Génie Logiciel Avancé

Part VII : Proof-based Verification

Burkhart Wolff
wolff@lri.fr
Validation and Verification

- Validation:
 - Does the system meet the clients requirements?
 - Will the performance be sufficient?
 - Will the usability be sufficient?

 Do we build the right system?

- Verification: Does the system meet the specification?

 Do we build the system right?
 Is it « correct »?
What are the limits of test-based verification

- Assumptions on „Testability“

 (system under test must behave deterministically, or have controlled non-determinism, must be initializable)

- Assumptions like Test-Hypothesis

 (Uniform / Regular behaviour is sometimes a „realistic“ assumption, but not always)

- Limits in perfection:
 We know only up to a given „certainty“ that the program meets the specification ...
How to do Verification?

- In the sequel, we concentrate on Verification by Proof Techniques...
Standard example

The specification in UML/OCL (Classes in USE Notation):

```plaintext
class Triangles inherits_from Shapes
attributes
  a : Integer
  b : Integer
  c : Integer

operations
  mk(Integer,Integer,Integer):Triangle
  is_Triangle(): triangle
end
```
Standard example : Triangle

The specification in UML/OCL (Classes in USE Notation):

```plaintext
context Triangles:
inv def : a.oclIsValid() and b.oclIsValid()...
inv pos : 0<a and 0<b and 0<c
inv triangle : a+b>c and b+c>a and c+a>b

context Triangle::isTriangle()
post equi : a=b and b=c implies result=equilateral
post iso : ((a<>b or b<>c) and
(a=b or b=c or a=c))implies result=isosceles
post default: (a<>b or b<>c) and
(a<>b and b<>c and a<>c)
implies result=arbitrary
```
Standard example: Triangle

procedure triangle(j,k,l : positive) is
 eg: natural := 0;
begin
 if j + k <= l or k + l <= j or l + j <= k then
 put(“impossible”);
 else if j = k then
 eg := eg + 1;
 if j = l then
 eg := eg + 1;
 end if;
 if l = k then
 eg := eg + 1;
 end if;
 if eg = 0 then
 put(“quelconque”);
 elsif eg = 1 then
 put(“isocele”);
 else
 put(“equilateral”);
 end if;
 end if;
end if;
end triangle;
Standard example: Exponentiation

The specification in UML/OCL (Classes in USE Notation):

context OclAny:
def exp(x,n) = if n >= 0 then
 if n=0 then 1
 else x*exp(x,n-1)
 endif
else oclUndefined endif

context Integer :: exponent(n:Integer):Real
pre true
post result = if n>= 0 then exp(self,n)
 else 1 / exp(self,-n) endif
Program Example : Exponentiation

Program_1:
S:=1; P:=N;
while P >= 1 loop S:= S*X; P:= P-1; end loop;

Program_2:
S:=1; P:= N;
while P >= 1 loop
 if P mod 2 <> 0 then P := P-1; S := S*X; end if;
 S:= S*S; P := P div 2;
end loop;

These programs have the following characteristics:

- one is more efficient, but more difficult to test
- good tests for one program are not necessarily good for the other
How to do Verification?

- How to PROVE that the programs meet the specification?
Introduction to proof-based program verification
The role of formal proof

- formal proofs are another technique for program validation
 - based on a model of the underlying programming language, the conformance of a concrete program to its specification can be established

 FOR ALL INPUT DATA AND ALL INITIAL STATES !!!

- formal proofs as verification technique can:
 - verify that a more concrete design-model “fits” to a more abstract design model (construction by formal refinement)
 - verify that a program “fits” to a concrete design model.
Who is using formal proofs in industry?

- **Hardware Suppliers:**
 - INTEL: Proof of Floating Point Computation compliance to IEEE754
 - INTEL: Correctness of Cash-Memory-Coherence Protocols
 - AMD: Correctness of Floating-Point-Units against Design-Spec
 - GemPlus: Verification of Smart-Card-Applications in Security

- **Software Suppliers:**
 - MicroSoft: Many Drivers running in „Kernel Mode“ were verified
 - MicroSoft: Verification of the Hyper-V OS (60000 Lines of Concurrent, Low-Level C Code ...)
 - ...
Who is using formal proofs in industry?

- For the highest certification levels along the lines of the Common Criteria, formal proofs are
 - recommended (EAL6)
 - mandatory (EAL7)

 There had been now several industrial cases of EAL7 certifications ...

