Preuves Interactives

et Applications

Christine Paulin \& Burkhart Wolff
http://www.Iri.fr/ ~paulin/PreuvesInteractives

Université Paris-Saclay

HOL and its Specification Constructs

Revision: Documents and Commands

- Isabelle has (similar to Eclipse) a "document-centric" view of development: there is a notion on an entire "project" which is processed globally.
- Documents (~ projects in Eclipse) consists of files (with potentially different file-type); .thy files consists of headers commands.

What is Isabelle as a System ?

- Global View of a "session"

What is Isabelle as a System ?

- Global View

Revision: Documents and Commands

- Each position in document corresponds
- to a "global context" ${ }^{\circ}$
- to a "local context" ${ }^{\text {er }}$ r
- There are specific "Inspection Commands" that give access to information in the contexts
- thm, term, typ, value, prop : global context
- print_cases, facts, ... , thm : local context

What is Isabelle as a System ?

- Document "positions" were evaluated to an implicit state, the theorv context Θ

"semantic" evaluation as SML
function

Inspection Commands

- Validating a type-expression:
typ "<hol-typ>"
example: typ "('a \times ' $\beta \Rightarrow$ bool)set"
- Type-checking terms:
term "<hol-term>"

$$
\text { example: term "(a: :nat) }+\mathrm{b}=\mathrm{b}+\mathrm{a} \text { " }
$$

Inspection Commands

- Type-checking propositions:
prop "<boolean-term>"
example: prop "ョt. $\forall \mathrm{u} . \mathrm{Htu} \rightarrow \neg \mathrm{Q}$ u"

Note: Propositions may contain free variables, which are implicitly universally quantified!

- Checking Theorem Names, Printing Theorems:

> thm "<theorem-id>"
example: thm refl sym subst

Search Commands

- Searching theorem ids's in the global context:
find_theorems "<pattern-list>"
example: find_theorems name:"HOL" "_ = _"

Text Commands

- Text-Commands:

chapter < text >

section < text >
subsection < text >
text < text >

Code-execution Commands

- Evaluating terms:

value "<hol-term>"

$$
\text { example: value "(3::nat) }+4=7 \text { " }
$$

- Code-Generation:
export_code "<hol-id>" in "<lang>" module_name "<sml-id>" file "<path>"
example: export_code odometer_function_step in SML module_name Odo_Function file "code/sml/odo.sml"

Basic Declaration Commands

- Type Declaration

typedecl " $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \quad$ <typconstructor-id>"

example: typedecl "L"

- (Unspecified) Constant Declaration:

$$
\text { consts } C:: „ \tau^{\prime \prime}
$$

example: consts True :: "bool"

Simple Proof Commands

- Simple (Backward) Proofs:

```
lemma <thmname> :
    [<contextelem>+ shows] "<phi>"
    <proof>
```

There are different formats of proofs, we concentrate on the simplest one:
apply $\left(<\right.$ method $\left._{1}>\right) \ldots$ apply $\left(<\right.$ method $\left._{n}>\right)$ done

Exercise demo3.thy

- Examples
lemma X : " $A \Longrightarrow B \Longrightarrow C \Longrightarrow(A \wedge B) \wedge C "$ (* output: $\left.\llbracket A ; B ; C \rrbracket \Rightarrow(A \wedge B) \wedge C)^{*}\right)$
lemma X2 : assume " A " and " B " and " C " shows " $(A \wedge B) \wedge C$ "
lemma X2 : assume h1: "A" and h2: "B" and h3: "C" shows " $(A \wedge B) \wedge C$ "

Basic Backward Proof Methods

- The most elementary proof method is the rule <thmname> method. It is used for introduction rules.

```
apply(rule <thm>)
```

It basically proceeds in two phases:

- it searches the <thm> and replaces the free variables by fresh variables of the form ?X,?Y,?Z (schematic variables)
- it constructs an instance of <thmname> by unification;
this means that the conclusion of <thmname> must finally match (modulo β and α red.) against the conclusion of the current (first) goal.

