
09/25/19 B. Wolff - M2 - PIA 1

Preuves Interactives
et Applications

HOL and its Specification
Constructs

Université Paris-Saclay

Christine Paulin & Burkhart Wolff

http://www.lri.fr/ ̃paulin/PreuvesInteractives

09/25/19 B. Wolff - M2 - PIA 1

Preuves Interactives
et Applications

HOL and its Specification
Constructs

Université Paris-Saclay

Christine Paulin & Burkhart Wolff

http://www.lri.fr/ ̃paulin/PreuvesInteractives

09/25/19 B. Wolff - M2 - PIA 2

Revision: Documents and Commands
! Isabelle has (similar to Eclipse) a
„document-centric“ view of development:
there is a notion on an entire “project”
which is processed globally.

! Documents (~ projects in Eclipse) consists of
files (with potentially different file-type);
.thy files consists of headers commands.

09/25/19 B. Wolff - M2 - PIA 2

Revision: Documents and Commands
! Isabelle has (similar to Eclipse) a
„document-centric“ view of development:
there is a notion on an entire “project”
which is processed globally.

! Documents (~ projects in Eclipse) consists of
files (with potentially different file-type);
.thy files consists of headers commands.

09/25/19 B. Wolff - M2 - PIA 3

What is Isabelle as a System ?
! Global View of a “session“

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D
09/25/19 B. Wolff - M2 - PIA 3

What is Isabelle as a System ?
! Global View of a “session“

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

09/25/19 B. Wolff - M2 - PIA 4

What is Isabelle as a System ?
! Global View

token

token

token

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

atom detailed view:

09/25/19 B. Wolff - M2 - PIA 4

What is Isabelle as a System ?
! Global View

token

token

token

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

atom detailed view:

09/25/19 B. Wolff - M2 - PIA 5

Revision: Documents and Commands
! Each position in document corresponds

– to a “global context” Θ
– to a “local context” Θ, Γ

! There are specific „Inspection Commands“
that give access to information in the contexts

– thm, term, typ, value, prop : global context
– print_cases, facts, ... , thm : local context

09/25/19 B. Wolff - M2 - PIA 5

Revision: Documents and Commands
! Each position in document corresponds

– to a “global context” Θ
– to a “local context” Θ, Γ

! There are specific „Inspection Commands“
that give access to information in the contexts

– thm, term, typ, value, prop : global context
– print_cases, facts, ... , thm : local context

09/25/19 B. Wolff - M2 - PIA 6

What is Isabelle as a System ?
! Document “positions” were evaluated to an

implicit state, the theory context T

Θ3

Θ0

Θ3 - 2

Θ3 - 1

“semantic”
evaluation
as SML
function

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D
09/25/19 B. Wolff - M2 - PIA 6

What is Isabelle as a System ?
! Document “positions” were evaluated to an

implicit state, the theory context T

Θ3

Θ0

Θ3 - 2

Θ3 - 1

“semantic”
evaluation
as SML
function

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

cmd

Document /
“Theory”

cmd

A

B
C

D

09/25/19 B. Wolff - M2 - PIA 7

Inspection Commands

! Validating a type-expression:

 example: typ "('a × 'β bool)set"⇒

! Type-checking terms:

 example: term “(a::nat) + b = b + a"

typ “<hol-typ>”

term “<hol-term>”

09/25/19 B. Wolff - M2 - PIA 7

Inspection Commands

! Validating a type-expression:

 example: typ "('a × 'β bool)set"⇒

! Type-checking terms:

 example: term “(a::nat) + b = b + a"

typ “<hol-typ>”

term “<hol-term>”

09/25/19 B. Wolff - M2 - PIA 8

Inspection Commands
! Type-checking propositions:

 example: prop “ t. u. H t u ¬ Q u"∃ ∀ ⟶

 Note: Propositions may contain free variables, which
 are implicitly universally quantified!

! Checking Theorem Names, Printing Theorems:

 example: thm refl sym subst

prop “<boolean-term>”

thm “<theorem-id>”

09/25/19 B. Wolff - M2 - PIA 8

Inspection Commands
! Type-checking propositions:

 example: prop “ t. u. H t u ¬ Q u"∃ ∀ ⟶

 Note: Propositions may contain free variables, which
 are implicitly universally quantified!