- For lower levels of certifications, still, formal specifications were required. Recently, Microsoft has agreed in a Monopoly-Lawsuit against the European Commission to provide a formal Spec of the Windows-Server-Protocols. (The tools validating them use internally automated proofs).
Pre-Rerquisites of Formal Proof Techniques

- A Formal Specification (OCL, but also Z, VDM, CSP, B, ...)
 - know-how over the application domain
 - informal and formal requirements of the system

- Either a formal model of the programming language
 or a trusted code-generator from concrete design specs

- Tool Chains to generate, simplify, and solve large formulas
 (decision procedures)

- Proof Tools and Proof Checker: proofs can also be false ...

 Nous, on le fera à la main ;-(
Foundations: Proof Systems

- An Inference System (or *Logical Calculus*) allows to infer formulas from a set of *elementary facts* (axioms) and inferred facts by rules:

\[
\begin{array}{c}
A_1 \quad \ldots \quad A_n \\
\hline
A_{n+1}
\end{array}
\]

“from the *assumptions* A_1 to A_n, you can infer the conclusion A_{n+1}.” A rule with $n=0$ is an elementary fact. Variables occurring in the formulas A_n can be arbitrarily substituted.
Foundations: Proof Systems

- An Inference System for the equality operator (or “Equational Logic”) looks like this:

\[
\begin{align*}
 x = x \\
 \hline
 y = x
\end{align*}
\]

\[
\begin{align*}
 x = y \\
 \hline
 y = z
\end{align*}
\]

\[
\begin{align*}
 x = y \quad P(x) \\
 \hline
 P(y)
\end{align*}
\]

(Where the first rule is an elementary fact).
Foundations: Proof Systems

- A series of inference rule applications is usually displayed as *Proof Tree* (or: *Derivation*)

\[
\begin{align*}
 f(a, b) &= a & f(f(a, b), b) &= c \\
 f(a, b) &= a & f(a, b) &= c \\
 a &= c & g(a) &= g(a) \\
 g(a) &= g(c)
\end{align*}
\]

- The non-elementary facts are the *global assumptions* (here \(f(a, b) = a\) and \(f(f(a, b), b) = c\)).
Foundations: Proof Systems

- As a short-cut, we also write for a derivation:

\[\{ f(a, b) = a, f(f(a, b), b) = c \} \vdash g(a) = g(c) \]

... or generally speaking: from global assumptions \(A \) to a theorem (in theory \(E \)) \(\phi \)

\[A \vdash_{E} \phi \]

This is what theorems are: derivable facts from assumptions in a certain logical system ...
A Proof System for Propositional Logic

- Propositional Logic (PL) in so-called natural deduction:

\[
\begin{align*}
\frac{A}{A \lor B} & \quad \frac{B}{A \lor B} \\
\frac{A \lor B}{Q} & \quad \frac{Q}{Q} \\
\frac{A}{A \land B} & \quad \frac{B}{A} \quad \frac{A \land B}{Q} \\
\frac{A \land B}{A} & \quad \frac{A \land B}{B} \quad \frac{A \land B}{Q}
\end{align*}
\]
A Proof System for Propositional Logic

- Propositional Logic (PL) in so-called natural deduction:

\[
\begin{align*}
\text{False} & \quad \vdash A \\
\therefore \quad \neg A & \quad \vdash A \\
\therefore \quad B & \\
\hline
P \rightarrow Q & \quad \vdash P \\
\therefore \quad Q & \\
\hline
A & \quad \vdash \neg \neg A
\end{align*}
\]
A Proof System for Propositional Logic

- PL + E + Arithmetics (A) in so-called natural deduction:

\[
\begin{align*}
1 + x & \neq x \\
(1 + x = 1 + y) & \rightarrow x = y \\
\frac{P(0)}{\forall x. P(x) \rightarrow P(1 + x)} \\
\frac{\forall x. P(x)}{\forall x. P(x)} \\
(1 + x) + y & = 1 + (x + y) \\
\frac{x + y = y + x}{x + (y + z) = (x + y) + z}
\end{align*}
\]
Now, can we build a Logic for Programs?
Hoare – Logic: A Proof System for Programs

- Now, can we build a

 Logic for Programs ???

 Well, yes!

 There are actually lots of possibilities ...