Basic Backward Proof Methods

- The user can help the unification process by giving a (partial) substiutution:

```
apply(rule_tac <subst> in <thm>)
```

\ldots where <subst> is of the form: $\quad x_{1}=" \phi_{1}$ " and $x_{n}=" \phi_{n}$ and the x_{i} are some variables of <thm>
example: apply(rule_tac $P=" \lambda X . H(c+b)(X)$ " in subst, rule add.commute)

$$
\begin{aligned}
& \text { Converts goal " } \mathrm{H}(\mathrm{c}+\mathrm{b})(3+\text { Suc } a) \text { " into } \\
& \text { goal „H } \underset{\text { B. Wolff- M2 -PIA }}{(c+b)}\left(\text { Suc }^{\prime \prime}\right.
\end{aligned}
$$

Basic Backward Proof Methods

- The most elementary proof method is the rule <thmname> method.

It is used for elimination rules.

apply(erule <thm>)

It basically proceeds in two phases:

- it searches the <thm> and replaces the free variables by fresh variables of the form ?X,?Y,?Z (schematic variables)
- it constructs an instance of <thmname> by unification; this means that the conclusion of <thmname> must finally match (modulo β and α red.) against a premise of the current (first) goal.

Basic Backward Proof Methods

- The user can help the unification process by giving a (partial) substitution:

apply(erule_tac <subst> in <thm>)

\ldots where <subst> is of the form: $\quad x_{1}=" \phi_{1}$ " and $x_{n}=" \phi_{n}$ and the x_{i} are some variables of <thm>
example: apply(rule_tac $\mathrm{P}=\mathrm{=} \lambda \mathrm{X} . \mathrm{H}(\mathrm{c}+\mathrm{b})(\mathrm{X})$ " in subst, rule add.commute)

$$
\begin{aligned}
& \text { Converts goal " } \mathrm{H}(\mathrm{c}+\mathrm{b})(3+\text { Suc } a) \text { " into } \\
& \text { goal „H } \underset{\text { B. Wolff- } \mathrm{M} 2-\mathrm{PIA}}{(\mathrm{c}+\mathrm{b})}\left(\mathrm{Suc}^{\prime}\right.
\end{aligned}
$$

Basic Backward Proof Methods

- Closing a goal

apply(assumption)

unifies a premisse against a conclusion.
example: apply(assumption)
Closes goal " $\mathrm{H}(\mathrm{c}+3) \Longrightarrow \mathrm{H}(\mathrm{c}+$? b$)$ "
and propagates the substitution ?b $\mapsto 3$
throughout the proof state.

Basic Forward Proof Methods

- chaining by modus-ponens:
- <thm>[THEN <thm>] example: add.commute[THEN subst] produces ?P $(? a 1+? b 1) \Longrightarrow ? P(? b 1+? a 1)$
- <thm>[OF <thm>] example: add.commute[THEN subst]
produces the same
- <thm>[symmetric] example: de_Morgan_conj[symmetric] produces $(\neg ? P \vee \neg ? Q)=(\neg(? P \wedge ? Q))$
- instantiation with consts or free variables:
$-<$ thm $>$ [of <term> <term> <term>]

At a Glance

- low-level methods (without substitution)
- assumption (unifies conclusion vs. a premise)
- rule[ttac <subst> in] <thmname>

PROLOG - like resolution step using HO-Unification

- erule[_tac <subst> in] <thmname> elimination resolution (for ND elimination rules)
- subst <thmname> does one rewrite-step (by instantiating the HOL subst-rule)
- drule[_tac <subst> in] <thmname>

Specification Commands

- Simple Definitions (Non-Rec. core variant):

$$
\text { definition f: :"< }>\text { " where "f } \mathrm{X}_{1} \ldots \mathrm{x}_{\mathrm{n}}=<\mathrm{t}>\text { " }
$$

example: definition C::"bool \Rightarrow bool"
where "C x = x"

- Type Definitions:

$$
\text { typedef ('a } \mathrm{a}_{1} . \mathrm{I}_{\mathrm{n}} \text {) k = "<set-expr>" <proof> }
$$

Isabelle Specification Constructs

- Major example:

The introduction of the cartesian product:
subsubsection \{* Type definition *\}
definition Pair_Rep :: "'a \Rightarrow 'b \Rightarrow ' $\mathrm{a} \Rightarrow$ 'b \Rightarrow bool"
where "Pair_Rep $a b=(\lambda x y . x=a \wedge y=b) "$
definition "prod = \{f. ヨ a b. f = Pair_Rep (a :: 'a) (b :: 'b) \}"
typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a \Rightarrow 'b \Rightarrow bool) set" unfolding prod_def by auto