! Checking Theorem Names, Printing Theorems:

 example: thm refl sym subst

prop “<boolean-term>”

thm “<theorem-id>”

09/25/19 B. Wolff - M2 - PIA 9

Search Commands
! Searching theorem id’s in the global

context:

example: find_theorems name:”HOL” “_ = _”

find_theorems “<pattern-list>”

09/25/19 B. Wolff - M2 - PIA 9

Search Commands
! Searching theorem id’s in the global

context:

example: find_theorems name:”HOL” “_ = _”

find_theorems “<pattern-list>”

09/25/19 B. Wolff - M2 - PIA 10

Text Commands

! Text-Commands:

chapter ‹ text ›

section {*<text>*}section ‹ text ›

subsection ‹ text ›

text ‹ text ›

- Text: spell-
 checked
- may contain
 „antiquotations“
 for types, terms,
 thms, code, ...

09/25/19 B. Wolff - M2 - PIA 10

Text Commands

! Text-Commands:

chapter ‹ text ›

section {*<text>*}section ‹ text ›

subsection ‹ text ›

text ‹ text ›

- Text: spell-
 checked
- may contain
 „antiquotations“
 for types, terms,
 thms, code, ...

09/25/19 B. Wolff - M2 - PIA 11

Code-execution Commands
! Evaluating terms:

 example: value “(3::nat) + 4 = 7"

! Code-Generation:

 example: export_code odometer_function_step in SML
 module_name Odo_Function file "code/sml/odo.sml"

 export_code “<hol-id>” in “<lang>”
module_name “<sml-id>” file “<path>”

value “<hol-term>”

09/25/19 B. Wolff - M2 - PIA 11

Code-execution Commands
! Evaluating terms:

 example: value “(3::nat) + 4 = 7"

! Code-Generation:

 example: export_code odometer_function_step in SML
 module_name Odo_Function file "code/sml/odo.sml"

 export_code “<hol-id>” in “<lang>”
module_name “<sml-id>” file “<path>”

value “<hol-term>”

09/25/19 B. Wolff - M2 - PIA 12

Basic Declaration Commands
! Type Declaration

 example: typedecl “L"

! (Unspecified) Constant Declaration:

 example: consts True :: “bool”

 consts c :: „τ“

typedecl “(α1,...,αn) <typconstructor-id>”

09/25/19 B. Wolff - M2 - PIA 12

Basic Declaration Commands
! Type Declaration

 example: typedecl “L"

! (Unspecified) Constant Declaration:

 example: consts True :: “bool”

 consts c :: „τ“

typedecl “(α1,...,αn) <typconstructor-id>”

09/25/19 B. Wolff - M2 - PIA 13

Simple Proof Commands
! Simple (Backward) Proofs:

There are different formats of proofs, we concentrate on the
simplest one:

apply(<method1>) ... apply(<methodn>) done

lemma <thmname> :
[<contextelem>+ shows] “<phi>”
 <proof>

09/25/19 B. Wolff - M2 - PIA 13

Simple Proof Commands
! Simple (Backward) Proofs:

There are different formats of proofs, we concentrate on the
simplest one:

apply(<method1>) ... apply(<methodn>) done

lemma <thmname> :
[<contextelem>+ shows] “<phi>”
 <proof>

09/25/19 B. Wolff - M2 - PIA 14

Exercise demo3.thy
! Examples

lemma X1 : “A B C (A B) C”⟹ ⟹ ⟹ ∧ ∧
 (* output: A; B; C (A B) C⟦ ⟧ ⟹ ∧ ∧) *)

lemma X2 : assume “A” and “B” and “C”
 shows “(A B) C”∧ ∧

lemma X2 : assume h1: “A” and h2: “B” and h3: “C”
 shows “(A B) C”∧ ∧

09/25/19 B. Wolff - M2 - PIA 14

Exercise demo3.thy
! Examples

lemma X1 : “A B C (A B) C”⟹ ⟹ ⟹ ∧ ∧
 (* output: A; B; C (A B) C⟦ ⟧ ⟹ ∧ ∧) *)

lemma X2 : assume “A” and “B” and “C”
 shows “(A B) C”∧ ∧

lemma X2 : assume h1: “A” and h2: “B” and h3: “C”
 shows “(A B) C”∧ ∧

09/25/19 B. Wolff - M2 - PIA 15

Basic Backward Proof Methods
• The most elementary proof method is the rule <thmname> method.

