Preuves Interactives et Applications

Christine Paulin & Burkhart Wolff

http://www.lri.fr/ ~paulin/PreuvesInteractives

Université Paris-Saclay

HOL and its Specification Constructs

Revision: Documents and Commands

 Isabelle has (similar to Eclipse) a "document-centric" view of development: there is a notion on an entire "project" which is processed globally.

 Documents (~ projects in Eclipse) consists of files (with potentially different file-type);
 .thy files consists of headers commands.

What is Isabelle as a System ?

Global View of a "session"

What is Isabelle as a System ?

Global View

Revision: Documents and Commands

Each position in document corresponds

There are specific "Inspection Commands"
 that give access to information in the contexts

- thm, term, typ, value, prop : global context

- print_cases, facts, ..., thm : local context

What is Isabelle as a System ?

Nolff - M2 - PIA

 Document "positions" were evaluated to an implicit state, the theory context Θ Document / cmd "Theony" cmd cmd B cmd cmd cmd Θ_0 cmd cmd -Θ_{3 - 1} cmd cmd _Θ_{3 - 2} 4 cmd cmd Θ_3

cmd

09/25/19

"semantic" evaluation as SML function

Inspection Commands

• Validating a type-expression:

typ "<hol-typ>"

example: typ "('a × '
$$\beta \Rightarrow$$
 bool)set"

Type-checking terms:

term "<hol-term>"

Inspection Commands

Type-checking propositions:

prop ``<boolean-term>"

example: prop " \exists t. \forall u. H t u $\rightarrow \neg$ Q u"

Note: Propositions may contain free variables, which are implicitly universally quantified!

• Checking Theorem Names, Printing Theorems:

thm "<theorem-id>"

example: thm refl sym subst

Search Commands

Searching theorem ids in the global context:

find_theorems "<pattern-list>"

example: find_theorems name:"HOL" "_ = _"

Text Commands

Text-Commands:

chapter < text >

section < text >

subsection < text >

text < text >

- Text: spellchecked
- may contain ,,antiquotations" for types, terms, thms, code, ...

Code-execution Commands

• Evaluating terms:

example: value "(3::nat) + 4 = 7"

• Code-Generation:

export_code ``<hol-id>" in ``<lang>"
module_name ``<sml-id>" file ``<path>"

example: export_code odometer_function_step in SML module_name Odo_Function file "code/sml/odo.sml" B. Wolff - M2 - PIA

Basic Declaration Commands

Type Declaration

typedecl "(
$$\alpha_1, ..., \alpha_n$$
) "

example: typedecl "L"

• (Unspecified) Constant Declaration:

consts C :: "
$$\tau$$
"

example: consts True :: "bool"

B. Wolff - M2 - PIA

Simple Proof Commands

• Simple (Backward) Proofs:

```
lemma <thmname> :
  [<contextelem><sup>+</sup> shows] ``<phi>"
  <proof>
```

There are different formats of proofs, we concentrate on the simplest one:

 $apply(<method_1>) \dots apply(<method_n>) done$

Exercise demo3.thy

• Examples

$$\begin{array}{l} \text{lemma X1 : "A \Longrightarrow B \Longrightarrow C \Longrightarrow (A \land B) \land C"} \\ (* \text{ output: } \llbracket A; B; C] \rrbracket \Rightarrow (A \land B) \land C) *) \end{array}$$

lemma X2 : assume "A" and "B" and "C" shows "(A
$$\wedge$$
 B) \wedge C"

lemma X2 : assume h1: "A" and h2: "B" and h3: "C" shows "(A \wedge B) \wedge C"

• The most elementary proof method is the rule <thmname> method. It is used for introduction rules.

apply(rule <thm>)

It basically proceeds in two phases:

- it searches the <thm> and replaces the free variables by fresh variables of the form ?X,?Y,?Z (schematic variables)
- it constructs an instance of <thmname> by unification;
 this means that the conclusion of <thmname> must finally match (modulo β and α red.) against the conclusion of the current (first) goal.

09/25/19

examples: apply(rule impl) apply(rule iffl) apply(rule deMorgan[symmetric])

• The user can help the unification process by giving a (partial) substitution:

apply(rule_tac <subst> in <thm>)

... where $\langle subst \rangle$ is of the form: $x_1 = [\phi_1]$ and $x_n = [\phi_n]$ and the x_i are some variables of $\langle thm \rangle$

example: apply(rule_tac P=" λ X. H(c + b) (X)" in subst, rule add.commute)

Converts goal "H(c + b) (3 + Suc a)" into goal "H (c + b) (Suc a + 3)" B. Wolff - M2 - PIA

The most elementary proof method is the rule <thmname> method.
 It is used for elimination rules.

apply(erule <thm>)

It basically proceeds in two phases:

- it searches the <thm> and replaces the free variables by fresh variables of the form ?X,?Y,?Z (schematic variables)
- it constructs an instance of <thmname> by unification;
 this means that the conclusion of <thmname> must finally match (modulo β and α red.) against a premise of the current (first) goal.

• The user can help the unification process by giving a (partial) substitution:

apply(erule_tac <subst> in <thm>)

... where $\langle subst \rangle$ is of the form: $x_1 = [\phi_1]$ and $x_n = [\phi_n]$ and the x_i are some variables of $\langle thm \rangle$

example: apply(rule_tac P=" λ X. H(c + b) (X)" in subst, rule add.commute)

Converts goal "H(c + b) (3 + Suc a)" into goal "H (c + b) (Suc a + 3)" B. Wolff - M2 - PIA

Closing a goal

apply(assumption)

unifies a premisse against a conclusion.

example: apply(assumption)

Closes goal "H(c + 3) \implies H(c + ?b)" and propagates the substitution $?b \rightarrow 3$ throughout the proof state.

