stable and part of the Isabelle Distribution.

Since Version 2013 the default interface.
● Support for advanced (nested) tool-tipping

and hypertexting in the entire session.
● experiments with JAVA-Browsers.
● Coq: First Proof-of-Technologies

to replace CoqIde available.



HOL-TestGen: 
Achievements FOR TP Community

● Isabelle: Substantial Performance Boost:



Parallel fine-
grained
validation
of structured
proofs in

in the 

jEdit - PIDE

(Isabelle2012-D) 
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The Future of (Model-based) 
Testing

· More “Formal Methods under the Hood”
· HOL-TestGenFW, SAGE, SAL, 

Excel-Expert, Crash-Analyser, ... 

· Cloudification
· Excel-Expert ...

· Gamification
· Pex4Fun, Edutainment...

· Parallelization
· In Test and Proof ... but “no free lunch”...

· New Domain-Specializations
· GUI-Testing, Model-Search, MKM ...
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Conclusion: Test & Proof

· ... can never ever establish the absense of 
“Bugs” in a system! Never ever. Both of them.

· ... can, when combined, further increase 
confidence in verification results by using 
mutually independent assumptions.

· ... can, when combined, offer new ways 
to tackle abstraction and state space explosion. 
(Normalization Theorems, 
Massage of Constraint Systems, ...)



Conclusion: HOL-Testgen ?
A formal testcase-generation method based
on the solution of logical constraints
● Built-on top of an interactive theorem proving 

environment, it allows to combine
automated provers with user intelligence

● has been applied in substantial case-studies
(Firewall Case-Study, see TestCom/Fates 08)

● produces explicit test-hypothesis 
to establish a logical link between test and proof

● profits a lot from massive paralellization of 
symbolic computation ...



Sources Available


Version HOL-TestGen 1.7 (Isabelle 2011-1)

http://www.brucker.ch/projects/hol-testgen

Including Example Suite . . .



Case-Study: NPfIT
● Challenges:

● access control rules for patient-identifiable information are complex and 
reflect the trade-off between patient confidentiality, usability, functional, 
and legislative constraints.

● Traditional discretionary and mandatory access control and RBAC are 
insufficiently expressive to capture complex policies such as Legitimate 
Relationships, Sealed Envelopes or Patient Consent Management.

● access rules of such a large system comprise not only elementary rules of 
data-access, but also access to security policies themselves enabling policy 
management. The latter is conventionally modeled in ABAC [6–8] and 
administrative RBAC [9, 10] models; A uniform modelling framework must be 
able to accommodate this.

● The requirements are mandated by laws, official guidelines and ethical 
positions (e. g. [11, 12]) that are prone to change.



Case-Study: NPfIT
● Different “Information Gouvernance Principles” 

(= Policies):
● Role-Based Access Control (RBAC): NPfIT uses administrative RBAC [9] to 
control who can access what system functionality. Each user is assigned 
one or more User Role Profile (URP). Each URP permits the user to 
perform several Activities.

● Legitimate Relationship (LR): A user is only allowed to access the data of 
patients in whose care he is actually involved. Users are assigned to 
hierarchically ordered workgroups that reflect the organisational 
structure of a workplace.

● Patient Consent (PC): Patients can opt out in having a Summary Care 
Record (SCR) at all, or to control uploads of data into the SCR. This 
requires additional mechanisms to manage consent.

● Sealed Envelope (SE): The sealing concept is used to hide parts of an SCR 
from users. Kinds of seals: seal, seal and lock, clinician seal.



Modeling Framework: 
Unified Policy Framework (UPF)

● UPF (A Theory in HOL / for HOL-TestGen)
· A Policy: A Decision Function 

(Modeling a “Policy Enforcement Point” in a System)

datatype α decision = allow α | deny α
 

types (α,β) policy = α  β decision    (* = α ⇀ ⇒ β option *) 

notation  α ↦ β = (α,β) policy



Modeling Framework: 
Unified Policy Framework (UPF)

● UPF (A Theory in HOL / for HOL-TestGen)
● Policy Constructors

definition  ∅≡ λ y. None     (*  :: ∅ α ↦ β *)

definition p(x+↦t)  p(x ≡  Some(↦ allow t))      (* p :: α ↦ β *)
    p(x−↦t)  p(x ≡  Some(↦ deny t))      (* where  p(x  ↦ t)  ≡

                                                                                        λ y. if y = x then A else p y *)

definition (*AllowAll :: "(α  β)  (α ⇀ ⇒ ↦ β)" *) 

   ∀A x. pf(x)  (λ x. case pf x of  Some y  Some(allow(y))≡ ⇒
                                  | None  None)⇒

  (*DenyAll :: "(α  β)  (α ⇀ ⇒ ↦ β)"*) 
  ∀D x. pf(x)  (λ x. case pf x of   Some y  Some(allow(y))≡ ⇒

                                 | None  None)⇒



Modeling Framework: 
Unified Policy Framework (UPF)

● UPF (A Theory in HOL / for HOL-TestGen)
– Domain, Range and Restictions on Policies (Z-like)

definition A  {x. y. x = allow y},  D  {x. y. x = deny y}≡ ∃ ≡ ∃

definition dom:: α  β ⇀ ⇒ α set
where      dom f  {x. f x ≡ ≠ None}

definition ran:: α  β ⇀ ⇒ β set   ...

definition  _ �� _ :: α set ⇒ α  β   α  β⇀ ⇒ ⇀  
where     S �  p  ≡ (λ x. if x  S then p x else none)∈  (* domain restriction *)

definition _ �  _  :: α  β ⇀ ⇒ α set ⇒ α  β⇀  ... (* range restriction *)

definition  _  _ :: ⨁ α  β ⇀ ⇒  α  β⇀    α  β ...⇒ ⇀ (* first fit override  *)  



Example: Firewalls

● Firewall Policies in UPF
– Data: 

ip-address =  int × int × int × int
ip-packet   =  ip-address × protocol × content × ip-

address

– Firewall - Policies:

policy : ip-packet ↦ ip-packet

… this covers also Network Adress Translations 
(NAT's)



Example: Firewalls

● Firewall Policies in UPF
– Elementary Policies

definition  me-ftp :: ip-packet ↦ ip-packet 
where      me-ftp ≡   (∅ (192,22,14,76),ftp,d,(192,22,14,76)
                                   +↦(192,22,14,76),ftp,d,(192,22,14,76)) 



Example: Firewalls

● Firewall Policies in UPF
– Elementary Policies

definition  me-ftp :: ip-packet ↦ ip-packet 
where      me-ftp ≡   (∅ (192,22,14,76),ftp,d,(192,22,14,76)
                                   +↦(192,22,14,76),ftp,d,(192,22,14,76)) 

– Combined Policies:

definition  me-none-else::  ip-packet ↦ ip-packet 

where      me-none-else  ≡ me-ftp   ⨁ ∀D x. x



Example: Firewalls

● Firewall Policies in UPF
– Elementary Policies

definition  me-ftp :: ip-packet ⇛ ip-packet 
where      me-ftp ≡   (∅ (192,22,14,76),ftp,d,(192,22,14,76)
                                   +↦(192,22,14,76),ftp,d,(192,22,14,76)) 

– Combined Policies:

definition  me-none-else::  ip-packet ⇛ ip-packet 

where      me-none-else ≡ me-ftp   ⨁ ∀D x. x
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