It is used for introduction rules.

It basically proceeds in two phases:
– it searches the <thm> and replaces the free variables by

fresh variables of the form ?X,?Y,?Z (schematic variables)
– it constructs an instance of <thmname> by unification;

this means that the conclusion of <thmname> must finally match
(modulo β and α red.) against the conclusion of the current (first) goal.

examples: apply(rule impI) apply(rule iffI)
 apply(rule deMorgan[symmetric])

apply(rule <thm>)

09/25/19 B. Wolff - M2 - PIA 15

Basic Backward Proof Methods
• The most elementary proof method is the rule <thmname> method.

It is used for introduction rules.

It basically proceeds in two phases:
– it searches the <thm> and replaces the free variables by

fresh variables of the form ?X,?Y,?Z (schematic variables)
– it constructs an instance of <thmname> by unification;

this means that the conclusion of <thmname> must finally match
(modulo β and α red.) against the conclusion of the current (first) goal.

examples: apply(rule impI) apply(rule iffI)
 apply(rule deMorgan[symmetric])

apply(rule <thm>)

09/25/19 B. Wolff - M2 - PIA 16

Basic Backward Proof Methods

• The user can help the unification process by
giving a (partial) substiutution:

… where <subst> is of the form: x1=”φ1” and xn=”φn

and the xi are some variables of <thm>

example: apply(rule_tac P="λX. H(c + b) (X)" in subst, rule add.commute)

 Converts goal “H(c + b) (3 + Suc a)“ into
 goal „H (c + b) (Suc a + 3)“

apply(rule_tac <subst> in <thm>)

09/25/19 B. Wolff - M2 - PIA 16

Basic Backward Proof Methods

• The user can help the unification process by
giving a (partial) substiutution:

… where <subst> is of the form: x1=”φ1” and xn=”φn

and the xi are some variables of <thm>

example: apply(rule_tac P="λX. H(c + b) (X)" in subst, rule add.commute)

 Converts goal “H(c + b) (3 + Suc a)“ into
 goal „H (c + b) (Suc a + 3)“

apply(rule_tac <subst> in <thm>)

09/25/19 B. Wolff - M2 - PIA 17

Basic Backward Proof Methods
• The most elementary proof method is the rule <thmname> method.

It is used for elimination rules.

It basically proceeds in two phases:
– it searches the <thm> and replaces the free variables by

fresh variables of the form ?X,?Y,?Z (schematic variables)
– it constructs an instance of <thmname> by unification;

this means that the conclusion of <thmname> must finally match
(modulo β and α red.) against a premise of the current (first) goal.

examples: apply(erule impE) apply(erule allE)

apply(erule <thm>)

09/25/19 B. Wolff - M2 - PIA 17

Basic Backward Proof Methods
• The most elementary proof method is the rule <thmname> method.

It is used for elimination rules.

It basically proceeds in two phases:
– it searches the <thm> and replaces the free variables by

fresh variables of the form ?X,?Y,?Z (schematic variables)
– it constructs an instance of <thmname> by unification;

this means that the conclusion of <thmname> must finally match
(modulo β and α red.) against a premise of the current (first) goal.

examples: apply(erule impE) apply(erule allE)

apply(erule <thm>)

09/25/19 B. Wolff - M2 - PIA 18

Basic Backward Proof Methods

• The user can help the unification process by
giving a (partial) substitution:

… where <subst> is of the form: x1=”φ1” and xn=”φn

and the xi are some variables of <thm>

example: apply(rule_tac P="λX. H(c + b) (X)" in subst, rule add.commute)

 Converts goal “H(c + b) (3 + Suc a)“ into
 goal „H (c + b) (Suc a + 3)“

apply(erule_tac <subst> in <thm>)

09/25/19 B. Wolff - M2 - PIA 18

Basic Backward Proof Methods

• The user can help the unification process by
giving a (partial) substitution:

… where <subst> is of the form: x1=”φ1” and xn=”φn

and the xi are some variables of <thm>

example: apply(rule_tac P="λX. H(c + b) (X)" in subst, rule add.commute)