09/25/19

Basic Forward Proof Methods

- chaining by modus-ponens:
 - <thm>[THEN <thm>] example: add.commute[THEN subst]

produces $P(a1 + b1) \implies P(b1 + a1)$

- <thm>[OF <thm>] example: add.commute[THEN subst]

produces the same

- <thm>[symmetric] example: de_Morgan_conj[symmetric] produces (¬ ?P ∨ ¬ ?Q) = (¬ (?P ∧ ?Q))
- instantiation with consts or free variables:
 - <thm>[of <term> <term>]

 $example: add.commute[of_B_W_0]_{III} add_{W_0} = 3 + 3 = 3 + 2$

At a Glance

- low-level methods (without substitution)
 - assumption (unifies conclusion vs. a premise)
 - rule[_tac <subst> in] <thmname> PROLOG - like resolution step using HO-Unification
 - erule_tac <subst> in] <thmname>
 elimination resolution (for ND elimination rules)
 - subst <thmname>
 does one rewrite-step
 (by instantiating the HOL subst-rule)
 - drule[_tac <subst> in] <thmname>

09/25/19

destruction resol^Bution^{M2}(for ND destruction rules)²¹

Specification Commands

• Simple Definitions (Non-Rec. core variant):

definition f::" $<\tau>''$ where "f $x_1 \dots x_n = <t>''$

example: definition C::"bool \Rightarrow bool"

where "C x = x"

• Type Definitions:

typedef (' a_1 ...' a_n) $\kappa =$ "<set-expr>" <proof>

Isabelle Specification Constructs

Major example: The introduction of the cartesian product:

subsubsection {* Type definition *} definition Pair_Rep :: "'a \Rightarrow 'b \Rightarrow 'a \Rightarrow 'b \Rightarrow bool" where "Pair Rep a b = ($\lambda x y$, x = a $\land y$ = b)"

definition "prod = {f. \exists a b. f = Pair_Rep (a :: 'a) (b :: 'b)}" typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a \Rightarrow 'b \Rightarrow bool) set" unfolding prod_def by auto ^{09/25/19} type notation (xsymbols)^{B. Wolff-M2 = PIA} "prod" ("(_ ×/ _)" [21, 20] 20)

Datatype Definitions (similar SML):
 (Machinery behind : complex series of const and typedefs !)

datatype (' a_1 ..' a_n) Θ = <c> :: "< τ >" | ... | <c> :: "< τ >"

 Recursive Function Definitions: (Machinery behind: Veeery complex series of const and typedefs and automated proofs!)

> fun <c> ::"<τ>" where "<c> <pattern> = <t>" | ... | "<c> <pattern> = <t>"

 Datatype Definitions (similar SML): Examples:

datatype mynat = ZERO I SUC mynat

datatype 'a list = MT I CONS "'a" "'a list"

• Inductively Defined Sets:

inductive
$$\langle c \rangle [\text{ for } \langle v \rangle :: `` \langle \tau \rangle'']$$

where $\langle thmname \rangle : `` \langle \phi \rangle''$
 $| \dots$
 $| \langle thmname \rangle = \langle \phi \rangle$

example: inductive path for rel ::"'a
$$\Rightarrow$$
 'a \Rightarrow bool"
where base : "path rel x x"
| step : "rel x y \Rightarrow path rel y z \Rightarrow path rel x z"

B. Wolff - M2 - PIA

• Extended Notation for Cartesian Products: records (as in SML or OCaml; gives a slightly OO-flavor)

record <c> = [<record> +]tag₁ :: " $<\tau_1>$ " ... tag_n :: " $<\tau_n>$ "

- ... introduces also semantics and syntax for
 - selectors : $tag_1 x$
 - constructors : ($tag_1 = x_1, ..., tag_n = x_n$)
 - update-functions : $x (tag_1 := x_n)$

- Some composed methods

 (internally based on assumption, erule_tac and rule_tac + tactic code that constructs the substitutions)
 - subst <equation>

(one step left-to-right rewrite, choose any redex)

– subst <equation>[symmetric]

(one step right-to-left rewrite, choose any redex)

– subst (<n>) <equation>

(one step left-to-right rewrite, choose n-th redex)

- Some composed methods

 (internally based on assumption, erule_tac and rule_tac + tactic code that constructs the substitutions)
 - simp

(arbitrary number of left-to-right rewrites, assumption or rule refl attepted at the end; a global simpset in the background is used.)

- simp add: <equation> ... <equation>

 Some composed methods

 (internally based on assumption, erule_tac and rule_tac + tactic code that constructs the substitutions)

- auto

(apply in exaustive, non-deterministic manner: all introduction rules, elimination rules and

– auto intro: <rule> ... <rule> elim: <erule> ... <erule> simp: <equation> ... <equation>

- Some composed methods

 (internally based on assumption, erule_tac and rule_tac + tactic code that constructs the substitutions)
 - cases "<formula>"
 (split top goal into 2 cases:
 <formula> is true or <formula> is false)
 - cases "<variable>"

(- precondition : <variable> has type t which is a data-type) search for splitting rule and do case-split over this variable.

- induct_tac ,<variable>"

(- precondition : <variable> has type t which is a data-type) search for induction rule and do induction over this variable.

Screenshot with Examples

09/25/19