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Revision: Documents and Commands
! Isabelle has (similar to Eclipse) a 
„document-centric“ view of development:
there is a notion on an entire “project”
which is processed globally.

! Documents (~ projects in Eclipse) consists of
files (with potentially different file-type);
.thy files consists of headers commands.
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What is Isabelle as a System ? 
! Global View of a “session“
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Revision: Documents and Commands
! Each position in document corresponds

– to a “global context” Θ
– to a “local context” Θ, Γ

! There are specific „Inspection Commands“
that give access to information in the contexts

– thm, term, typ, value, prop  : global context
– print_cases, facts, ... , thm  : local context
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What is Isabelle as a System ? 
! Document “positions” were evaluated to an

implicit state, the theory context T
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Inspection Commands

! Validating a type-expression:

     
             example: typ  "('a × 'β  bool)set"⇒

! Type-checking terms:

                example: term “(a::nat) + b = b + a"

typ “<hol-typ>”

term “<hol-term>”
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Inspection Commands
! Type-checking propositions:

                    example: prop “ t. u. H t u  ¬ Q u"∃ ∀ ⟶

                     Note: Propositions may contain free variables, which 
                                are  implicitly universally quantified!

! Checking Theorem Names, Printing Theorems:

                          example: thm refl sym subst  

prop “<boolean-term>”

thm “<theorem-id>”
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Search Commands
! Searching theorem id’s in the global 

context:

                          

example: find_theorems name:”HOL” “_ = _” 

find_theorems “<pattern-list>”
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Text Commands

! Text-Commands:

     
             

          
                

chapter ‹ text ›

section {*<text>*}section ‹ text ›

subsection ‹ text ›

text ‹ text ›

- Text: spell-
   checked
- may contain
  „antiquotations“
  for types, terms,
  thms, code, ...
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Code-execution Commands
! Evaluating terms: 

          
                example: value “(3::nat) + 4 = 7"

! Code-Generation:
                

           example: export_code  odometer_function_step in SML                    
                           module_name Odo_Function file "code/sml/odo.sml"       

  export_code “<hol-id>” in “<lang>”
module_name “<sml-id>” file “<path>”

value “<hol-term>”    
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Basic Declaration Commands
! Type Declaration 

          
                example: typedecl “L" 

! (Unspecified) Constant Declaration:
                

           example:  consts True :: “bool”       

  consts  c :: „τ“

typedecl “(α1,...,αn) <typconstructor-id>”    
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Simple Proof Commands
! Simple (Backward) Proofs: 

There are different formats of proofs, we concentrate on the 
simplest one:

apply(<method1>) ... apply(<methodn>) done

lemma  <thmname> : 
[<contextelem>+ shows] “<phi>”       
 <proof>
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Exercise demo3.thy
! Examples

lemma X1 : “A  B  C  (A  B)  C”⟹ ⟹ ⟹ ∧ ∧
           (* output: A; B; C   (A B) C⟦ ⟧ ⟹ ∧ ∧  ) *)

lemma X2 : assume “A” and “B” and “C” 
                   shows “(A  B)  C”∧ ∧

lemma X2 : assume h1: “A” and h2: “B” and h3: “C” 
                   shows “(A  B)  C”∧ ∧
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Basic Backward Proof Methods
• The most elementary proof method is the  rule <thmname> method. 

It is used for introduction rules. 

It basically proceeds in two phases:
– it searches the <thm> and replaces the free variables by

fresh variables of the form ?X,?Y,?Z (schematic variables)
– it constructs an instance of <thmname> by unification;

this means that the conclusion of <thmname> must finally match 
(modulo β and α red.) against the conclusion of the current (first) goal.

examples:  apply(rule impI)          apply(rule iffI)
               apply(rule deMorgan[symmetric])

apply(rule <thm>)    
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Basic Backward Proof Methods

• The user can help the unification process by 
giving a (partial) substiutution:

… where <subst> is of the form:       x1=”φ1” and xn=”φn 

and the xi are some variables of  <thm>

example:  apply(rule_tac P="λX. H(c + b) (X)" in subst,  rule add.commute)

                     Converts goal  “H(c + b) (3 + Suc a)“ into 
                                   goal „H (c + b) (Suc a + 3)“

apply(rule_tac <subst> in <thm>)    
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Basic Backward Proof Methods
• The most elementary proof method is the  rule <thmname> method. 

It is used for elimination rules. 