 Converts goal “H(c + b) (3 + Suc a)“ into
 goal „H (c + b) (Suc a + 3)“

apply(erule_tac <subst> in <thm>)

09/25/19 B. Wolff - M2 - PIA 19

Basic Backward Proof Methods

• Closing a goal

unifies a premisse against a conclusion.

example: apply(assumption)

 Closes goal “H(c + 3) H(c + ?b)“ ⟹
and propagates the substitution ?b 3 ↦
 throughout the proof state.

apply(assumption)

09/25/19 B. Wolff - M2 - PIA 19

Basic Backward Proof Methods

• Closing a goal

unifies a premisse against a conclusion.

example: apply(assumption)

 Closes goal “H(c + 3) H(c + ?b)“ ⟹
and propagates the substitution ?b 3 ↦
 throughout the proof state.

apply(assumption)

09/25/19 B. Wolff - M2 - PIA 20

Basic Forward Proof Methods

• chaining by modus-ponens:
– <thm>[THEN <thm>]

 example: add.commute[THEN subst]
 produces ?P (?a1 + ?b1) ?P (?b1 + ?a1)⟹

– <thm>[OF <thm>]
 example: add.commute[THEN subst]
 produces the same

– <thm>[symmetric]
 example: de_Morgan_conj[symmetric]
 produces (¬ ?P ¬ ?Q) = (¬ (?P ?Q)) ∨ ∧

• instantiation with consts or free variables:
– <thm>[of <term> <term> <term>]

 example: add.commute[of _ “3”] produces ?a + 3 = 3 + ?a

09/25/19 B. Wolff - M2 - PIA 20

Basic Forward Proof Methods

• chaining by modus-ponens:
– <thm>[THEN <thm>]

 example: add.commute[THEN subst]
 produces ?P (?a1 + ?b1) ?P (?b1 + ?a1)⟹

– <thm>[OF <thm>]
 example: add.commute[THEN subst]
 produces the same

– <thm>[symmetric]
 example: de_Morgan_conj[symmetric]
 produces (¬ ?P ¬ ?Q) = (¬ (?P ?Q)) ∨ ∧

• instantiation with consts or free variables:
– <thm>[of <term> <term> <term>]

 example: add.commute[of _ “3”] produces ?a + 3 = 3 + ?a

09/25/19 B. Wolff - M2 - PIA 21

At a Glance

• low-level methods (without substitution)
– assumption (unifies conclusion vs. a premise)
– rule[_tac <subst> in] <thmname>
 PROLOG - like resolution step using HO-Unification

– erule[_tac <subst> in] <thmname>
 elimination resolution (for ND elimination rules)

– subst <thmname>
 does one rewrite-step
 (by instantiating the HOL subst-rule)

– drule[_tac <subst> in] <thmname>
 destruction resolution (for ND destruction rules)09/25/19 B. Wolff - M2 - PIA 21

At a Glance

• low-level methods (without substitution)
– assumption (unifies conclusion vs. a premise)
– rule[_tac <subst> in] <thmname>
 PROLOG - like resolution step using HO-Unification

– erule[_tac <subst> in] <thmname>
 elimination resolution (for ND elimination rules)

– subst <thmname>
 does one rewrite-step
 (by instantiating the HOL subst-rule)

– drule[_tac <subst> in] <thmname>
 destruction resolution (for ND destruction rules)

09/25/19 B. Wolff - M2 - PIA 22

Specification Commands

! Simple Definitions (Non-Rec. core variant):

 example: definition C::"bool bool"⇒
 where "C x = x"

! Type Definitions:

 example: typedef even = "{x::int. x mod 2 = 0}"

definition f::“<τ>” where “f x1 … xn = <t>”

typedef ('α1..'αn) κ = “<set-expr>” <proof>

09/25/19 B. Wolff - M2 - PIA 22

Specification Commands

! Simple Definitions (Non-Rec. core variant):

 example: definition C::"bool bool"⇒
 where "C x = x"