 - We consider the Hoare-Logic (Sir Anthony Hoare ...), technically an inference system PL + E + A + Hoare
Basis: The mini-language „IMP“, (following Glenn Wynskell's Book)

We have the following commands (cmd)

- the empty command \(\text{SKIP} \)
- the assignment \(x := E \quad (x \in V) \)
- the sequential compos. \(c_1 ; c_2 \)
- the conditional \(\text{IF} \ \text{cond} \ \text{THEN} \ c_1 \ \text{ELSE} \ c_2 \)
- the loop \(\text{WHILE} \ \text{cond} \ \text{DO} \ c \)

where \(c, c_1, c_2, \) are cmd's, V variables,
E an arithmetic expression, cond a boolean expr.
Hoare – Logic: A Proof System for Programs

- Core Concept: A Hoare Triple consisting ...
 - of a pre-condition P
 - a post-condition Q
 - and a piece of program cmd

written:

$$\vdash \{P\} \ cmd \ \{Q\} .$$

P and Q are formulas over the variables V, so they can be seen as set of possible states.
Hoare Logic vs. Symbolic Execution

- HL is also based notion of a \textit{symbolic state}.

\[
\text{state}_{\text{sym}} = V \rightarrow \text{Set}(D)
\]

As usual, we denote sets by

\[
\{ x \mid E \}
\]

where E is a boolean expression.
Hoare Logic vs. Symbolic Execution

• However, instead of:

\[
|\!\! - \{\sigma::\text{state}_{\text{sym}} \mid \text{Pre}(\sigma(X_1), \ldots, \sigma(X_n))\} \\
\text{cmd} \\
\{\sigma::\text{state}_{\text{sym}} \mid \text{Post}(\sigma(X_1), \ldots, \sigma(X_n))\}
\]

where Pre and Post are sets of states. we just write:

\[
|\!\! - \{\text{Pre}\} \text{ cmd } \{\text{Post}\}
\]

where Pre and Post are expressions over program variables.
Hoare Logic vs. Symbolic Execution

• Intuitively:

\[\vdash \{ P \} \text{cmd} \{ Q \} \]

means:

If a program \textit{cmd} starts in a state admitted by \textit{P} if it terminates, that the program must reach a state that satisfies \textit{Q}.
Hoare – Logic: A Proof System for Programs

- PL + E + A + Hoare (simplified binding) at a glance:

\[\vdash \{P\} \text{SKIP} \{P\} \quad \vdash \{P[x \leftarrow E]\} \ x := E\{P\} \]

\[\vdash \{P \land \text{cond}\} \ c \ \{Q\} \quad \vdash \{P \land \neg\text{cond}\} \ d \ \{Q\} \]

\[\vdash \{P\} \text{IF cond THEN} \ c \ \text{ELSE} \ d\{Q\} \]

\[\vdash \\{P \land \text{cond}\} \ c \ \{P\} \]

\[\vdash \{P\} \text{WHILE cond DO} \ c \ \{P \land \neg\text{cond}\} \]

\[P \rightarrow P' \quad \vdash \{P'\} \ \text{cmd} \ \{Q'\} \quad Q' \rightarrow Q \]

\[\vdash \{P\} \ \text{cmd} \ \{Q\} \]
Verification: Test or Proof

Test

- Requires Testability of Programs (initializable, reproducible behaviour, sufficient control over non-determinism)
- Can be also Work-Intensive !!!
- Requires Test-Tools
- Requires a Formal Specification
- Makes Test-Hypothesis, which can be hard to justify!
Summary

Formal Proof

- Can be very hard – up to infeasible (no one will probably ever prove correctness of MS Word!)

- Proof Work typically exceeds Programming work by a factor 10!

- Tools and Tool-Chains necessary

- Makes assumptions on language, method, tool-correctness, too!
Validation : Test or Proof (end)

Test and Proof are Complementary ...

- ... and extreme ends of a continuum: from static analysis to formal proof of “deep system properties”

- In practice, a good “verification plan” will be necessary to get the best results with a (usually limited) budget !!!

 - detect parts which are easy to test
 - detect parts which are easy to prove
 - good start: maintained formal specification
 - this leaves room for changes in the conception
 - ... and for different implementation of sub-components
Can we be sure, that the logical systems are consistent?

Well, yes, practically.

Can we ever be sure, that a specification “means” what we intend?

Well, no.
But when can we ever be entirely sure that we know what we have in mind?
But at least, we can gain confidence validating specs, i.e. by experimenting with them...