It basically proceeds in two phases:
– it searches the <thm> and replaces the free variables by

fresh variables of the form ?X,?Y,?Z (schematic variables)
– it constructs an instance of <thmname> by unification;

this means that the conclusion of <thmname> must finally match 
(modulo β and α red.) against a premise of the current (first) goal.

examples:  apply(erule impE)          apply(erule allE)
               

apply(erule <thm>)    
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Basic Backward Proof Methods

• Closing a goal

unifies a premisse against a conclusion.

example:  apply(assumption)

                     Closes goal  “H(c + 3)  H(c + ?b)“ ⟹
and propagates the substitution ?b  3 ↦
                               throughout the proof state.

apply(assumption)    
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Basic Forward Proof Methods

• chaining by modus-ponens:
–   <thm>[THEN <thm>]  

  example:  add.commute[THEN subst]
                                       produces ?P (?a1 + ?b1)  ?P (?b1 + ?a1)⟹

–   <thm>[OF <thm>]
  example:  add.commute[THEN subst]
                                       produces the same

–   <thm>[symmetric]
  example:   de_Morgan_conj[symmetric]
                                       produces (¬ ?P  ¬ ?Q) = (¬ (?P  ?Q)) ∨ ∧

• instantiation with consts or free variables:
–  <thm>[of <term> <term> <term> ]

     example: add.commute[of _ “3”]  produces ?a + 3 = 3 + ?a
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At a Glance

• low-level methods (without substitution)
– assumption (unifies conclusion vs. a premise)
– rule[_tac   <subst> in] <thmname> 
 PROLOG - like resolution step using HO-Unification

– erule[_tac   <subst> in] <thmname>
 elimination resolution (for ND elimination rules)

– subst <thmname>
 does one rewrite-step 
 (by instantiating the HOL subst-rule)

– drule[_tac   <subst> in] <thmname>
    destruction resolution  (for ND destruction rules)09/25/19 B. Wolff - M2 - PIA 21
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Specification Commands

! Simple Definitions (Non-Rec. core variant):

          example: definition C::"bool  bool"⇒
                                 where "C x = x"

! Type Definitions:

              example:   typedef even = "{x::int. x mod 2 = 0}"

definition f::“<τ>”  where  “f x1 … xn = <t>”    

typedef ('α1..'αn) κ =  “<set-expr>” <proof>     
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Isabelle Specification Constructs
! Major example: 
The introduction of the cartesian product:
          
subsubsection {* Type definition *}

definition Pair_Rep :: "'a  'b  'a  'b  bool" ⇒ ⇒ ⇒ ⇒
where    "Pair_Rep a b = (λx y. x = a  y = b)"∧

definition "prod = {f. ∃ a b. f = Pair_Rep (a  'a) (b  'b)}"∷ ∷

typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a  'b  bool) set"⇒ ⇒
                                                         unfolding prod_def by auto

type_notation (xsymbols)  "prod"  ("(_ ×/ _)" [21, 20] 20)
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Specification Mechanism Commands
! Datatype Definitions (similar SML):
(Machinery behind : complex series of const and typedefs !)

          
! Recursive Function Definitions:
(Machinery behind: Veeery complex series of const and 
typedefs and automated proofs!)

              

datatype ('a1..'an) T = 
 <c> :: “<τ>”  | … |  <c> :: “<τ>”   

fun <c> ::“<τ>” where
     “<c> <pattern> = <t>”

| ...
  |   “<c> <pattern> = <t>”             
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Specification Mechanism Commands

! Datatype Definitions (similar SML):
Examples:

datatype mynat = ZERO | SUC mynat

datatype 'a list = MT | CONS "'a" "'a list"
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Specification Mechanism Commands

! Inductively Defined Sets:

          

example: inductive path for rel ::"'a  'a  bool"⇒ ⇒
              where  base : “path rel x x”

            |    step : “rel x y ⟹ path rel y z ⟹ path rel x z”             

inductive     <c> [ for <v>:: “<τ>” ]
where  <thmname> : “<φ>” 
   | ...

       | <thmname> = <φ>       
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Specification Mechanism Commands
! Extended Notation for Cartesian Products: records
(as in SML or OCaml; gives a slightly OO-flavor)

          
! ... introduces also semantics and syntax for

– selectors :  tag1 x

– constructors :       ⦇ tag1 = x1, ... , tagn = xn   ⦈
– update-functions : x  ⦇ tag1 := xn  ⦈

            

record     <c> = [<record> + ]
tag1 :: “<τ1>”

  ...
  tagn :: “<τn>”          
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More on Proof-Methods

! Some composed methods 
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– subst <equation>
(one step left-to-right rewrite, choose any redex)

– subst <equation>[symmetric]
(one step right-to-left rewrite, choose any redex)

– subst (<n>) <equation>
(one step left-to-right rewrite, choose n-th redex)
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More on Proof-Methods

! Some composed methods 
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– simp
(arbitrary number of left-to-right rewrites, assumption 

or rule refl attepted at the end; a global simpset
in the background is used.)

– simp add: <equation> ...  <equation>
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More on Proof-Methods

! Some composed methods 
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– auto 
(apply in exaustive, non-deterministic manner:
 all introduction rules, elimination rules and 

– auto intro: <rule> ... <rule>
     elim: <erule> ... <erule>
     simp: <equation> ... <equation>
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More on Proof-Methods

! Some composed methods 
(internally based on assumption, erule_tac and
 rule_tac + tactic code that constructs the
 substitutions)

– cases „<formula>“
(split top goal into 2 cases: 
  <formula> is true or  <formula> is false)

– cases „<variable>“
(- precondition : <variable> has type t which is a data-type) 
search for splitting rule and do case-split over this variable.

– induct_tac „<variable>“
(- precondition : <variable> has type t which is a data-type) 
search for induction rule and do induction over this variable.
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Screenshot with Examples
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