! Type Definitions:

 example: typedef even = "{x::int. x mod 2 = 0}"

definition f::“<τ>” where “f x1 … xn = <t>”

typedef ('α1..'αn) κ = “<set-expr>” <proof>

09/25/19 B. Wolff - M2 - PIA 23

Isabelle Specification Constructs
! Major example:
The introduction of the cartesian product:

subsubsection {* Type definition *}

definition Pair_Rep :: "'a 'b 'a 'b bool" ⇒ ⇒ ⇒ ⇒
where "Pair_Rep a b = (λx y. x = a y = b)"∧

definition "prod = {f. ∃ a b. f = Pair_Rep (a 'a) (b 'b)}"∷ ∷

typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a 'b bool) set"⇒ ⇒
 unfolding prod_def by auto

type_notation (xsymbols) "prod" ("(_ ×/ _)" [21, 20] 20)
09/25/19 B. Wolff - M2 - PIA 23

Isabelle Specification Constructs
! Major example:
The introduction of the cartesian product:

subsubsection {* Type definition *}

definition Pair_Rep :: "'a 'b 'a 'b bool" ⇒ ⇒ ⇒ ⇒
where "Pair_Rep a b = (λx y. x = a y = b)"∧

definition "prod = {f. ∃ a b. f = Pair_Rep (a 'a) (b 'b)}"∷ ∷

typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a 'b bool) set"⇒ ⇒
 unfolding prod_def by auto

type_notation (xsymbols) "prod" ("(_ ×/ _)" [21, 20] 20)

09/25/19 B. Wolff - M2 - PIA 24

Specification Mechanism Commands
! Datatype Definitions (similar SML):
(Machinery behind : complex series of const and typedefs !)

! Recursive Function Definitions:
(Machinery behind: Veeery complex series of const and
typedefs and automated proofs!)

datatype ('a1..'an) T =
 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where
 “<c> <pattern> = <t>”

| ...
 | “<c> <pattern> = <t>”

09/25/19 B. Wolff - M2 - PIA 24

Specification Mechanism Commands
! Datatype Definitions (similar SML):
(Machinery behind : complex series of const and typedefs !)

! Recursive Function Definitions:
(Machinery behind: Veeery complex series of const and
typedefs and automated proofs!)

datatype ('a1..'an) T =
 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where
 “<c> <pattern> = <t>”

| ...
 | “<c> <pattern> = <t>”

09/25/19 B. Wolff - M2 - PIA 25

Specification Mechanism Commands
! Datatype Definitions (similar SML):
(Machinery behind : complex !)

! Recursive Function Definitions:
(Machinery behind: Veeery complex!)

datatype ('a1..'an) T =
 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where
 “<c> <pattern> = <t>”

| ...
 | “<c> <pattern> = <t>”

NO
TE:

 Is
abe

lle
HO

L c
om

pile
s t

his

int
ern

ally
 to

 ax
iom

ati
c d

efin
itio

ns,

i.e.
 a

“m
ode

l” i
n H

OL
!!!

09/25/19 B. Wolff - M2 - PIA 25

Specification Mechanism Commands
! Datatype Definitions (similar SML):
(Machinery behind : complex !)

! Recursive Function Definitions:
(Machinery behind: Veeery complex!)

datatype ('a1..'an) T =
 <c> :: “<τ>” | … | <c> :: “<τ>”

fun <c> ::“<τ>” where
 “<c> <pattern> = <t>”

| ...
 | “<c> <pattern> = <t>”

NO
TE:

 Is
abe

lle
HO

L c
om

pile
s t

his

int
ern

ally
 to

 ax
iom

ati
c d

efin
itio

ns,

i.e.
 a

“m
ode

l” i
n H

OL
!!!

09/25/19 B. Wolff - M2 - PIA 26

Specification Mechanism Commands

! Datatype Definitions (similar SML):
Examples:

datatype mynat = ZERO | SUC mynat

datatype 'a list = MT | CONS "'a" "'a list"

09/25/19 B. Wolff - M2 - PIA 26

Specification Mechanism Commands

! Datatype Definitions (similar SML):
Examples:

datatype mynat = ZERO | SUC mynat

datatype 'a list = MT | CONS "'a" "'a list"

09/25/19 B. Wolff - M2 - PIA 27

Specification Mechanism Commands

! Inductively Defined Sets:

example: inductive path for rel ::"'a 'a bool"⇒ ⇒
 where base : “path rel x x”

 | step : “rel x y ⟹ path rel y z ⟹ path rel x z”

inductive <c> [for <v>:: “<τ>”]
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