Specification Mechanism Commands

- Datatype Definitions (similar SML): (Machinery behind : complex series of const and typedefs !)

$$
\begin{aligned}
& \text { datatype }\left(\mathrm{c}_{1} . \cdot \mathrm{'a}_{\mathrm{n}}\right) \Theta= \\
& <\mathrm{c}>:: "<\tau>"|\ldots|<\mathrm{c}>:: "<\tau>"
\end{aligned}
$$

- Recursive Function Definitions:
(Machinery behind: Veeery complex series of const and typedefs and automated proofs!)

```
    fun <c> ::"<\tau>" where
    "<c> <pattern> = <t>"
    | "."<c> <pattern> = <t>"
```


Specification Mechanism Commands

- Datatype Definitions (similar SML): (Machinery behind : complex !)
- Recursive Functigob Definitions.
(Machinery kehind y Veeery complex!)
fub \llcスi?:"< $>$ " where
" $6 c><$ pattern> $=<t>"$
" " < $:$ < > pattern> = <t>"

Specification Mechanism Commands

- Datatype Definitions (similar SML): Examples:
datatype mynat = ZERO I SUC mynat datatype 'a list = MT I CONS "'a" "'a list"

Specification Mechanism Commands

- Inductively Defined Sets:

$$
\begin{gathered}
\text { inductive } \quad<\mathrm{c}>[\text { for }\langle\mathrm{v}\rangle:: "<\tau>"] \\
\text { where }<\text { thmname }>: "<\phi>" \\
\\
\\
\\
\mid \ldots \\
\mid<\text { thmname }>=<\phi>
\end{gathered}
$$

example: inductive path for rel ::"'a \Rightarrow ' $a \Rightarrow$ bool" where base : "path rel x "
| step: "rel $x y \Longrightarrow$ path rel $y z \Longrightarrow$ path rel $x z^{\prime \prime}$

Specification Mechanism Commands

- Extended Notation for Cartesian Products: records (as in SML or OCaml; gives a slightly OO-flavor)

$$
\begin{aligned}
& \text { record }<c>=[<\text { record }>+] \\
& \operatorname{tag}_{1}:: "<\tau_{1}>" \\
& \ldots \\
& \operatorname{tag}_{n}:: "<\tau_{n}>"
\end{aligned}
$$

- ... introduces also semantics and syntax for
- selectors: $\operatorname{tag}_{1} \mathrm{x}$
- constructors: $\quad 0 \operatorname{tag}_{1}=x_{1}, \ldots, \operatorname{tag}_{n}=x_{n}$ D
- update-functions: $\quad x \vee \operatorname{tag}_{1}:=x_{n}$ D

More on Proof-Methods

- Some composed methods (internally based on assumption, erule_tac and rule_tac + tactic code that constructs the substitutions)
- subst <equation>
(one step left-to-right rewrite, choose any redex)
- subst <equation>[symmetric]
(one step right-to-left rewrite, choose any redex)
- subst (<n>) <equation> (one step left-to-right rewrite, choose n-th redex)

More on Proof-Methods

- Some composed methods (internally based on assumption, erule_tac and rule_tac + tactic code that constructs the substitutions)
- simp
(arbitrary number of left-to-right rewrites, assumption or rule refl attepted at the end; a global simpset in the background is used.)
- simp add: <equation> ... <equation>

More on Proof-Methods

- Some composed methods
(internally based on assumption, erule_tac and rule_tac + tactic code that constructs the substitutions)
- auto
(apply in exaustive, non-deterministic manner:
all introduction rules, elimination rules and
- auto intro: <rule> ... <rule>
elim: <erule> ... <erule>
simp: <equation> ... <equation>

More on Proof-Methods

- Some composed methods (internally based on assumption, erule_tac and rule_tac + tactic code that constructs the substitutions)
- cases „<formula>" (split top goal into 2 cases: <formula> is true or <formula> is false)
- cases „<variable>"
(- precondition : <variable> has type t which is a data-type) search for splitting rule and do case-split over this variable.
- induct_tac „<variable>"
(- precondition : <variable> has type t which is a data-type) search for induction rule and do induction over this variable.

Screenshot with Examples