09/25/19 B. Wolff - M2 - PIA 27

Specification Mechanism Commands

! Inductively Defined Sets:

example: inductive path for rel ::"'a 'a bool"⇒ ⇒
 where base : “path rel x x”

 | step : “rel x y ⟹ path rel y z ⟹ path rel x z”

inductive <c> [for <v>:: “<τ>”]
where <thmname> : “<φ>”
 | ...

 | <thmname> = <φ>

09/25/19 B. Wolff - M2 - PIA 28

Specification Mechanism Commands
! Extended Notation for Cartesian Products: records
(as in SML or OCaml; gives a slightly OO-flavor)

! ... introduces also semantics and syntax for

– selectors : tag1 x

– constructors : ⦇ tag1 = x1, ... , tagn = xn ⦈
– update-functions : x ⦇ tag1 := xn ⦈

record <c> = [<record> +]
tag1 :: “<τ1>”

 ...
 tagn :: “<τn>”

09/25/19 B. Wolff - M2 - PIA 28

Specification Mechanism Commands
! Extended Notation for Cartesian Products: records
(as in SML or OCaml; gives a slightly OO-flavor)

! ... introduces also semantics and syntax for

– selectors : tag1 x

– constructors : ⦇ tag1 = x1, ... , tagn = xn ⦈
– update-functions : x ⦇ tag1 := xn ⦈

record <c> = [<record> +]
tag1 :: “<τ1>”

 ...
 tagn :: “<τn>”

09/25/19 B. Wolff - M2 - PIA 29

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– subst <equation>
(one step left-to-right rewrite, choose any redex)

– subst <equation>[symmetric]
(one step right-to-left rewrite, choose any redex)

– subst (<n>) <equation>
(one step left-to-right rewrite, choose n-th redex)

 09/25/19 B. Wolff - M2 - PIA 29

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– subst <equation>
(one step left-to-right rewrite, choose any redex)

– subst <equation>[symmetric]
(one step right-to-left rewrite, choose any redex)

– subst (<n>) <equation>
(one step left-to-right rewrite, choose n-th redex)

09/25/19 B. Wolff - M2 - PIA 30

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– simp
(arbitrary number of left-to-right rewrites, assumption

or rule refl attepted at the end; a global simpset
in the background is used.)

– simp add: <equation> ... <equation>

 09/25/19 B. Wolff - M2 - PIA 30

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– simp
(arbitrary number of left-to-right rewrites, assumption

or rule refl attepted at the end; a global simpset
in the background is used.)

– simp add: <equation> ... <equation>

09/25/19 B. Wolff - M2 - PIA 31

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– auto
(apply in exaustive, non-deterministic manner:
 all introduction rules, elimination rules and

– auto intro: <rule> ... <rule>
 elim: <erule> ... <erule>
 simp: <equation> ... <equation>

 09/25/19 B. Wolff - M2 - PIA 31

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– auto
(apply in exaustive, non-deterministic manner:
 all introduction rules, elimination rules and

– auto intro: <rule> ... <rule>
 elim: <erule> ... <erule>
 simp: <equation> ... <equation>

09/25/19 B. Wolff - M2 - PIA 32

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– cases „<formula>“
(split top goal into 2 cases:
 <formula> is true or <formula> is false)

– cases „<variable>“
(- precondition : <variable> has type t which is a data-type)
search for splitting rule and do case-split over this variable.

– induct_tac „<variable>“
(- precondition : <variable> has type t which is a data-type)
search for induction rule and do induction over this variable.

09/25/19 B. Wolff - M2 - PIA 32

More on Proof-Methods

! Some composed methods
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– cases „<formula>“
(split top goal into 2 cases:
 <formula> is true or <formula> is false)

– cases „<variable>“
(- precondition : <variable> has type t which is a data-type)
search for splitting rule and do case-split over this variable.

– induct_tac „<variable>“
(- precondition : <variable> has type t which is a data-type)
search for induction rule and do induction over this variable.

09/25/19 B. Wolff - M2 - PIA 33

Screenshot with Examples

09/25/19 B. Wolff - M2 - PIA 33

Screenshot with Examples

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

